

MATHEMATICAL TRIPOS Part III

Friday 28 May, 2004 13:30 to 15:30

PAPER 41

Actuarial Statistics

Attempt **THREE** questions.

There are **four** questions in total.

The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

- 1 (i) A portfolio consists of m independent risks. The total amount S_i claimed on risk i in one year has a compound Poisson distribution with Poisson parameter λ_i and claim size distribution function F_i , i = 1, ..., m. Let S be the total amount claimed on the whole portfolio in one year. Show that S has a compound Poisson distribution, and find the resulting Poisson parameter and claim size distribution function.
- (ii) Let N_1, \ldots, N_m be independent Poisson random variables with $\mathbb{E}(N_i) = \lambda_i$, and let a_1, \ldots, a_m be distinct non-negative constants. Show that

$$T = a_1 N_1 + \ldots + a_m N_m$$

has a compound Poisson distribution, and find the corresponding Poisson parameter and claim size distribution.

(iii) Suppose that the claim sizes X_1, X_2, \ldots for a particular risk are independent, identically distributed random variables taking values in $\{a_1, \ldots, a_m\}$ with $p_i = \mathbb{P}(X_1 = a_i)$. The number N of claims in a year for this risk has a Poisson distribution with mean λ and is independent of X_1, X_2, \ldots Let \tilde{T} be the total amount claimed for this risk in one year. Show that \tilde{T} can be represented in the form

$$a_1N_1 + \ldots + a_mN_m$$

where, given N = n, (N_1, \ldots, N_m) has a multinomial distribution with parameters n, p_1, \ldots, p_m , so that

$$\mathbb{P}(N_1 = n_1, \dots, N_m = n_m | N = n) = \frac{n!}{n_1! \dots n_m!} \quad p_1^{n_1} \dots p_m^{n_m}$$

if $n = \sum_{i=1}^{m} n_i$, and is zero otherwise.

Show that

$$\mathbb{E}\left[\prod_{i=1}^{m} z_i^{N_i}\right] = \prod_{i=1}^{m} \exp\{\lambda p_i(z_i - 1)\},\,$$

and write down the distribution of N_i .

[Hint: If (Y_1, \ldots, Y_m) has a multinomial distribution with parameters n, p_1, \ldots, p_m then $\mathbb{E}[\prod_{i=1}^m z_i^{Y_i}] = (p_1 z_1 + \ldots + p_m z_m)^n$]

The total amount S claimed on a portfolio of fire insurance policies in a year has a compound Poisson distribution with Poisson parameter λ and claim size density f(x). Derive an expression for the cumulant generating function of S in terms of λ and the moment generating function of the claim size distribution. Hence show that the j^{th} cumulant of S is $\lambda \mathbb{E}[X^j]$, where X is an individual claim size.

The insurer takes out excess of loss reinsurance with retention M. Find the mean and variance of the total amounts S_I and S_R paid in a year by the insurer and reinsurer, respectively.

Suppose that
$$f(x) = \begin{cases} \frac{3d^3}{x^4} & x > d \\ 0 & x \le d \end{cases}$$

Sketch $var(S_I) + var(S_R)$ as a function of M, and find the value of M that minimises $var(S_I) + var(S_R)$ for this claim size distribution.

Consider a classical risk model where claims arrive in a Poisson process with rate λ and claims are independent, identically distributed random variables with distribution function F, moment generating function M and mean μ , independent of the arrivals process. The premium rate is c. Assume positive safety loading, and that there exists r_{∞} , $0 < r_{\infty} \leq \infty$, such that $M(r) \uparrow \infty$ as $r \uparrow r_{\infty}$. Define the adjustment coefficient, R.

Let $\psi(u)$ be the probability of ruin when the initial capital is u, and let $\phi(u) = 1 - \psi(u)$. You are given that $\phi(u)$ satisfies

$$\phi(u) = 1 - \frac{\lambda \mu}{c} + \frac{\lambda}{c} \int_0^u \phi(u - x)(1 - F(x)) dx.$$

Show how to derive a renewal-type equation for $Z(u) = e^{Ru}\psi(u)$. Quoting without proof results from renewal theory as necessary, derive an expression for $A = \lim_{u \to \infty} Z(u)$.

Calculate A for a portfolio where the claim sizes have density

$$f(x) = xe^{-x} \qquad (x > 0).$$

For a different portfolio, it is found that

$$\psi(u) = ae^{-u} + be^{-6u}$$

for constants a and b. Find R, A and $\frac{\lambda \mu}{c}$ for this portfolio.

4 Let $X_1, X_2, ...$ be independent Poisson random variables, each with mean θ , where the prior distribution of θ is gamma with mean $\frac{\alpha}{\beta}$ and variance $\frac{\alpha}{\beta^2}$.

Find $\mathbb{E}[X_{n+1}|X_1=x_1,\ldots,X_n=x_n]$ and show that it can be written in the form of a credibility estimate.

A risk in year j consists of n_j independent policies and the number of claims on each policy has a Poisson distribution with mean θ , $j=1,\ldots,n+1$, and θ has the prior distribution above. At t=0, claim sizes are a fixed amount c. Claims inflation is 100r% per year and claims are settled at the end of each year, so that claim sizes for year j are $(1+r)^j c$. Let Y_j denote the average amount claimed per policy in year j. Given $Y_1=y_1,\ldots,Y_n=y_n$, find the posterior distribution of θ . Find $\mathbb{E}[Y_{n+1}|Y_1=y_1,\ldots,Y_n=y_n]$ and show that it can be written in the form

$$Z m(\mathbf{y}) + (1 - Z) m.$$

Give explicit expressions for Z, m and $m(\mathbf{y})$, and interpret m and $m(\mathbf{y})$ in words. Explain what happens to Z as the total past exposure $\sum_{j=1}^{n} n_j$ increases.