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ACCRETION DISCS

Attempt TWO questions.

There are three questions in total.

The questions carry equal weight.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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1 (a) A particle moves freely in an axisymmetric gravitational potential Φ(r, z), where
(r, φ, z) are cylindrical polar coordinates. Show that the particle moves in the rz-plane
under an effective potential

Φ1(r, z) = Φ(r, z) +
h2

2r2
,

where h is the specific angular momentum. Sketch the contour lines of Φ1 when Φ is
a point-mass potential. Describe the dynamics in the neighbourhood of any stationary
points of Φ1. Explain the significance of this analysis for the stability of circular Keplerian
orbits.

(b) The azimuthal motion of the particle is now constrained such that it is forced to rotate
with angular velocity ω. Show that the particle now moves under an effective potential

Φ2(r, z) = Φ(r, z)− 1
2
r2ω2.

Sketch the contour lines of Φ2 when Φ is a point-mass potential. Describe the dynamics in
the neighbourhood of any stationary points of Φ2. Explain the significance of this analysis
for the magnetic launching of outflows from accretion discs.

(c) An inviscid fluid disc obeys the equation of motion

∂u
∂t

+ u · ∇u = −1
ρ
∇p−∇Φ,

where Φ is a point-mass potential. The disc is steady and axisymmetric, in a state of pure
differential rotation with u = rΩ(r, z) eφ. Show that, if the pressure and density satisfy a
functional relationship of the form p = Kρ2, where K is a constant, then Ω is independent
of z and the equilibrium of the disc is given by

2Kρ+ Φ3 = constant,

where
Φ3(r, z) = Φ(r, z)−

∫
rΩ2 dr.

If the semi-thickness H(r) of the disc satisfies H = εr, where ε is a dimensionless constant,
deduce that the angular velocity is given by

Ω2 = (1 + ε2)−1/2

(
GM

r3

)
,

whereM is the mass of central object. Show further that the surface density is independent
of r.
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2 An accretion disc is losing mass and angular momentum through an outflow
perpendicular to the plane of the disc. If S(r, t) and T (r, t) are the rates at which mass
and angular momentum are lost per unit area, you may assume that the one-dimensional
evolutionary equations for mass and angular momentum may be written in the form

∂Σ
∂t

+
1

2πr
∂F
∂r

= −S,

∂

∂t
(Σh) +

1
2πr

∂

∂r
(Fh+ G) = −T,

where Σ(r, t) is the surface density, F(r, t) is the radial mass flux, h(r) is the specific
angular momentum and G(r, t) is the viscous torque.

(a) Deduce the evolutionary equation for the surface density in the form

∂Σ
∂t

= −1
r

∂

∂r

{(
dh
dr

)−1 [
∂

∂r

(
ν̄Σr3

dΩ
dr

)
+ r(Sh− T )

]}
− S,

where ν̄(r, t) is the effective mean kinematic viscosity and Ω(r) is the angular velocity. For
a Keplerian disc deduce that

∂Σ
∂t

=
3
r

∂

∂r

[
r1/2 ∂

∂r

(
r1/2ν̄Σ

)]
+

1
r

∂

∂r

[
2(q − 1)r2S

]
− S, (∗)

where q is defined such that T = qSh.

(b) When no mass or angular momentum is lost through an outflow, find the viscosity law
ν̄ = ν̄(r) for which equation (*) may be transformed into the classical diffusion equation

∂g

∂t
=
∂2g

∂x2

by a suitable change of variables. Explain in physical terms why viscous transport leads
to a diffusive redistribution of mass in the disc.

(c) When the disc has no effective viscosity, but loses mass and angular momentum such
that S = Σf(r) and q = constant with q > 1, show that equation (*) may be transformed
into the linear advection equation

∂g′

∂t
=
∂g′

∂x′

by a suitable change of variables. Deduce that the solution takes the form of a wave that
propagates inwards through the disc. Describe briefly a physical mechanism by which an
outflow satisfying the condition q > 1 might occur.
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3 In a frame of reference rotating with uniform angular velocity Ω, an incompressible
fluid of uniform density ρ, kinematic viscosity ν and magnetic diffusivity η obeys the
equation of motion

∂u
∂t

+ u · ∇u + 2Ω× u = −∇Ψ +
1
µ0ρ

B · ∇B + ν∇2u

and the induction equation

∂B
∂t

+ u · ∇B = B · ∇u + η∇2B.

State two further conditions satisfied by u and B, and explain the meaning of the quantity
Ψ.

Let (x, y, z) be Cartesian coordinates such that Ω = Ω ez, and let A be a constant such
that A(2Ω−A) > 0. Show that there exist exact solutions in which

u = −2Ax ey + Re {v(t) exp [ik(t) · x]} ,
(µ0ρ)−1/2B = b̄(t) + Re {b(t) exp [ik(t) · x]}

Ψ = −2ΩAx2 + Re {ψ(t) exp [ik(t) · x]} ,

provided that b̄(t) and k(t) evolve in time in a specified way, and give the interpretation
of this evolution. Verify that the Alfvén frequency ωA = k · b̄ is independent of time, and
obtain the evolutionary equations for the wave amplitudes

dv
dt

− 2Avx ey + 2Ω ez × v = −ikψ + iωAb− νk2v,

db
dt

= −2Abx ey + iωAv − ηk2b,

k · v = k · b = 0.

Verify that, when the magnetic Prandtl number ν/η is equal to unity, there exists a
solution for which kx = ky = 0, vx = vy, vz = 0, bx = −by and bz = 0, provided that
the Alfvén frequency is chosen appropriately. Determine the condition for the disturbance
to grow exponentially, and show that this condition implies a lower limit on the vertical
magnetic field strength required in a Keplerian disc. Explain why the properties vx = vy

and bx = −by are especially conducive to angular momentum transport in an accretion
disc.
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