MATHEMATICAL TRIPOS Part III

Friday 8 June 2007 1.30 to 3.30

PAPER 70

ACCRETION DISCS

There are **THREE** questions in total. The questions carry equal weight. Full marks can be obtained by completing **TWO** questions.

This is an **OPEN BOOK** examination.

Candidates may bring their course handouts, including example sheets, and any handwritten material into the examination. Textbooks, laptops etc are not permitted.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. **1** The Paczynski-Wiita potential

$$\Phi(r) = -\frac{GM}{r - R_s},$$

valid for spherical radius $r > R_s = 2GM/c^2$, was chosen to provide a Newtonian analogue for some aspects of the Schwarzschild metric for a black hole of mass M. Compute the epicyclic frequency $\kappa(R)$ and deduce that an accretion disc in such a potential has its inner radius at $R = 3R_s$.

By choosing an appropriate boundary condition at $R = 3R_s$, show that a steady disc, with mass accretion rate \dot{M} , accretes angular momentum at a rate

$$C = \frac{3\sqrt{3}}{2} \dot{M} \left(GMR_s \right)^{\frac{1}{2}}.$$

Show that the energy release per unit area for such a disc is given by

$$D(R) = \frac{GM\dot{M}}{4\pi} \frac{(3R - R_s)}{R(R - R_s)^3} \left\{ 1 - \frac{3\sqrt{3}}{2} \left(\frac{R_s}{R}\right)^{\frac{1}{2}} \frac{R - R_s}{R} \right\}.$$

Use this result to compute the total disc luminosity in the form

$$L = \epsilon \dot{M} c^2,$$

where ϵ is to be determined.

Verify your answer by computing directly the energy lost by a disc particle moving from $R = \infty$ to $R = 3R_s$.

[You may assume that for n = 1

$$\int \frac{dx}{x^{3/2}(x-a)^n} = \frac{2}{ax^{1/2}} + \frac{1}{a^{3/2}} \ln\left(\frac{x^{1/2} - a^{1/2}}{x^{1/2} + a^{1/2}}\right),$$

and that the results for integers n > 1 may be obtained by differentiating with respect to a.]

2 An accretion disc around a point mass, M, is accreting steadily at a rate \dot{M} . The surface density has the form $\Sigma = \Sigma_0 R^{-2}$, where Σ_0 is a constant. Show that, far from the inner edge, this implies that the viscosity has the form $\nu = \nu_0 R^2$, where $\nu_0 \Sigma_0 = \dot{M}/3\pi$.

Show that far from the inner edge the radial velocity is $v_R = -3\nu/2R$.

The fluid in the disc contains a trace contaminant with surface density $\sigma \ll \Sigma$, and with concentration $C \equiv \sigma/\Sigma \ll 1$. The quantity σ obeys the equation

$$\frac{\partial \sigma}{\partial t} + \operatorname{div} \mathbf{F} = 0,$$

where the flux of contaminant, \mathbf{F} is given by

$$\mathbf{F} = \sigma \mathbf{u} - k \Sigma \nabla C.$$

Here **u** is the ambient velocity field and k a diffusion coefficient. Show that C satisfies the equation

$$\Sigma \left[\frac{\partial C}{\partial t} + (\mathbf{u} \cdot \nabla) C \right] = \operatorname{div} (k \Sigma \nabla C).$$

Explain briefly why in an accretion disc we may expect C just to be a function of R and t.

If $k = \zeta \nu$, where ζ is a constant, show in the steady disc discussed above, far from the inner edge, the equation for C becomes

$$\frac{1}{\nu_0}\frac{\partial C}{\partial t} - \frac{3}{2}\frac{\partial C}{\partial Y} = \zeta \frac{\partial^2 C}{\partial Y^2},$$

where $Y = \ln R$.

At time t = 0, a quantity of contaminant is introduced at radius R_0 , so that

$$C(R, t=0) = C_0 \delta \left(R - R_0 \right),$$

where C_0 is a constant. By setting $X = Y + \frac{3}{2}\nu_0 t$, or otherwise, show that at times t > 0,

$$C(R,t) = \frac{C_0}{R_0} \left(4\pi\zeta\nu_0 t\right)^{-1/2} \exp\left\{-\frac{\left[\ln\left(R/R_0\right) + \frac{3}{2}\nu_0 t\right]^2}{4\zeta\nu_0 t}\right\}.$$

Define F(r,t) as the fraction of contaminant which is at radii $R > rR_0$ at time t. Show that

$$F(r,t) = \frac{1}{2} \operatorname{erfc} \left\{ \frac{\left(\ln r + \frac{3}{2}\nu_0 t \right)}{\sqrt{4\zeta\nu_0 t}} \right\} \,.$$

Deduce that the probability that an element of contaminant, which starts at R_0 , reaches a radius $R_1 = r_1 R_0$ is given by

$$P(r_1) = \bigcup_{0 \le t \le \infty}^{\max} F(r_1, t)$$
$$= \frac{1}{2} \operatorname{erfc} \left\{ (3 \ln r_1 / 2\zeta)^{\frac{1}{2}} \right\}.$$

[TURN OVER

Paper 70

[You may assume that the general solution of the equation $u_{xx} - u_t = 0$ is

$$u(x,t) = \frac{1}{\sqrt{4\pi t}} \int_{-\infty}^{\infty} u(x,0) \exp\left\{-\frac{(x-\xi)^2}{4t}\right\} d\xi,$$

and that

$$\operatorname{erfc}(z) = \frac{2}{\sqrt{\pi}} \int_{z}^{\infty} e^{-t^2} dt.$$

3 A centrifugally supported, thin disc lies in the symmetry plane (z = 0) of a gravitational potential of the form $\Phi(R, z) = \Phi(R, -z)$. Let $\Omega(R)$, $\kappa(R)$ and $\Omega_z(R)$ be the orbital angular frequency, the epicyclic frequency and the vertical oscillation frequency associated with nearly circular orbits at radius R. If the disc is locally isothermal with sound speed $c_s(R)$ show that the vertically integrated pressure $P(R) \equiv \int_{-\infty}^{\infty} p(R, z) dz$ is given (approximately for a thin disc) by

$$P = \Omega_z^2 \Sigma H^2,$$

where Σ is the surface density, and $H = c_s / \Omega_z$ the local density scale-height.

For a nearly Keplerian disc, explain briefly the physical meaning of the two frequencies $\omega_1 = \left(\Omega^2 - \Omega_z^2\right)/2\Omega$

and

$$\omega_2 = \left(\Omega^2 - \kappa^2\right)/2\Omega\,.$$

The equations governing small amplitude warping disturbances of a nearly Keplerian, inviscid disc can be written in the form

$$\Sigma R^2 \Omega \left[\frac{\partial W}{\partial t} - i\omega_1 W \right] = \frac{1}{R} \frac{\partial G}{\partial R},$$

and

$$\frac{\partial G}{\partial t} - i\omega_2 G = \frac{1}{4} P R^3 \Omega \frac{\partial W}{\partial R} \,.$$

Here $W(R,t) = \beta(R,t) \exp[i\gamma(r,t)]$ represents the (small) tilt at each radius, with tilt angle β at azimuthal angle γ , and G represents an internal torque in the disc plane.

In an exactly Keplerian disc, around point mass M, show that such disturbances with wavelengths $\lambda \ll R$, propagate as warp waves with speed $\frac{1}{2}c_s$.

Around a Kerr black hole, with spin parameter $a(-1 \le a \le 1)$ the following relationships approximately hold:

$$\Omega^{-1} = \left(\frac{GM}{c^3}\right) r^{3/2},$$
$$\omega_1 = 2a\Omega r^{-3/2},$$
$$\omega_2 = 3\Omega r^{-1},$$

where $r = Rc^2/GM$. A disc around a Kerr black hole is tilted at large radii at a fixed angle W_{∞} . At the inner disc edge $r = r_{\rm in}$ the internal disc torque vanishes (G = 0). Show that if the hole is not spinning (a = 0) the disc can remain flat (so that $W = W_{\infty}$ for all radii, $r_{\rm in} \leq r \leq \infty$).

If $a \neq 0$, and if $a \ll r^{3/2}$ so that we may assume $P = \Omega^2 \Sigma H^2$, show that the disc can take on a steady warped shape W(R), where W satisfies the equation

$$\frac{d}{dR} \left[\Sigma H^2 r \frac{dW}{dR} \right] + 24ar^{-3/2} \Sigma W = 0.$$

TURN OVER

Paper 70

Find, and describe, the shape of the warp in the case when $\Sigma \propto R^{-3/4}$, $H/R = \epsilon = \text{constant}$, and

$$r_{\rm in}^{5/4} = \frac{4\sqrt{24a}}{5\pi\epsilon} \,.$$

END OF PAPER