PAPER 50

ACOUSTICS AND STABILITY

Attempt no more than THREE questions.
Little credit will be given for fragments.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 A thin elastic membrane of mass m per unit length is stretched along the x-axis under tension T. In $y>0$ there is a quiescent fluid of density ρ_{0} and wave-speed c_{0}, whereas in $y<0$ there is a vacuum. Line source forcing of magnitude F and frequency ω is applied to the membrane at the origin, resulting in small oscillations such that the membrane's displacement $\eta(x, t)$ satisfies

$$
m \frac{\partial^{2} \eta}{\partial t^{2}}-T \frac{\partial^{2} \eta}{\partial x^{2}}=F \delta(x) e^{-i \omega t}-p(x, 0, t)
$$

where $p(x, y, t)$ is the perturbation pressure in the fluid.
Show that

$$
\eta=\frac{F}{2 \pi} \int_{C} \frac{\gamma e^{i k x} e^{-i w t}}{\left(T k^{2}-m \omega^{2}\right) \gamma-\rho_{0} \omega^{2}} d k
$$

where $\gamma^{2}=k^{2}-k_{0}^{2}$ and $k_{0}=\omega / c_{0}$, describing carefully the definitions of both γ and the inversion contour C. Obtain a similar expression for the fluid potential $\phi(x, y, t)$ and hence find the directivity of the far field radiation in the fluid.
[You may use without proof the fact that

$$
\int f(k) e^{i k x-\gamma y} d k \sim \sqrt{2 \pi k_{0} / r} f\left(k_{0} \cos \theta\right) \sin \theta e^{i k_{0} r-i \pi / 4}
$$

as $r \rightarrow \infty$, where $x=r \cos \theta, y=r \sin \theta$ and where the integration is along the steepest descent contour.]

Show that, for a given real value of ω, the dispersion relation

$$
D(k, \omega)=\left(T k^{2}-m \omega^{2}\right) \gamma-\rho_{0} \omega^{2}
$$

always has two zeros on the real k-axis. To what do these zeros correspond? Are they always relevant?

2

Obtain Rayleigh's stability equation for an incompressible inviscid fluid in $-\infty<$ $z<\infty$ with a basic flow $U(z) \mathbf{i}$ (where \mathbf{i} denotes the unit vector parallel to the x-axis). State and prove Rayleigh's inflexion-point theorem. State without proof Fjørtoft's theorem.

Consider the basic flow $U(z)=\tanh z$. Show that the possibility that this flow is unstable is consistent with Fjørtoft's theorem. Approximate the basic flow using three straight segments:

$$
U_{\text {approx }}(z)= \begin{cases}1 & z>1 \\ z & -1<z<1 \\ -1 & z<-1\end{cases}
$$

Find the dispersion relation corresponding to $U_{\text {approx }}$ and hence or otherwise show explicitly that in this model the flow is unstable.

3 Attempt EITHER (a) OR (b).
(a) What is meant by a singular perturbation problem?

Functions $x(t)$ and $y(t)$ satisfy

$$
\begin{gathered}
\ddot{x}+3 \epsilon \dot{x} y+x=2 \dot{y}^{2}, \\
\dot{y}=\epsilon(1+x-y),
\end{gathered}
$$

subject to initial conditions $x(0)=0, \dot{x}(0)=1, y(0)=3$, where $\epsilon \ll 1$ is a small parameter and a dot denotes differentiation with respect to t. By searching for a solution of the form

$$
\begin{aligned}
& x=x_{0}(t)+\epsilon x_{1}(t)+\cdots, \\
& y=y_{0}(t)+\epsilon y_{1}(t)+\cdots,
\end{aligned}
$$

or otherwise, show that this perturbation problem is singular.
Show further that

$$
\begin{aligned}
& x=f(\epsilon t) \sin t+O(\epsilon), \\
& y=1+2 e^{-\epsilon t}+O(\epsilon)
\end{aligned}
$$

is a uniformly valid solution for $\epsilon t \leqslant O(1)$, where f is a function to be determined.
(b) Consider the equation

$$
\begin{equation*}
\epsilon \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=0 \tag{1}
\end{equation*}
$$

with $y(0)=y(1)=1$. Determine the solutions in the inner and outer regions up to and including terms of size $O(\epsilon)$, and find the corresponding additive composite solution.

Now consider the equation

$$
\begin{equation*}
\epsilon \frac{d^{2} y}{d x^{2}}-(1+x) \frac{d y}{d x}+y=0 \tag{2}
\end{equation*}
$$

with $y(0)=1, y(1)=1+\epsilon$. Give a brief qualitative explanation of how the structure of the solution of equation (2) differs from that of the solution of equation (1). Determine the value of $d y / d x$ at $x=1$ up to and including only terms of size $O(1)$.

4 (a) Show how the Cole-Hopf transformation

$$
q=2 \epsilon \frac{\partial}{\partial \theta} \ln \psi
$$

can be used to transform Burgers' equation

$$
\frac{\partial q}{\partial Z}-q \frac{\partial q}{\partial \theta}=\epsilon \frac{\partial^{2} q}{\partial \theta^{2}}
$$

into the Diffusion equation for ψ.
(b) Given that the general solution of the Diffusion equation is

$$
\psi(\theta, Z)=\frac{1}{(4 \pi \epsilon Z)^{\frac{1}{2}}} \int_{-\infty}^{\infty} \psi\left(\theta^{\prime}, 0\right) \exp \left(-\frac{\left(\theta-\theta^{\prime}\right)^{2}}{4 \epsilon Z}\right) d \theta^{\prime}
$$

show that the solution of Burgers' equation with initial data

$$
q(\theta, 0)= \begin{cases}0 & \theta<0 \\ U & \theta>0\end{cases}
$$

is

$$
\frac{U}{1+\alpha \exp \left(-U\left(\theta+\frac{1}{2} U Z\right) / 2 \epsilon\right)}
$$

where

$$
\alpha=\frac{\int_{\theta}^{\infty} \exp \left(-y^{2} / 4 \epsilon Z\right) d y}{\int_{-(\theta+U Z)}^{\infty} \exp \left(-y^{2} / 4 \epsilon Z\right) d y}
$$

Briefly describe what happens in the limit $\epsilon \rightarrow 0$, considering the cases $U>0$ and $U<0$ separately.
(c) The Modified Burgers' equation is

$$
\frac{\partial q}{\partial Z}-q^{2} \frac{\partial q}{\partial \theta}=\epsilon \frac{\partial^{2} q}{\partial \theta^{2}}
$$

Consider travelling-wave solutions of the form $q=q(Z+c \theta)$ for c constant, such that $q \rightarrow 0$ as $Z \rightarrow-\infty$ and $q \rightarrow \beta$ as $Z \rightarrow \infty$, where β is a nonzero constant. Show that

$$
\begin{equation*}
\epsilon c^{2} q^{\prime}=q\left(1-\frac{c q^{2}}{3}\right) \tag{*}
\end{equation*}
$$

where ' denotes differentiation with respect to argument. Hence determine c, and solve equation $(*)$ to find q.

5 (a) Starting from the equations of mass and momentum conservation, derive the equation

$$
\begin{equation*}
\frac{\partial^{2} \rho}{\partial t^{2}}-c_{0}^{2} \nabla^{2} \rho=\frac{\partial^{2} T_{i j}}{\partial x_{i} \partial x_{j}} \tag{1}
\end{equation*}
$$

where ρ is the density and the Lighthill tensor $T_{i j}$ is to be defined. Given that the Green function for the wave equation is

$$
\frac{\delta\left(t-|\mathbf{x}| / c_{0}\right)}{4 \pi c_{0}^{2}|\mathbf{x}|},
$$

show that in the compact source limit, to be defined, the far-field density fluctuation is proportional to m^{4}, where m is the fluctuation Mach number.
(b) Explain what happens to equation (1) if additional mass sources of strength $M(\mathbf{x}, t)$ per unit time per unit volume are also present in the fluid, and find an expression for the corresponding far-field noise in the compact source limit.
Now consider a small bubble underwater which pulsates in a spherically symmetric manner with frequency ω. Without further detailed calculation, determine how the far-field acoustic density perturbation scales on ω.
(c) The simple wave equation describing acoustic propagation along a tube of crosssectional area $A(Z)$ is

$$
\begin{equation*}
\frac{\partial q}{\partial Z}-q \frac{\partial q}{\partial \theta}+\frac{q}{2} \frac{\mathrm{~d}}{\mathrm{dZ}} \ln (A)=0 \tag{2}
\end{equation*}
$$

By making a transformation of the form $q(\theta, Z)=g(\zeta) Q(\theta, \zeta)$ with $\zeta=h(Z)$, where the functions g and h are to be determined, show that equation (2) becomes

$$
\frac{\partial Q}{\partial \zeta}-Q \frac{\partial Q}{\partial \theta}=0
$$

Spherically symmetric propagation in three dimensions is described by equation (2) with $A=Z^{2}$. For the general initial data $q(\theta, 0)=f(\theta)$, find an expression for the first positive value of Z for which a shock forms in equation (2).

