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SECTION I

1I Number Theory

(i) State Lagrange’s Theorem, and prove that, if p is an odd prime,

(p− 1)! ≡ −1 mod p .

(ii) Still assuming p is an odd prime, prove that

32 · 52 · · · (p − 2)2 ≡ (−1)
p+1
2 mod p .

2F Topics in Analysis
Let Γ = {z ∈ C : z 6= 1, |Re(z)|+ |Im(z)| = 1}.

(i) Prove that, for any ζ ∈ C with |Re(ζ)| + |Im(ζ)| > 1 and any ǫ > 0, there exists a
complex polynomial p such that

sup
z∈Γ

|p(z)− (z − ζ)−1| < ǫ .

(ii) Does there exist a sequence of polynomials pn such that pn(z) → (z−1)−1 for every
z ∈ Γ? Justify your answer.

3G Geometry and Groups

Define a Kleinian group.

Give an example of a Kleinian group that is a free group on two generators and

explain why it has this property.

4G Coding and Cryptography
What is the rank of a binary linear code C? What is the weight enumeration

polynomial WC of C?

Show that WC(1, 1) = 2r where r is the rank of C. Show that WC(s, t) = WC(t, s)
for all s and t if and only if WC(1, 0) = 1.

Find, with reasons, the weight enumeration polynomial of the repetition code of
length n, and of the simple parity check code of length n.
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5J Statistical Modelling
Define a generalised linear model for a sample Y1, . . . , Yn of independent random

variables. Define further the concept of the link function. Define the binomial regression
model with logistic and probit link functions. Which of these is the canonical link function?

6B Mathematical Biology
The dynamics of a directly transmitted microparasite can be modelled by the system

dX

dt
= bN − βXY − bX ,

dY

dt
= βXY − (b+ r)Y ,

dZ

dt
= rY − bZ ,

where b, β and r are positive constants and X, Y and Z are respectively the numbers
of susceptible, infected and immune (i.e. infected by the parasite, but showing no further
symptoms of infection) individuals in a population of size N , independent of t, where
N = X + Y + Z.

Consider the possible steady states of these equations. Show that there is a threshold
population size Nc such that if N < Nc there is no steady state with the parasite
maintained in the population. Show that in this case the number of infected and immune
individuals decreases to zero for all possible initial conditions.

Show that for N > Nc there is a possible steady state with X = Xs < N and
Y = Ys > 0, and find expressions for Xs and Ys.

By linearising the equations for dX/dt and dY/dt about the steady state X = Xs

and Y = Ys, derive a quadratic equation for the possible growth or decay rate in terms of
Xs and Ys and hence show that the steady state is stable.
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7C Dynamical Systems
For the map xn+1 = λxn(1− x2n), with λ > 0, show the following:

(i) If λ < 1, then the origin is the only fixed point and is stable.

(ii) If λ > 1, then the origin is unstable. There are two further fixed points which are
stable for 1 < λ < 2 and unstable for λ > 2.

(iii) If λ < 3
√
3/2, then xn has the same sign as the starting value x0 if |x0| < 1.

(iv) If λ < 3, then |xn+1| < 2
√
3/3 when |xn| < 2

√
3/3. Deduce that iterates starting

sufficiently close to the origin remain bounded, though they may change sign.

[Hint: For (iii) and (iv) a graphical representation may be helpful.]

8E Further Complex Methods
Explain the meaning of zj in the Weierstrass canonical product formula

f(z) = f(0) exp

[
f ′(0)
f(0)

z

] ∞∏

j=1

{(
1− z

zj

)
e

z
zj

}
.

Show that
sin(πz)

πz
=

∞∏

n=1

(
1− z2

n2

)
.

Deduce that

π cot(πz) =
1

z
+ 2

∞∑

n=1

z

z2 − n2
.

9C Classical Dynamics
The Lagrangian for a heavy symmetric top is

L =
1

2
I1

(
θ̇2 + φ̇2 sin2 θ

)
+

1

2
I3

(
ψ̇ + φ̇ cos θ

)2
−Mgl cos θ .

State Noether’s Theorem. Hence, or otherwise, find two conserved quantities linear
in momenta, and a third conserved quantity quadratic in momenta.

Writing µ = cos θ, deduce that µ obeys an equation of the form

µ̇2 = F (µ) ,

where F (µ) is cubic in µ. [You need not determine the explicit form of F (µ).]
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10E Cosmology
For an ideal gas of fermions of mass m in volume V , and at temperature T and

chemical potential µ, the number density n and kinetic energy E are given by

n =
4πgs
h3

∫ ∞

0
n̄(p) p2 dp , E =

4πgs
h3

V

∫ ∞

0
n̄(p)ǫ(p)p2 dp ,

where gs is the spin-degeneracy factor, h is Planck’s constant, ǫ(p) = c
√

p2 +m2c2 is the
single-particle energy as a function of the momentum p, and

n̄(p) =

[
exp

(
ǫ(p)− µ

kT

)
+ 1

]−1

,

where k is Boltzmann’s constant.

(i) Sketch the function n̄(p) at zero temperature, explaining why n̄(p) = 0 for p > pF
(the Fermi momentum). Find an expression for n at zero temperature as a function
of pF .

Assuming that a typical fermion is ultra-relativistic (pc ≫ mc2) even at zero
temperature, obtain an estimate of the energy density E/V as a function of pF ,
and hence show that

E ∼ hcn4/3V (∗)
in the ultra-relativistic limit at zero temperature.

(ii) A white dwarf star of radius R has total mass M = 4π
3 mpnpR

3, where mp is the
proton mass and np the average proton number density. On the assumption that the
star’s degenerate electrons are ultra-relativistic, so that (∗) applies with n replaced
by the average electron number density ne, deduce the following estimate for the
star’s internal kinetic energy:

Ekin ∼ hc

(
M

mp

)4/3 1

R
.

By comparing this with the total gravitational potential energy, briefly discuss the
consequences for white dwarf stability.
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SECTION II

11I Number Theory
Let ζ(s) be the Riemann zeta function, and put s = σ + it with σ, t ∈ R.

(i) If σ > 1, prove that

ζ(s) =
∏

p

(1− p−s)−1 ,

where the product is taken over all primes p.

(ii) Assuming that, for σ > 1, we have

ζ(s) =

∞∑

n=1

n(n−s − (n+ 1)−s) ,

prove that ζ(s)− 1
s−1 has an analytic continuation to the half plane σ > 0.

Part II, Paper 3
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12F Topics in Analysis
Let f : [0, 1] → R be continuous and let n be a positive integer. For g : [0, 1] → R

a continuous function, write ‖f − g‖L∞ = supx∈[0,1] |f(x)− g(x)|.

(i) Let p be a polynomial of degree at most n with the property that there are (n+ 2)
distinct points x1, x2, . . . , xn+2 ∈ [0, 1] with x1 < x2 < . . . < xn+2 such that

f(xj)− p(xj) = (−1)j‖f − p‖L∞

for each j = 1, 2, . . . , n+ 2. Prove that

‖f − p‖L∞ 6 ‖f − q‖L∞

for every polynomial q of degree at most n.

(ii) Prove that there exists a polynomial p of degree at most n such that

‖f − p‖L∞ 6 ‖f − q‖L∞

for every polynomial q of degree at most n.

[If you deduce this from a more general result about abstract normed spaces, you
must prove that result.]

(iii) Let Y = {y1, y2, . . . , yn+2} be any set of (n + 2) distinct points in [0, 1].

(a) For j = 1, 2, . . . , n+ 2, let

rj(x) =
n+2∏

k=1, k 6=j

x− yk
yj − yk

,

t(x) =
∑n+2

j=1 f(yj)rj(x) and r(x) =
∑n+2

j=1 (−1)jrj(x). Explain why there is
a unique number λ ∈ R such that the degree of the polynomial t − λr is at
most n.

(b) Let ‖f − g‖L∞(Y ) = supx∈Y |f(x) − g(x)|. Deduce from part (a) that there
exists a polynomial p of degree at most n such that

‖f − p‖L∞(Y ) 6 ‖f − q‖L∞(Y )

for every polynomial q of degree at most n.
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13B Mathematical Biology
The number density of a population of amoebae is n(x, t). The amoebae exhibit

chemotaxis and are attracted to high concentrations of a chemical which has concentration
a(x, t). The equations governing n and a are

∂n

∂t
= αn(n20 − n2) +∇2n−∇ · (χ(n)n∇a) ,

∂a

∂t
= βn− γa+D∇2a ,

where the constants n0, α, β, γ and D are all positive.

(i) Give a biological interpretation of each term in these equations and discuss the sign
of χ(n).

(ii) Show that there is a non-trivial (i.e. a 6= 0, n 6= 0) steady-state solution for n and
a, independent of x, and show further that it is stable to small disturbances that
are also independent of x.

(iii) Consider small spatially varying disturbances to the steady state, with spatial
structure such that ∇2ψ = −k2ψ, where ψ is any disturbance quantity. Show
that if such disturbances also satisfy ∂ψ/∂t = pψ, where p is a constant, then p
satisfies a quadratic equation, to be derived. By considering the conditions required
for p = 0 to be a possible solution of this quadratic equation, or otherwise, deduce
that instability is possible if

βχ0n0 > 2αn20D + γ + 2(2Dαn20γ)
1/2 ,

where χ0 = χ(n0).

(iv) Explain briefly how your conclusions might change if an additional geometric
constraint implied that k2 > k20, where k0 is a given constant.

Part II, Paper 3
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14C Dynamical Systems
Explain what is meant by a steady-state bifurcation of a fixed point x0(µ) of a

dynamical system ẋ = f(x, µ) in Rn, where µ is a real parameter.

Consider the system in x > 0, y > 0, with µ > 0,

ẋ = x(1− y2 − x2) ,

ẏ = y(µ− y − x2) .

(i) Show that both the fixed point (0, µ) and the fixed point (1, 0) have a steady-state
bifurcation when µ = 1.

(ii) By finding the first approximation to the extended centre manifold, construct the
normal form near the bifurcation point (1, 0) when µ is close to unity, and show
that there is a transcritical bifurcation there. Explain why the symmetries of the
equations mean that the bifurcation at (0, 1) must be of pitchfork type.

(iii) Show that two fixed points with x, y > 0 exist in the range 1 < µ < 5/4. Show that
the solution with y < 1/2 is stable. Identify the bifurcation that occurs at µ = 5/4.

(iv) Draw a sketch of the values of y at the fixed points as functions of µ, indicating the
bifurcation points and the regions where each branch is stable. [Detailed calculations
are not required.]
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15E Cosmology
An expanding universe with scale factor a(t) is filled with (pressure-free) cold

dark matter (CDM) of average mass density ρ̄(t). In the Zel’dovich approximation to
gravitational clumping, the perturbed position r(q, t) of a CDM particle with unperturbed
comoving position q is given by

r(q, t) = a(t)[q+ψ(q, t)] , (1)

where ψ is the comoving displacement.

(i) Explain why the conservation of CDM particles implies that

ρ(r, t) d3r = a3ρ̄(t) d3q ,

where ρ(r, t) is the CDM mass density. Use (1) to verify that
d3q = a−3[1−∇q ·ψ]d3r, and hence deduce that the fractional density perturbation
is, to first order,

δ ≡ ρ− ρ̄

ρ̄
= −∇q · ψ .

Use this result to integrate the Poisson equation ∇2Φ = 4πGρ̄ for the gravitational
potential Φ. Then use the particle equation of motion r̈ = −∇Φ to deduce a
second-order differential equation for ψ, and hence that

δ̈ + 2

(
ȧ

a

)
δ̇ − 4πGρ̄ δ = 0 . (2)

[You may assume that ∇2Φ = 4πGρ̄ implies ∇Φ = (4πG/3)ρ̄ r and that the
pressure-free acceleration equation is ä = −(4πG/3)ρ̄a.]

(ii) A flat matter-dominated universe with background density ρ̄ = (6πGt2)−1 has scale
factor a(t) = (t/t0)

2/3. The universe is filled with a pressure-free homogeneous
(non-clumping) fluid of mass density ρH(t), as well as cold dark matter of mass
density ρC(r, t).

Assuming that the Zel’dovich perturbation equation in this case is as in (2) but
with ρ̄ replaced by ρ̄C , i.e. that

δ̈ + 2

(
ȧ

a

)
δ̇ − 4πGρ̄Cδ = 0 ,

seek power-law solutions δ ∝ tα to find growing and decaying modes with

α =
1

6

(
−1±

√
25− 24ΩH

)
,

where ΩH = ρH/ρ̄.

Given that matter domination starts (t = teq) at a redshift z ≈ 105, and given an
initial perturbation δ(teq) ≈ 10−5, show that ΩH = 2/3 yields a model that is not
compatible with the large-scale structure observed today.
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16H Logic and Set Theory

State and prove the Upward Löwenheim–Skolem Theorem.

[You may assume the Compactness Theorem, provided that you state it clearly.]

A total ordering (X,<) is called dense if for any x < y there exists z with x < z < y.

Show that a dense total ordering (on more than one point) cannot be a well-ordering.

For each of the following theories, either give axioms, in the language of posets,

for the theory or prove carefully that the theory is not axiomatisable in the language of

posets.

(i) The theory of dense total orderings.

(ii) The theory of countable dense total orderings.

(iii) The theory of uncountable dense total orderings.

(iv) The theory of well-orderings.

17F Graph Theory
Define the Turán graph Tr(n). State and prove Turán’s theorem. Hence, or

otherwise, find ex(K3;n).

Let G be a bipartite graph with n vertices in each class. Let k be an integer,
1 6 k 6 n, and assume e(G) > (k − 1)n. Show that G contains a set of k independent
edges.

[Hint: Suppose G contains a set D of a independent edges but no set of a + 1
independent edges. Let U be the set of vertices of the edges in D and let F be the set of
edges in G with precisely one vertex in U ; consider |F |.]

Hence, or otherwise, show that if H is a triangle-free tripartite graph with n vertices
in each class then e(H) 6 2n2.

18H Galois Theory
Let n > 1 and K = Q(µn) be the cyclotomic field generated by the nth roots of

unity. Let a ∈ Q with a 6= 0, and consider F = K( n
√
a).

(i) State, without proof, the theorem which determines Gal(K/Q).

(ii) Show that F/Q is a Galois extension and that Gal(F/Q) is soluble. [When using
facts about general Galois extensions and their generators, you should state them
clearly.]

(iii) When n = p is prime, list all possible degrees [F : Q], with justification.
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19I Representation Theory
Define the character IndGHψ of a finite group G which is induced by a character ψ

of a subgroup H of G.

State and prove the Frobenius reciprocity formula for the characters ψ of H and χ
of G.

Now suppose that H has index 2 in G. An irreducible character ψ of H and an
irreducible character χ of G are said to be ‘related’ if

〈IndGHψ,χ〉G = 〈ψ,ResGHχ〉H > 0.

Show that each ψ of degree d is either ‘monogamous’ in the sense that it is related to
one χ (of degree 2d), or ‘bigamous’ in the sense that it is related to precisely two distinct
characters χ1, χ2 (of degree d). Show that each χ is related to one bigamous ψ, or to two
monogamous characters ψ1, ψ2 (of the same degree).

Write down the degrees of the complex irreducible characters of the alternating
group A5. Find the degrees of the irreducible characters of a group G containing A5 as a
subgroup of index 2, distinguishing two possible cases.

20H Algebraic Topology
Let K and L be (finite) simplicial complexes. Explain carefully what is meant by

a simplicial approximation to a continuous map f : |K| → |L|. Indicate briefly how the
cartesian product |K| × |L| may be triangulated.

Two simplicial maps g, h : K → L are said to be contiguous if, for each simplex σ
of K, there exists a simplex σ∗ of L such that both g(σ) and h(σ) are faces of σ∗. Show
that:

(i) any two simplicial approximations to a given map f : |K| → |L| are contiguous;

(ii) if g and h are contiguous, then they induce homotopic maps |K| → |L|;

(iii) if f and g are homotopic maps |K| → |L|, then for some subdivision K(n) of K
there exists a sequence (h1, h2, . . . , hm) of simplicial maps K(n) → L such that h1
is a simplicial approximation to f , hm is a simplicial approximation to g and each
pair (hi, hi+1) is contiguous.
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21G Linear Analysis
LetH be a complex Hilbert space with orthonormal basis (en)

∞
n=−∞. Let T : H → H

be a bounded linear operator. What is meant by the spectrum σ(T ) of T ?

Define T by setting T (en) = en−1 + en+1 for n ∈ Z. Show that T has a unique
extension to a bounded, self-adjoint linear operator on H. Determine the norm ‖T‖.
Exhibit, with proof, an element of σ(T ).

Show that T has no eigenvectors. Is T compact?

[General results from spectral theory may be used without proof. You may also use the
fact that if a sequence (xn) satisfies a linear recurrence λxn = xn−1 + xn+1 with λ ∈ R,
|λ| 6 2, λ 6= 0, then it has the form xn = Aαn sin(θ1n + θ2) or xn = (A + nB)αn, where
A,B,α ∈ R and 0 6 θ1 < π, |θ2| 6 π/2.]

22G Riemann Surfaces
State the Classical Monodromy Theorem for analytic continuations in subdomains

of the plane.

Let n, r be positive integers with r > 1 and set h(z) = zn − 1. By removing n
semi-infinite rays from C, find a subdomain U ⊂ C on which an analytic function h1/r

may be defined, justifying this assertion. Describe briefly a gluing procedure which will
produce the Riemann surface R for the complete analytic function h1/r.

Let Z denote the set of nth roots of unity and assume that the natural analytic
covering map π : R → C\Z extends to an analytic map of Riemann surfaces π̃ : R̃ → C∞,
where R̃ is a compactification of R and C∞ denotes the extended complex plane. Show
that π̃ has precisely n branch points if and only if r divides n.

23H Algebraic Geometry

Let X be a smooth projective curve over an algebraically closed field k of charac-

teristic 0.

(i) Let D be a divisor on X.

Define L(D), and show dimL(D) 6 degD + 1.

(ii) Define the space of rational differentials Ω1
k(X)/k.

If p is a point on X, and t a local parameter at p, show that Ω1
k(X)/k = k(X)dt.

Use that equality to give a definition of vp(ω) ∈ Z, for ω ∈ Ω1
k(X)/k, p ∈ X. [You need

not show that your definition is independent of the choice of local parameter.]
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24I Differential Geometry
For an oriented surface S in R3, define the Gauss map, the second fundamental form

and the normal curvature in the direction w ∈ TpS at a point p ∈ S.

Let k̃1, . . . , k̃m be normal curvatures at p in the directions v1, . . . , vm, such that the
angle between vi and vi+1 is π/m for each i = 1, . . . ,m− 1 (m > 2). Show that

k̃1 + . . .+ k̃m = mH ,

where H is the mean curvature of S at p.

What is a minimal surface? Show that if S is a minimal surface, then its Gauss
map N at each point p ∈ S satisfies

〈dNp(w1), dNp(w2)〉 = µ(p)〈w1, w2〉 , for all w1, w2 ∈ TpS , (∗)

where µ(p) ∈ R depends only on p. Conversely, if the identity (∗) holds at each point in S,
must S be minimal? Justify your answer.

25K Probability and Measure

(i) State and prove Kolmogorov’s zero-one law.

(ii) Let (E, E , µ) be a finite measure space and suppose that (Bn)n>1 is a sequence of
events such that Bn+1 ⊂ Bn for all n > 1. Show carefully that µ(Bn) → µ(B),
where B = ∩∞

n=1Bn.

(iii) Let (Xi)i>1 be a sequence of independent and identically distributed random
variables such that E(X2

1 ) = σ2 < ∞ and E(X1) = 0. Let K > 0 and consider
the event An defined by

An =

{
Sn√
n
> K

}
, where Sn =

n∑

i=1

Xi .

Prove that there exists c > 0 such that for all n large enough, P(An) > c. Any
result used in the proof must be stated clearly.

(iv) Prove using the results above that An occurs infinitely often, almost surely. Deduce
that

lim sup
n→∞

Sn√
n
= ∞ ,

almost surely.
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26J Applied Probability

(i) Define an inhomogeneous Poisson process with rate function λ(u).

(ii) Show that the number of arrivals in an inhomogeneous Poisson process during the
interval (0, t) has the Poisson distribution with mean

∫ t

0
λ(u) du .

(iii) Suppose that Λ = {Λ(t), t > 0} is a non-negative real-valued random process.
Conditional on Λ, let N = {N(t), t > 0} be an inhomogeneous Poisson process
with rate function Λ(u). Such a process N is called a doubly-stochastic Poisson
process. Show that the variance of N(t) cannot be less than its mean.

(iv) Now consider the process M(t) obtained by deleting every odd-numbered point in
an ordinary Poisson process of rate λ. Check that

EM(t) =
2λt+ e−2λt − 1

4
, Var M(t) =

4λt− 8λte−2λt − e−4λt + 1

16
.

Deduce that M(t) is not a doubly-stochastic Poisson process.
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27K Principles of Statistics
Random variables X1,X2, . . . are independent and identically distributed from the

exponential distribution E(θ), with density function

pX(x | θ) = θe−θx (x > 0) ,

when the parameter Θ takes value θ > 0. The following experiment is performed. First X1

is observed. Thereafter, if X1 = x1, . . . ,Xi = xi have been observed (i > 1), a coin having
probability α(xi) of landing heads is tossed, where α : R → (0, 1) is a known function and
the coin toss is independent of the X’s and previous tosses. If it lands heads, no further
observations are made; if tails, Xi+1 is observed.

Let N be the total number of X’s observed, and X := (X1, . . . ,XN ). Write down
the likelihood function for Θ based on data X = (x1, . . . , xn), and identify a minimal
sufficient statistic. What does the likelihood principle have to say about inference from
this experiment?

Now consider the experiment that only records Y := XN . Show that the density
function of Y has the form

pY (y | θ) = exp{a(y)− k(θ)− θy} .

Assuming the function a(·) is twice differentiable and that both pY (y | θ) and ∂pY (y | θ)/∂y
vanish at 0 and ∞, show that a′(Y ) is an unbiased estimator of Θ, and find its variance.

Stating clearly any general results you use, deduce that

−k′′(θ)Eθ{a′′(Y )} > 1 .
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28K Optimization and Control
An observable scalar state variable evolves as xt+1 = xt + ut, t = 0, 1, . . . . Let

controls u0, u1, . . . be determined by a policy π and define

Cs(π, x0) =

s−1∑

t=0

(x2t + 2xtut + 7u2t ) and Cs(x0) = inf
π

Cs(π, x0) .

Show that it is possible to express Cs(x0) in terms of Πs, which satisfies the recurrence

Πs =
6(1 + Πs−1)

7 + Πs−1
, s = 1, 2, . . . ,

with Π0 = 0.

Deduce that C∞(x0) > 2x20. [C∞(x0) is defined as lim
s→∞

Cs(x0).]

By considering the policy π∗ which takes ut = −(1/3)(2/3)tx0, t = 0, 1, . . . , show
that C∞(x0) = 2x20.

Give an alternative description of π∗ in closed-loop form.

29J Stochastic Financial Models

First, what is a Brownian motion?

(i) The price St of an asset evolving in continuous time is represented as

St = S0 exp(σWt + µt) ,

where W is a standard Brownian motion, and σ and µ are constants. If riskless
investment in a bank account returns a continuously-compounded rate of interest r,
derive a formula for the time-0 price of a European call option on the asset S with
strike K and expiry T . You may use any general results, but should state them
clearly.

(ii) In the same financial market, consider now a derivative which pays

Y =

{
exp

(
T−1

∫ T

0
log(Su) du

)
−K

}+

at time T . Find the time-0 price for this derivative. Show that it is less than the
price of the European call option which you derived in (i).
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30A Partial Differential Equations

(a) State the local existence theorem of a classical solution of the Cauchy problem

a(x1, x2, u)
∂u

∂x1
+ b(x1, x2, u)

∂u

∂x2
= c(x1, x2, u) ,

u|Γ = u0 ,

where Γ is a smooth curve in R2.

(b) Solve, by using the method of characteristics,

2x1
∂u

∂x1
+ 4x2

∂u

∂x2
= u2 ,

u(x1, 2) = h ,

where h > 0 is a constant. What is the maximal domain of existence in which u is
a solution of the Cauchy problem?

31A Asymptotic Methods
Let

I0 =

∫

C0

exφ(z)dz ,

where φ(z) is a complex analytic function and C0 is a steepest descent contour from a
simple saddle point of φ(z) at z0. Establish the following leading asymptotic approxima-
tion, for large real x:

I0 ∼ i

√
π

2φ′′(z0)x
exφ(z0) .

Let n be a positive integer, and let

I =

∫

C
e−t2−2n ln t dt ,

where C is a contour in the upper half t-plane connecting t = −∞ to t = ∞, and ln t is
real on the positive t-axis with a branch cut along the negative t-axis. Using the method
of steepest descent, find the leading asymptotic approximation to I for large n.
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32A Integrable Systems
Let U(ρ, τ, λ) and V (ρ, τ, λ) be matrix-valued functions. Consider the following

system of overdetermined linear partial differential equations:

∂

∂ρ
ψ = Uψ ,

∂

∂τ
ψ = V ψ ,

where ψ is a column vector whose components depend on (ρ, τ, λ). Using the consistency
condition of this system, derive the associated zero curvature representation (ZCR)

∂

∂τ
U − ∂

∂ρ
V + [U, V ] = 0 , (∗)

where [ · , · ] denotes the usual matrix commutator.

(i) Let

U =
i

2

(
2λ ∂ρφ
∂ρφ −2λ

)
, V =

1

4iλ

(
cosφ −i sinφ
i sinφ − cosφ

)
.

Find a partial differential equation for φ = φ(ρ, τ) which is equivalent to the
ZCR (∗).

(ii) Assuming that U and V in (∗) do not depend on t := ρ− τ , show that the trace of
(U − V )p does not depend on x := ρ+ τ , where p is any positive integer. Use this
fact to construct a first integral of the ordinary differential equation

φ′′ = sinφ , where φ = φ(x) .
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33D Principles of Quantum Mechanics
The Pauli matrices σ = (σx, σy, σz) = (σ1, σ2, σ3), with

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

are used to represent angular momentum operators with respect to basis states | ↑〉 and
| ↓〉 corresponding to spin up and spin down along the z-axis. They satisfy

σiσj = δij + iǫijkσk .

(i) How are | ↑〉 and | ↓〉 represented? How is the spin operator s related to σ and ~?
Check that the commutation relations between the spin operators are as desired.
Check that s2 acting on a spin one-half state has the correct eigenvalue.

What are the states obtained by applying sx, sy to the eigenstates | ↑〉 and | ↓〉 of
sz?

(ii) Let V be the space of states for a spin one-half system. Consider a combination of
three such systems with states belonging to V (1) ⊗ V (2) ⊗ V (3) and spin operators

acting on each subsystem denoted by s
(i)
x , s

(i)
y with i = 1, 2, 3. Find the eigenvalues

of the operators

s(1)x s(2)y s(3)y , s(1)y s(2)x s(3)y , s(1)y s(2)y s(3)x and s(1)x s(2)x s(3)x

of the state

|Ψ〉 = 1√
2

[
|↑〉1|↑〉2|↑〉3 − |↓〉1|↓〉2|↓〉3

]
.

(iii) Consider now whether these outcomes for measurements of particular combinations

of the operators s
(i)
x , s

(i)
y in the state |Ψ〉 could be reproduced by replacing the

spin operators with classical variables s̃
(i)
x , s̃

(i)
y which take values ±~/2 according

to some probabilities. Assume that these variables are identical to the quantum

measurements of s
(1)
x s

(2)
y s

(3)
y , s

(1)
y s

(2)
x s

(3)
y , s

(1)
y s

(2)
y s

(3)
x on |Ψ〉. Show that classically

this implies a unique possibility for

s̃(1)x s̃(2)x s̃(3)x ,

and find its value.

State briefly how this result could be used to experimentally test quantum mechan-
ics.
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34E Applications of Quantum Mechanics
An electron of mass m moves in a D-dimensional periodic potential that satisfies

the periodicity condition
V (r + l) = V (r) ∀ l ∈ Λ ,

where Λ is a D-dimensional Bravais lattice. State Bloch’s theorem for the energy
eigenfunctions of the electron.

For a one-dimensional potential V (x) such that V (x+a) = V (x), give a full account
of how the “nearly free electron model” leads to a band structure for the energy levels.

Explain briefly the idea of a Fermi surface and its rôle in explaining the existence
of conductors and insulators.

35D Statistical Physics
A gas of non-interacting particles has energy-momentum relationship E = A(~k)α

for some constants A and α. Determine the density of states g(E) dE in a three-
dimensional volume V .

Explain why the chemical potential µ satisfies µ < 0 for the Bose–Einstein
distribution.

Show that an ideal quantum Bose gas with the energy-momentum relationship above
has

pV =
αE

3
.

If the particles are bosons at fixed temperature T and chemical potential µ, write
down an expression for the number of particles that do not occupy the ground state. Use
this to determine the values of α for which there exists a Bose–Einstein condensate at
sufficiently low temperatures.

Discuss whether a gas of photons can undergo Bose–Einstein condensation.

36C Electrodynamics

Explain how time-dependent distributions of electric charge ρ(x, t) and current

j(x, t) can be combined into a four-vector ja(x) that obeys ∂aj
a = 0.

This current generates a four-vector potential Aa(x). Explain how to find Aa in the

gauge ∂aA
a = 0.

A small circular loop of wire of radius r is centred at the origin. The unit vector

normal to the plane of the loop is n. A current Io sinωt flows in the loop. Find the

three-vector potential A(x, t) to leading order in r/|x|.
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37B Fluid Dynamics II
If Ai(xj) is harmonic, i.e. if ∇2Ai = 0, show that

ui = Ai − xk
∂Ak

∂xi
, with p = −2µ

∂An

∂xn
,

satisfies the incompressibility condition and the Stokes equation. Show that the stress
tensor is

σij = 2µ

(
δij

∂An

∂xn
− xk

∂2Ak

∂xi∂xj

)
.

Consider the Stokes flow corresponding to

Ai = Vi

(
1− a

2r

)
,

where Vi are the components of a constant vector V. Show that on the sphere r = a the
normal component of velocity vanishes and the surface traction σijxj/a is in the normal
direction. Hence deduce that the drag force on the sphere is given by

F = 4πµaV .

38B Waves
The dispersion relation in a stationary medium is given by ω = Ω0(k), where Ω0 is

a known function. Show that, in the frame of reference where the medium has a uniform
velocity −U, the dispersion relation is given by ω = Ω0(k)−U · k.

An aircraft flies in a straight line with constant speed Mc0 through air with sound
speed c0. If M > 1 show that, in the reference frame of the aircraft, the steady waves lie
behind it on a cone of semi-angle sin−1(1/M). Show further that the unsteady waves are
confined to the interior of the cone.

A small insect swims with constant velocity U = (U, 0) over the surface of a pool of
water. The resultant capillary waves have dispersion relation ω2 = T |k|3/ρ on stationary
water, where T and ρ are constants. Show that, in the reference frame of the insect, steady
waves have group velocity

cg = U(32 cos
2 β − 1, 32 cos β sin β) ,

where k ∝ (cos β, sin β). Deduce that the steady wavefield extends in all directions around
the insect.
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39A Numerical Analysis

(i) The difference equation

un+1
i = uni +

3

2
µ
(
uni−1 − 2uni + uni+1

)
− 1

2
µ
(
un−1
i−1 − 2un−1

i + un−1
i+1

)
,

where µ = ∆t/(∆x)2, is the basic equation used in the second-order Adams–
Bashforth method and can be employed to approximate a solution of the diffusion
equation ut = uxx. Prove that, as ∆t → 0 with constant µ, the local error of the
method is O(∆t)2.

(ii) By applying the Fourier stability test, show that the above method is stable if and
only if µ 6 1/4.

(iii) Define the leapfrog scheme to approximate the diffusion equation and prove that it
is unstable for every choice of µ > 0.

END OF PAPER
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