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1 Consider an accretion disc around a point mass, M . Matter is added to the disc at radius
R0 at a rate Ṁ(t). The specific angular momentum of the added material is h0 = (GMR0)

1
2 .

Derive the evolution equation for the surface density Σ(R, t) for a given viscosity, ν .

Now consider the disc when it has reached a steady state with matter being added at a
constant rate Ṁ = const . At radius Rin < R0 there is no viscous torque and matter leaves the
disc at a rate Ṁin . Similarly, at radius Rout > R0 , there is no viscous torque and matter leaves
the disc at a rate Ṁout . Show from your equations that Ṁ = Ṁin + Ṁout .

Show also that
Ṁ in
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.

2 (a) An accretion disc around a point mass is such that the predominant pressure is gas
pressure and the main energy transfer is due to radiative diffusion. The opacity is of the form
κ ∝ ρ−3/2T 5/4. Assuming the viscous parameter α = const. , show that the viscosity ν obeys
the relation

ν ∝ Σ1/2R 9/4 .

Comment on the thermal and viscous stability of the disc.

(b) Assume the viscosity takes the form

ν = ν0

(
Σ
Σ0

)1/2( R

R0

)9/4

,

where ν0 , Σ0 and R0 are constants. Show that the equation describing the evolution of such a
disc can be written as

∂S

∂τ
=

∂2

∂x2

[
S 3/2 x

]
,

where τ = 3 ν0t/4R2
0 , x2 = R/R 0 and

S(x, τ) =
(

Σ
Σ0

)(
R

R 0

)3/2

.

Show that a solution of the equation is

S = (1− kξ)2/τ ,

where ξ = x/τ 1/2 and k is a constant to be determined.

Give Σ explicitly as a function of R and τ , and describe and sketch the nature of the
solution.

Paper 71



3

3 A spinning black hole with angular momentum Jh is at the centre of an accretion disc
which has angular momentum Jd . An elemental annulus of the disc, with angular momentum
δJd , is subject to a Lense-Thirring torque δT such that

δT ∝ Jh ∧ δJd.

Show that the total torque T acting on the disc must be perpendicular to Jh .

A general form of the torque can be written as

T = K1 [Jh ∧ Jd] +K2 [Jh ∧ (Jh ∧ Jd)] ,

where K1 and K2 are scalar quantities which depend on the properties of the disc. Write down
the equation for dJh/dt , and explain briefly the physical effect of the K1 and K2 terms.

Show that Jh = |Jh| is constant.

Take Jt = Jd +Jh to be the total angular momentum of the disc plus black hole system.
Show that

d

dt
(Jh · Jt) = K2

[
J2

dJ
2
h − (Jd · Jh)2

]
≡ A .

Show also that
d

dt
(Jh · Jt) =

d

dt
(Jh · Jd) ,

and deduce that
d

dt

(
J2

d

)
= −2A .

Assuming that K2 > 0 , deduce that in general Jh eventually aligns with Jt .

Find the eventual values of Jh and Jd for the two initial configurations:

(a) Jh =

(√
3

2
, 0 ,

3
2

)
; Jd =

(
−
√

3
2
, 0 ,

1
2

)

and (b) Jh =

(√
3

2
, 0 ,

3
2

)
; Jd =

(
−
√

3
2
, 0 ,− 1

2

)
.

Do the black hole and the disc always finish with their spins aligned?
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