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SECTION I

1I Number Theory

(i) Find a primitive root modulo 17.

(ii) Let p be a prime of the form 2m + 1 for some integer m > 1. Prove that every
quadratic non-residue modulo p is a primitive root modulo p.

2F Topics in Analysis

(i) Let x1, x2, . . . , xn ∈ [−1, 1] be any set of n distinct numbers. Show that there exist
numbers A1, A2, . . . , An such that the formula

∫ 1

−1
p(x) dx =

n∑

j=1

Ajp(xj)

is valid for every polynomial p of degree 6 n− 1.

(ii) For n = 0, 1, 2, . . . , let pn be the Legendre polynomial, over [−1, 1], of degree n.
Suppose that x1, x2, . . . , xn ∈ [−1, 1] are the roots of pn, and A1, A2, . . . , An are the
numbers corresponding to x1, x2, . . . , xn as in (i).

[You may assume without proof that for n > 1, pn has n distinct roots in [−1, 1].]

Prove that the integration formula in (i) is now valid for any polynomial p of degree
6 2n− 1.

(iii) Is it possible to choose n distinct points x1, x2, . . . , xn ∈ [−1, 1] and corresponding
numbers A1, A2, . . . , An such that the integration formula in (i) is valid for any
polynomial p of degree 6 2n? Justify your answer.

3G Geometry and Groups

Let A and B be two rotations of the Euclidean plane E2 about centres a and b

respectively. Show that the conjugate ABA−1 is also a rotation and find its fixed point.

When do A and B commute? Show that the commutator ABA−1B−1 is a translation.

Deduce that any group of orientation-preserving isometries of the Euclidean plane

either fixes a point or is infinite.
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4G Coding and Cryptography
I happen to know that an apparently fair coin actually has probability p of heads

with 1 > p > 1/2. I play a very long sequence of games of heads and tails in which my
opponent pays me back twice my stake if the coin comes down heads and takes my stake if
the coin comes down tails. I decide to bet a proportion α of my fortune at the end of the
nth game in the (n+1)st game. Determine, giving justification, the value α0 maximizing
the expected logarithm of my fortune in the long term, assuming I use the same α0 at each
game. Can it be actually disadvantageous for me to choose an α < α0 (in the sense that
I would be better off not playing)? Can it be actually disadvantageous for me to choose
an α > α0?

[Moral issues should be ignored.]

5J Statistical Modelling
Let f0 be a probability density function, with cumulant generating function K.

Define what it means for a random variable Y to have a model function of exponential
dispersion family form, generated by f0. Compute the cumulant generating function KY

of Y and deduce expressions for the mean and variance of Y that depend only on first and
second derivatives of K.

6B Mathematical Biology
A population with variable growth and harvesting is modelled by the equation

ut+1 = max

(
ru2t

1 + u2t
− Eut, 0

)
,

where r and E are positive constants.

Given that r > 1, show that a non-zero steady state exists if 0 < E < Em(r), where
Em(r) is to be determined.

Show using a cobweb diagram that, if E < Em(r), a non-zero steady state may
be attained only if the initial population u0 satisfies α < u0 < β, where α should be
determined explicitly and β should be specified as a root of an algebraic equation.

With reference to the cobweb diagram, give an additional criterion that implies that
α < u0 < β is a sufficient condition, as well as a necessary condition, for convergence to a
non-zero steady state.
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7C Dynamical Systems
State the Poincaré–Bendixson theorem for two-dimensional dynamical systems.

A dynamical system can be written in polar coordinates (r, θ) as

ṙ = r − r3(1 + α cos θ) ,

θ̇ = 1− r2β cos θ ,

where α and β are constants with 0 < α < 1.

Show that trajectories enter the annulus (1 + α)−1/2 < r < (1− α)−1/2.

Show that if there is a fixed point (r0, θ0) inside the annulus then r20 = (β − α)/β
and cos θ0 = 1/(β − α).

Use the Poincaré–Bendixson theorem to derive conditions on β that guarantee the
existence of a periodic orbit.

8E Further Complex Methods
Find the two complex-valued functions F+(z) and F−(z) such that all of the

following hold:

(i) F+(z) and F−(z) are analytic for Im z > 0 and Im z < 0 respectively, where
z = x+ iy, x, y ∈ R.

(ii) F+(x)− F−(x) = 1
x4+1 , x ∈ R .

(iii) F±(z) = O
(
1
z

)
, z → ∞ , Im z 6= 0 .

9C Classical Dynamics
Three particles, each of mass m, move along a straight line. Their positions on the

line containing the origin, O, are x1, x2 and x3. They are subject to forces derived from
the potential energy function

V =
1

2
mΩ2

[
(x1 − x2)

2 + (x2 − x3)
2 + (x3 − x1)

2 + x21 + x22 + x23

]
.

Obtain Lagrange’s equations for the system, and show that the frequency, ω, of a
normal mode satisfies

f3 − 9f2 + 24f − 16 = 0 ,

where f = (ω2/Ω2). Find a complete set of normal modes for the system, and draw a
diagram indicating the nature of the corresponding motions.
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10E Cosmology
A spherically symmetric star in hydrostatic equilibrium has density ρ(r) and

pressure P (r), which satisfy the pressure support equation,

dP

dr
= −Gmρ

r2
, (∗)

where m(r) is the mass within a radius r. Show that this implies

d

dr

(
r2

ρ

dP

dr

)
= −4πGr2ρ .

Provide a justification for choosing the boundary conditions dP/dr = 0 at the centre of
the star (r = 0) and P = 0 at its outer radius (r = R).

Use the pressure support equation (∗) to derive the virial theorem for a star,

〈P 〉V = −1

3
Egrav ,

where 〈P 〉 is the average pressure, V is the total volume of the star and Egrav is its total
gravitational potential energy.
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SECTION II

11F Topics in Analysis
Let C[0, 1] be the space of real continuous functions on the interval [0, 1]. A mapping
L : C[0, 1] → C[0, 1] is said to be positive if L(f) > 0 for each f ∈ C[0, 1] with f > 0, and
linear if L(af + bg) = aL(f)+ bL(g) for all functions f, g ∈ C[0, 1] and constants a, b ∈ R.

(i) Let Ln : C[0, 1] → C[0, 1] be a sequence of positive, linear mappings such that
Ln(f) → f uniformly on [0, 1] for the three functions f(x) = 1, x, x2. Prove that
Ln(f) → f uniformly on [0, 1] for every f ∈ C[0, 1].

(ii) Define Bn : C[0, 1] → C[0, 1] by

Bn(f)(x) =

n∑

k=0

(
n

k

)
f

(
k

n

)
xk(1− x)n−k ,

where
(
n
k

)
= n!

k!(n−k)! . Using the result of part (i), or otherwise, prove that Bn(f) → f

uniformly on [0, 1].

(iii) Let f ∈ C[0, 1] and suppose that

∫ 1

0
f(x)x4n dx = 0

for each n = 0, 1, . . . . Prove that f must be the zero function.

[You should not use the Stone–Weierstrass theorem without proof.]

12G Coding and Cryptography
Define a cyclic code. Show that there is a bijection between the cyclic codes of

length n and the factors of Xn − 1 over the field F2 of order 2.

What is meant by saying that α is a primitive nth root of unity in a finite field
extension K of F2? What is meant by saying that C is a BCH code of length n with
defining set {α, α2, . . . , αδ−1}? Show that such a code has minimum distance at least δ.

Suppose that K is a finite field extension of F2 in which X7−1 factorises into linear
factors. Show that if β is a root of X3 + X2 + 1 then β is a primitive 7th root of unity
and β2 is also a root of X3+X2+1. Quoting any further results that you need show that
the BCH code of length 7 with defining set {β, β2} is the Hamming code.

[Results on the Vandermonde determinant may be used without proof provided they are
quoted correctly.]

Part II, Paper 2



7

13B Mathematical Biology
Consider a population subject to the following birth–death process. When the

number of individuals in the population is n, the probability of an increase from n to n+1
in unit time is βn+γ and the probability of a decrease from n to n−1 is αn(n−1), where
α, β and γ are constants.

Show that the master equation for P (n, t), the probability that at time t the
population has n members, is

∂P

∂t
= αn(n+1)P (n+1, t)−αn(n− 1)P (n, t)+ (βn−β+ γ)P (n− 1, t)− (βn+ γ)P (n, t) .

Show that 〈n〉, the mean number of individuals in the population, satisfies

d〈n〉
dt

= −α〈n2〉+ (α+ β)〈n〉+ γ .

Deduce that, in a steady state,

〈n〉 = α+ β

2α
±

√
(α+ β)2

4α2
+

γ

α
− (∆n)2 ,

where ∆n is the standard deviation of n. When is the minus sign admissable?

Show how a Fokker–Planck equation of the form

∂P

∂t
=

∂

∂n
[g(n)P (n, t)] +

1

2

∂2

∂n2
[h(n)P (n, t)] (∗)

may be derived under conditions to be explained, where the functions g(n) and h(n) should
be evaluated.

In the case α ≪ γ and β = 0, find the leading-order approximation to n∗ such that
g(n∗) = 0. Defining the new variable x = n − n∗, where g(n∗) = 0, approximate g(n)
by g′(n∗)x and h(n) by h(n∗). Solve (∗) for P (x) in the steady-state limit and deduce
leading-order estimates for 〈n〉 and (∆n)2.
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14E Further Complex Methods
Consider the following sum related to Riemann’s zeta function:

S :=

[ a
2π ]∑

m=1

ms−1, s = σ + it, σ, t ∈ R, a > 2π, a 6= 2πN, N ∈ Z+,

where [a/2π] denotes the integer part of a/2π.

(i) By using an appropriate branch cut, show that

S =
e−

iπs
2

(2π)s

∫

L
f(z, s) dz , f(z, s) =

e−z

1− e−z
zs−1 ,

where L is the circle in the complex z-plane centred at i(a+b)/2 with radius (a−b)/2,
0 < b < 2π.

(ii) Use the above representation to show that, for a > 2π and 0 < b < 2π,

[ a
2π ]∑

m=1

ms−1 =
1

(2π)s

[
e−

iπs
2

∫

Ca
b

f(z, s) dz − e
iπs
2

∫

C−b
−a

f(z, s) dz +
as

s
− bs

s

]
,

where f(z, s) is defined in (i) and the curves Ca
b , C

−b
−a are the following semi-circles

in the right half complex z-plane:

The curves Ca
b and C−b

−a.

Ca
b =

{
i(a+ b)

2
+

(a− b)

2
eiθ, −π

2
< θ <

π

2

}
,

C−b
−a =

{−i(a+ b)

2
+

(a− b)

2
eiθ, −π

2
< θ <

π

2

}
.
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15C Classical Dynamics
Derive Euler’s equations governing the torque-free and force-free motion of a rigid

body with principal moments of inertia I1, I2 and I3, where I1 < I2 < I3. Identify two
constants of the motion. Hence, or otherwise, find the equilibrium configurations such
that the angular-momentum vector, as measured with respect to axes fixed in the body,
remains constant. Discuss the stability of these configurations.

A spacecraft may be regarded as moving in a torque-free and force-free environment.
Nevertheless, flexing of various parts of the frame can cause significant dissipation of
energy. How does the angular-momentum vector ultimately align itself within the body?

16H Logic and Set Theory

State and prove Zorn’s Lemma. [You may assume Hartogs’ Lemma.] Where in your

argument have you made use of the Axiom of Choice?

Show that every real vector space has a basis.

Let V be a real vector space having a basis of cardinality ℵ1. What is the cardinality

of V ? Justify your answer.

17F Graph Theory
What does it mean to say that a graph G is k-colourable? Define the chromatic

number χ(G) of a graph G, and the chromatic number χ(S) of a closed surface S.

State the Euler–Poincaré formula relating the numbers of vertices, edges and faces
in a drawing of a graph G on a closed surface S of Euler characteristic E. Show that if
E 6 0 then

χ(S) 6
⌊
7 +

√
49− 24E

2

⌋
.

Find, with justification, the chromatic number of the Klein bottle N2. Show that if
G is a triangle-free graph which can be drawn on the Klein bottle then χ(G) 6 4.

[You may assume that the Klein bottle has Euler characteristic 0, and that K6 can be
drawn on the Klein bottle but K7 cannot. You may use Brooks’s theorem.]
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18H Galois Theory
Let F = C(x, y) be the function field in two variables x, y. Let n > 1, and

K = C(xn + yn, xy) be the subfield of F of all rational functions in xn + yn and xy.

(i) Let K ′ = K(xn), which is a subfield of F . Show that K ′/K is a quadratic extension.

(ii) Show that F/K ′ is cyclic of order n, and F/K is Galois. Determine the Galois
group Gal(F/K).

19I Representation Theory
State Maschke’s Theorem for finite-dimensional complex representations of the

finite group G. Show by means of an example that the requirement that G be finite
is indispensable.

Now let G be a (possibly infinite) group and let H be a normal subgroup of finite
index r in G. Let g1, . . . , gr be representatives of the cosets of H in G. Suppose that V is
a finite-dimensional completely reducible CG-module. Show that

(i) if U is a CH-submodule of V and g ∈ G, then the set gU = {gu : u ∈ U} is a
CH-submodule of V ;

(ii) if U is a CH-submodule of V , then
∑r

i=1 giU is a CG-submodule of V ;

(iii) V is completely reducible regarded as a CH-module.

Hence deduce that if χ is an irreducible character of the finite group G then all the
constituents of χH have the same degree.

20F Number Fields

(i) Suppose that d > 1 is a square-free integer. Describe, with justification, the ring of
integers in the field K = Q(

√
d).

(ii) Show that Q(21/3) = Q(41/3) and that Z[41/3] is not the ring of integers in this field.
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21H Algebraic Topology
Explain what is meant by a covering projection. State and prove the path-

lifting property for covering projections, and indicate briefly how it generalizes to a
lifting property for homotopies between paths. [You may assume the Lebesgue Covering
Theorem.]

Let X be a simply connected space, and let G be a subgroup of the group of
all homeomorphisms X → X. Suppose that, for each x ∈ X, there exists an open
neighbourhood U of x such that U ∩g[U ] = ∅ for each g ∈ G other than the identity. Show
that the projection p : X → X/G is a covering projection, and deduce that Π1(X/G) ∼= G.

By regarding S3 as the set of all quaternions of modulus 1, or otherwise, show that
there is a quotient space of S3 whose fundamental group is a non-abelian group of order 8.

22G Linear Analysis
State and prove the Baire Category Theorem. Let f : R → R be a function. For

x ∈ R, define
ωf (x) = inf

δ>0
sup

|y−x|6δ
|y′−x|6δ

|f(y)− f(y′)| .

Show that f is continuous at x if and only if ωf (x) = 0.

Show that for any ǫ > 0 the set {x ∈ R : ωf (x) < ǫ} is open.

Hence show that the set of points at which f is continuous cannot be precisely the
set Q of rationals.

23G Riemann Surfaces
Let Λ be a lattice in C generated by 1 and τ , where τ is a fixed complex number

with non-zero imaginary part. Suppose that f is a meromorphic function on C for which
the poles of f are precisely the points in Λ, and for which f(z) − 1/z2 → 0 as z → 0.
Assume moreover that f ′(z) determines a doubly periodic function with respect to Λ with
f ′(−z) = −f ′(z) for all z ∈ C \ Λ. Prove that:

(i) f(−z) = f(z) for all z ∈ C \ Λ.

(ii) f is doubly periodic with respect to Λ.

(iii) If it exists, f is uniquely determined by the above properties.

(iv) For some complex number A, f satisfies the differential equation f ′′(z) = 6f(z)2+A.
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24H Algebraic Geometry

(i) Let k be an algebraically closed field, and let I be an ideal in k[x0, . . . , xn]. Define
what it means for I to be homogeneous.

Now let Z ⊆ An+1 be a Zariski closed subvariety invariant under k∗ = k−{0}; that
is, if z ∈ Z and λ ∈ k∗, then λz ∈ Z. Show that I(Z) is a homogeneous ideal.

(ii) Let f ∈ k[x1, . . . , xn−1], and let Γ = {(x, f(x)) | x ∈ An−1} ⊆ An be the graph of f .

Let Γ be the closure of Γ in Pn.

Write, in terms of f , the homogeneous equations defining Γ.

Assume that k is an algebraically closed field of characteristic zero. Now suppose
n = 3 and f(x, y) = y3 − x2 ∈ k[x, y]. Find the singular points of the projective
surface Γ.

25I Differential Geometry
Let α : I → R3 be a smooth curve parametrized by arc-length, with α′′(s) 6= 0 for

all s ∈ I. Define what is meant by the Frenet frame t(s), n(s), b(s), the curvature and
torsion of α. State and prove the Frenet formulae.

By considering 〈α, t×n〉, or otherwise, show that, if for each s ∈ I the vectors α(s),
t(s) and n(s) are linearly dependent, then α(s) is a plane curve.

State and prove the isoperimetric inequality for C1 regular plane curves.

[You may assume Wirtinger’s inequality, provided you state it accurately.]
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26K Probability and Measure

(i) Define the notions of a π-system and a d-system. State and prove Dynkin’s lemma.

(ii) Let (E1, E1, µ1) and (E2, E2, µ2) denote two finite measure spaces. Define the σ-
algebra E1 ⊗ E2 and the product measure µ1 ⊗ µ2. [You do not need to verify that
such a measure exists.] State (without proof) Fubini’s Theorem.

(iii) Let (E, E , µ) be a measure space, and let f be a non-negative Borel-measurable
function. Let G be the subset of E × R defined by

G = {(x, y) ∈ E × R : 0 6 y 6 f(x)} .

Show that G ∈ E ⊗ B(R), where B(R) denotes the Borel σ-algebra on R. Show
further that ∫

f dµ = (µ⊗ λ)(G) ,

where λ is Lebesgue measure.
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27J Applied Probability

(i) Explain briefly what is meant by saying that a continuous-time Markov chain X(t)
is a birth-and-death process with birth rates λi > 0, i > 0, and death rates µi > 0,
i > 1.

(ii) In the case where X(t) is recurrent, find a sufficient condition on the birth and
death parameters to ensure that

lim
t→∞

P(X(t) = j) = πj > 0, j > 0,

and express πj in terms of these parameters. State the reversibility property of
X(t).

Jobs arrive according to a Poisson process of rate λ > 0. They are processed
individually, by a single server, the processing times being independent random
variables, each with the exponential distribution of rate ν > 0. After processing,
the job either leaves the system, with probability p, 0 < p < 1, or, with probability
1 − p, it splits into two separate jobs which are both sent to join the queue for
processing again. Let X(t) denote the number of jobs in the system at time t.

(iii) In the case 1 + λ/ν < 2p, evaluate lim
t→∞

P(X(t) = j), j = 0, 1, . . ., and find the

expected time that the processor is busy between two successive idle periods.

(iv) What happens if 1 + λ/ν > 2p?
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28K Principles of Statistics
Random variables X1, . . . ,Xn are independent and identically distributed from the

normal distribution with unknown mean M and unknown precision (inverse variance) H.
Show that the likelihood function, for data X1 = x1, . . . ,Xn = xn, is

Ln(µ, h) ∝ hn/2 exp
(
−1

2h
{
n (x− µ)2 + S

})
,

where x := n−1
∑

i xi and S :=
∑

i(xi − x)2.

A bivariate prior distribution for (M,H) is specified, in terms of hyperparameters
(α0, β0,m0, λ0), as follows. The marginal distribution of H is Γ(α0, β0), with density

π(h) ∝ hα0−1e−β0h (h > 0) ,

and the conditional distribution of M, given H = h, is normal with mean m0 and precision
λ0h.

Show that the conditional prior distribution of H, given M = µ, is

H | M = µ ∼ Γ
(
α0 +

1
2 , β0 +

1
2λ0 (µ−m0)

2
)
.

Show that the posterior joint distribution of (M,H), given X1 = x1, . . . ,Xn = xn,
has the same form as the prior, with updated hyperparameters (αn, βn,mn, λn) which you
should express in terms of the prior hyperparameters and the data.

[You may use the identity

p(t− a)2 + q(t− b)2 = (t− δ)2 + pq(a− b)2 ,

where p+ q = 1 and δ = pa+ qb.]

Explain how you could implement Gibbs sampling to generate a random sample
from the posterior joint distribution.
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29K Optimization and Control
Consider an optimal stopping problem in which the optimality equation takes the

form
Ft(x) = max

{
r(x), E[Ft+1(xt+1)]

}
, t = 1, . . . , N − 1 ,

FN (x) = r(x), and where r(x) > 0 for all x. Let S denote the stopping set of the one-
step-look-ahead rule. Show that if S is closed (in a sense you should explain) then the
one-step-look-ahead rule is optimal.

N biased coins are to be tossed successively. The probability that the ith coin toss
will show a head is known to be pi (0 < pi < 1). At most once, after observing a head,
and before tossing the next coin, you may guess that you have just seen the last head (i.e.
that all subsequent tosses will show tails). If your guess turns out to be correct then you
win £1.

Suppose that you have not yet guessed ‘last head’, and the ith toss is a head. Show
that it cannot be optimal to guess that this is the last head if

pi+1

qi+1
+ · · ·+ pN

qN
> 1 ,

where qj = 1− pj.

Suppose that pi = 1/i. Show that it is optimal to guess that the last head is the
first head (if any) to occur after having tossed at least i∗ coins, where i∗ ≈ N/e when N
is large.
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30J Stochastic Financial Models
Consider a symmetric simple random walk (Zn)n∈Z+ taking values in statespace

I = hZ2 ≡ {(ih, jh) : i, j ∈ Z}, where h ≡ N−1 (N an integer). Writing Zn ≡ (Xn, Yn),
the transition probabilities are given by

P (∆Zn = (h, 0)) = P (∆Zn = (0, h)) = P (∆Zn = (−h, 0)) = P (∆Zn = (0,−h)) =
1

4
,

where ∆Zn ≡ Zn − Zn−1.

What does it mean to say that (Mn,Fn)n∈Z+ is a martingale? Find a condition on
θ and λ such that

Mn = exp(θXn − λYn)

is a martingale. If θ = iα for some real α, show that M is a martingale if

e−λh = 2− cos(αh)−
√

(2− cos(αh))2 − 1 . (∗)

Suppose that the random walk Z starts at position (0, 1) ≡ (0, Nh) at time 0, and
suppose that

τ = inf{n : Yn = 0} .
Stating fully any results to which you appeal, prove that

E exp(iαXτ ) = e−λ ,

where λ is as given at (∗). Deduce that as N → ∞

E exp(iαXτ ) → e−|α|

and comment briefly on this result.
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31A Partial Differential Equations
Consider the Schrödinger equation

i∂tψ(t, x) = −1

2
∆ψ(t, x) + V (x)ψ(t, x) , x ∈ Rn, t > 0 ,

ψ(t = 0, x) = ψI(x) , x ∈ Rn ,

where V is a smooth real-valued function.

Prove that, for smooth solutions, the following equations are valid for all t > 0:

(i) ∫

Rn

|ψ(t, x)|2 dx =

∫

Rn

|ψI(x)|2 dx .

(ii)

∫

Rn

1

2
|∇ψ(t, x)|2 dx+

∫

Rn

V (x)|ψ(t, x)|2 dx

=

∫

Rn

1

2
|∇ψI(x)|2 dx+

∫

Rn

V (x)|ψI(x)|2 dx .
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32A Integrable Systems
Consider the Poisson structure

{F,G} =

∫

R

δF

δu(x)

∂

∂x

δG

δu(x)
dx , (1)

where F,G are polynomial functionals of u, ux, uxx, . . . . Assume that u, ux, uxx, . . . tend
to zero as |x| → ∞.

(i) Show that {F,G} = −{G,F}.

(ii) Write down Hamilton’s equations for u = u(x, t) corresponding to the following
Hamiltonians:

H0[u] =

∫

R

1

2
u2 dx , H[u] =

∫

R

(
1

2
ux

2 + u3 + uux

)
dx .

(iii) Calculate the Poisson bracket {H0,H}, and hence or otherwise deduce that the
following overdetermined system of partial differential equations for u = u(x, t0, t)
is compatible:

ut0 = ux , (2)

ut = 6uux − uxxx . (3)

[You may assume that the Jacobi identity holds for (1).]

(iv) Find a symmetry of (3) generated by X = ∂/∂u+αt∂/∂x for some constant α ∈ R
which should be determined. Construct a vector field Y corresponding to the one–
parameter group

x → βx , t → γt , u → δu ,

where (β, γ, δ) should be determined from the symmetry requirement. Find the Lie
algebra generated by the vector fields (X,Y ).
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33D Principles of Quantum Mechanics
A quantum system has energy eigenstates |n〉 with eigenvalues En = n~, n ∈

{1, 2, 3, . . .}. An observable Q is such that Q|n〉 = qn|n〉.

(a) What is the commutator of Q with the Hamiltonian H?

(b) Given qn = 1
n , consider the state

|ψ〉 ∝
N∑

n=1

√
n|n〉 .

Determine:

(i) The probability of measuring Q to be 1/N .

(ii) The probability of measuring energy ~ followed by another immediate meas-
urement of energy 2~.

(iii) The average of many separate measurements of Q, each measurement being
on a state |ψ〉, as N → ∞.

(c) Given q1 = 1 and qn = −1 for n > 1, consider the state

|ψ〉 ∝
∞∑

n=1

αn/2|n〉 ,

where 0 < α < 1.

(i) Show that the probability of measuring an eigenvalue q = −1 of |ψ〉 is

A+Bα ,

where A and B are integers that you should find.

(ii) Show that 〈Q〉ψ is C+Dα, where C and D are integers that you should find.

(iii) Given that Q is measured to be −1 at time t = 0, write down the state after
a time t has passed. What is then the subsequent probability at time t of
measuring the energy to be 2~?
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34E Applications of Quantum Mechanics
A beam of particles of mass m and momentum p = ~k, incident along the z-axis,

is scattered by a spherically symmetric potential V (r), where V (r) = 0 for large r. State
the boundary conditions on the wavefunction as r → ∞ and hence define the scattering
amplitude f(θ), where θ is the scattering angle.

Given that, for large r,

eikr cos θ =
1

2ikr

∞∑

l=0

(2l + 1)
(
eikr − (−1)le−ikr

)
Pl(cos θ) ,

explain how the partial-wave expansion can be used to define the phase shifts δl(k) (l =
0, 1, 2, . . .). Furthermore, given that dσ/dΩ = |f(θ)|2 , derive expressions for f(θ) and the
total cross-section σ in terms of the δl.

In a particular case V (r) is given by

V (r) =





∞ , r < a ,
−V0 , a < r < 2a ,

0 , r > 2a ,

where V0 > 0. Show that the S-wave phase shift δ0 satisfies

tan(δ0) =
k cos(2ka) − κ cot(κa) sin(2ka)

k sin(2ka) + κ cot(κa) cos(2ka)
,

where κ2 = 2mV0/~2 + k2.

Derive an expression for the scattering length as in terms of κ. Find the values of
κ for which |as| diverges and briefly explain their physical significance.
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35D Statistical Physics
Write down the partition function for a single classical non-relativistic particle of

mass m moving in three dimensions in a potential U(x) and in equilibrium with a heat
bath at temperature T .

A system of N non-interacting classical non-relativistic particles, in equilibrium at
temperature T , is placed in a potential

U(x) =
(x2 + y2 + z2)n

V 2n/3
,

where n is a positive integer. Using the partition function, show that the free energy is

F = −NkBT

(
log V +

3

2

n+ 1

n
log kBT + log In + const

)
, (∗)

where

In =
( m

2π~2
)3/2

∫ ∞

0
4πu2 exp(−u2n) du .

Explain the physical relevance of the constant term in the expression (∗).
Viewing V as an external parameter, akin to volume, compute the conjugate

pressure p and show that the equation of state coincides with that of an ideal gas.

Compute the energy E, heat capacity CV and entropy S of the gas. Determine the
local particle number density as a function of |x|.
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36D General Relativity
The curvature tensor Ra

bcd satisfies

Va;bc − Va;cb = VeR
e
abc

for any covariant vector field Va. Hence express Re
abc in terms of the Christoffel symbols

and their derivatives. Show that

Re
abc = −Re

acb .

Further, by setting Va = ∂φ/∂xa, deduce that

Re
abc +Re

cab +Re
bca = 0 .

Using local inertial coordinates or otherwise, obtain the Bianchi identities.

Define the Ricci tensor in terms of the curvature tensor and show that it is
symmetric. [You may assume that Rabcd = −Rbacd.] Write down the contracted Bianchi
identities.

In certain spacetimes of dimension n > 2, Rabcd takes the form

Rabcd = K(gac gbd − gad gbc) .

Obtain the Ricci tensor and curvature scalar. Deduce, under some restriction on n which
should be stated, that K is a constant.

37B Fluid Dynamics II
The energy equation for the motion of a viscous, incompressible fluid states that

d

dt

∫

V

1
2ρu

2 dV +

∫

S

1
2ρu

2uini dS =

∫

S
uiσijnj dS − 2µ

∫

V
eijeij dV .

Interpret each term in this equation and explain the meaning of the symbols used.

Consider steady rectilinear flow in a (not necessarily circular) pipe having rigid
stationary walls. Deduce a relation between the viscous dissipation per unit length of the
pipe, the pressure gradient G, and the volume flux Q.

Starting from the Navier–Stokes equations, calculate the velocity field for steady
rectilinear flow in a circular pipe of radius a. Using the relationship derived above, or
otherwise, find the viscous dissipation per unit length of this flow in terms of G.

[Hint: In cylindrical polar coordinates,

∇2w(r) =
1

r

d

dr

(
r
dw

dr

)
.

]
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38B Waves
A uniform elastic solid with wavespeeds cP and cS occupies the region z < 0. An

S-wave with displacement

u = (cos θ, 0,− sin θ) eik(x sin θ+z cos θ)−iωt

is incident from z < 0 on a rigid boundary at z = 0. Find the form and amplitudes of the
reflected waves.

When is the reflected P -wave evanescent? Show that if the P -wave is evanescent
then the amplitude of the reflected S-wave has the same magnitude as the incident wave,
and interpret this result physically.

39A Numerical Analysis
Let A ∈ Rn×n be a real matrix with n linearly independent eigenvectors. The

eigenvalues of A can be calculated from the sequence x(k), k = 0, 1, . . ., which is generated
by the power method

x(k+1) =
Ax(k)

‖Ax(k)‖ ,

where x(0) is a real nonzero vector.

(i) Describe the asymptotic properties of the sequence x(k) in the case that the
eigenvalues λi of A satisfy |λi| < |λn|, i = 1, . . . , n − 1, and the eigenvectors are of
unit length.

(ii) Present the implementation details for the power method for the setting in (i) and
define the Rayleigh quotient.

(iii) Let A be the 3× 3 matrix

A = λI + P , P =




0 0 0
1 0 0
0 1 0


 ,

where λ is real and nonzero. Find an explicit expression for Ak, k = 1, 2, 3, . . . .

Let the sequence x(k) be generated by the power method as above. Deduce from
your expression for Ak that the first and second components of x(k+1) tend to zero
as k → ∞. Further show that this implies Ax(k+1) − λx(k+1) → 0 as k → ∞.

END OF PAPER
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