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ACOUSTICS AND STABILITY

Attempt no more than THREE questions.

Little credit will be given for fragments.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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1 A thin elastic membrane of mass m per unit length is stretched along the x-axis
under tension T . In y > 0 there is a quiescent fluid of density ρ0 and wave-speed c0,
whereas in y < 0 there is a vacuum. Line source forcing of magnitude F and frequency
ω is applied to the membrane at the origin, resulting in small oscillations such that the
membrane’s displacement η(x, t) satisfies

m
∂2η

∂t2
− T

∂2η

∂x2
= Fδ(x)e−iωt − p(x, 0, t),

where p(x, y, t) is the perturbation pressure in the fluid.

Show that

η =
F

2π

∫
C

γeikx e−iwt

(Tk2 −mω2)γ − ρ0ω2
dk

where γ2 = k2 − k2
0 and k0 = ω/c0, describing carefully the definitions of both γ and

the inversion contour C. Obtain a similar expression for the fluid potential φ(x, y, t) and
hence find the directivity of the far field radiation in the fluid.

[You may use without proof the fact that∫
f(k)eikx−γy dk ∼

√
2πk0/r f(k0 cos θ) sin θ eik0r−iπ/4

as r → ∞, where x = r cos θ, y = r sin θ and where the integration is along the steepest
descent contour.]

Show that, for a given real value of ω, the dispersion relation

D(k, ω) = (Tk2 −mω2)γ − ρ0ω
2

always has two zeros on the real k-axis. To what do these zeros correspond? Are they
always relevant?

2

Obtain Rayleigh’s stability equation for an incompressible inviscid fluid in −∞ <
z <∞ with a basic flow U(z)i (where i denotes the unit vector parallel to the x-axis). State
and prove Rayleigh’s inflexion-point theorem. State without proof Fjørtoft’s theorem.

Consider the basic flow U(z) = tanh z. Show that the possibility that this flow is
unstable is consistent with Fjørtoft’s theorem. Approximate the basic flow using three
straight segments:

Uapprox(z) =

{ 1 z > 1,
z −1 < z < 1,
−1 z < −1.

Find the dispersion relation corresponding to Uapprox and hence or otherwise show
explicitly that in this model the flow is unstable.
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3 Attempt EITHER (a) OR (b).

(a) What is meant by a singular perturbation problem?

Functions x(t) and y(t) satisfy

ẍ+ 3εẋy + x = 2ẏ2,

ẏ = ε(1 + x− y),

subject to initial conditions x(0) = 0, ẋ(0) = 1, y(0) = 3, where ε� 1 is a small parameter
and a dot denotes differentiation with respect to t. By searching for a solution of the form

x = x0(t) + εx1(t) + · · · ,
y = y0(t) + εy1(t) + · · · ,

or otherwise, show that this perturbation problem is singular.

Show further that
x = f(εt) sin t+O(ε),
y = 1 + 2e−εt +O(ε)

is a uniformly valid solution for εt 6 O(1), where f is a function to be determined.

(b) Consider the equation

ε
d2y

dx2
+ (1 + x)

dy

dx
+ y = 0, (1)

with y(0) = y(1) = 1. Determine the solutions in the inner and outer regions up
to and including terms of size O(ε), and find the corresponding additive composite
solution.

Now consider the equation

ε
d2y

dx2
− (1 + x)

dy

dx
+ y = 0, (2)

with y(0) = 1, y(1) = 1 + ε. Give a brief qualitative explanation of how the structure of
the solution of equation (2) differs from that of the solution of equation (1). Determine
the value of dy/dx at x = 1 up to and including only terms of size O(1).
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4 (a) Show how the Cole-Hopf transformation

q = 2ε
∂

∂θ
lnψ

can be used to transform Burgers’ equation

∂q

∂Z
− q

∂q

∂θ
= ε

∂2q

∂θ2

into the Diffusion equation for ψ.

(b) Given that the general solution of the Diffusion equation is

ψ(θ, Z) =
1

(4πεZ)
1
2

∫ ∞

−∞
ψ(θ′, 0) exp

(
− (θ − θ′)2

4εZ

)
dθ′,

show that the solution of Burgers’ equation with initial data

q(θ, 0) =
{ 0 θ < 0
U θ > 0

is
U

1 + α exp
(
−U(θ + 1

2UZ)/2ε
)

where

α =

∫ ∞

θ

exp(−y2/4εZ) dy∫ ∞

−(θ+UZ)

exp(−y2/4εZ) dy
.

Briefly describe what happens in the limit ε→ 0, considering the cases U > 0 and
U < 0 separately.

(c) The Modified Burgers’ equation is

∂q

∂Z
− q2

∂q

∂θ
= ε

∂2q

∂θ2
.

Consider travelling-wave solutions of the form q = q(Z + cθ) for c constant, such
that q → 0 as Z → −∞ and q → β as Z → ∞, where β is a nonzero constant.
Show that

εc2q′ = q

(
1− cq2

3

)
, (∗)

where ′ denotes differentiation with respect to argument. Hence determine c, and
solve equation (∗) to find q.
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5 (a) Starting from the equations of mass and momentum conservation, derive the
equation

∂2ρ

∂t2
− c20∇2ρ =

∂2Tij

∂xi∂xj
, (1)

where ρ is the density and the Lighthill tensor Tij is to be defined. Given that the
Green function for the wave equation is

δ(t− |x|/c0)
4πc20|x|

,

show that in the compact source limit, to be defined, the far-field density fluctuation
is proportional to m4, where m is the fluctuation Mach number.

(b) Explain what happens to equation (1) if additional mass sources of strength M(x, t)
per unit time per unit volume are also present in the fluid, and find an expression
for the corresponding far-field noise in the compact source limit.

Now consider a small bubble underwater which pulsates in a spherically symmetric
manner with frequency ω. Without further detailed calculation, determine how the
far-field acoustic density perturbation scales on ω.

(c) The simple wave equation describing acoustic propagation along a tube of cross-
sectional area A(Z) is

∂q

∂Z
− q

∂q

∂θ
+
q

2
d

dZ
ln(A) = 0. (2)

By making a transformation of the form q(θ, Z) = g(ζ)Q(θ, ζ) with ζ = h(Z), where
the functions g and h are to be determined, show that equation (2) becomes

∂Q

∂ζ
−Q

∂Q

∂θ
= 0.

Spherically symmetric propagation in three dimensions is described by equation (2)
with A = Z2. For the general initial data q(θ, 0) = f(θ), find an expression for the
first positive value of Z for which a shock forms in equation (2).
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