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SECTION I

1I Number Theory
Prove that, under the action of SL2(Z), every positive definite binary quadratic form

of discriminant −163, with integer coefficients, is equivalent to

x2 + xy + 41y2 .

2F Topics in Analysis

(i) State the Baire Category Theorem for metric spaces in its closed sets version.

(ii) Let f : C → C be a complex analytic function which is not a polynomial. Prove
that there exists a point z0 ∈ C such that each coefficient of the Taylor series of f
at z0 is non-zero.

3G Geometry and Groups

Let G be a finite subgroup of SO(3) and let Ω be the set of unit vectors that are

fixed by some non-identity element of G. Show that the group G permutes the unit vectors

in Ω and that Ω has at most three orbits. Describe these orbits when G is the group of

orientation-preserving symmetries of a regular dodecahedron.

4G Coding and Cryptography
I think of an integer n with 1 6 n 6 106. Explain how to find n using twenty

questions (or less) of the form ‘Is it true that n > m?’ to which I answer yes or no.

I have watched a horse race with 15 horses. Is it possible to discover the order in
which the horses finished by asking me twenty questions to which I answer yes or no?

Roughly how many questions of the yes/no type are required to discover the order
in which n horses finished if n is large?

[You may assume that I answer honestly.]

Part II, Paper 1
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5J Statistical Modelling
Let Y1, . . . , Yn be independent identically distributed random variables with model

function f(y, θ), y ∈ Y, θ ∈ Θ ⊆ R, and denote by Eθ and Varθ expectation and
variance under f(y, θ), respectively. Define Un(θ) =

∑n
i=1

∂
∂θ log f(Yi, θ). Prove that

EθUn(θ) = 0. Show moreover that if T = T (Y1, . . . , Yn) is any unbiased estimator of θ,
then its variance satisfies Varθ(T ) > (nVarθ(U1(θ))

−1. [You may use the Cauchy–Schwarz
inequality without proof, and you may interchange differentiation and integration without
justification if necessary.]

6B Mathematical Biology
A proposed model of insect dispersal is given by the equation

∂n

∂t
= D

∂

∂x

[(n0

n

) ∂n

∂x

]
, (1)

where n(x, t) is the density of insects and D and n0 are constants.

Interpret the term on the right-hand side.

Explain why a solution of the form

n(x, t) = n0(Dt)−βg(x/(Dt)β) , (2)

where β is a positive constant, can potentially represent the dispersal of a fixed number
n0 of insects initially localised at the origin.

Show that the equation (1) can be satisfied by a solution of the form (2) if β = 1
and find the corresponding function g.

7C Dynamical Systems
Find the fixed points of the dynamical system (with µ 6= 0)

ẋ = µ2x− xy ,

ẏ = −y + x2 ,

and determine their type as a function of µ.

Find the stable and unstable manifolds of the origin correct to order 4.
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8E Further Complex Methods
Show that the following integral is well defined:

I(a, b) =

∫ ∞

0

(
e−bx

eiaex − 1
− ebx

e−iaex − 1

)
dx, 0 < a < ∞, a 6= 2nπ, n ∈ Z, 0 < b < 1 .

Express I(a, b) in terms of a combination of hypergeometric functions.

[You may assume without proof that the hypergeometric function F (a, b; c; z) can be
expressed in the form

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− tz)−adt ,

for appropriate restrictions on c, b, z. Furthermore,

Γ(z + 1) = zΓ(z) .
]

9C Classical Dynamics

(i) A particle of mass m and charge q, at position x, moves in an electromagnetic field
with scalar potential φ(x, t) and vector potential A(x, t). Verify that the Lagrangian

L =
1

2
mẋ2 − q(φ− ẋ ·A)

gives the correct equations of motion.

[Note that E = −∇φ− Ȧ and B = ∇×A.]

(ii) Consider the case of a constant uniform magnetic field, with E = 0, given by φ = 0,
A = (0, xB, 0), where (x, y, z) are Cartesian coordinates and B is a constant. Find
the motion of the particle, and describe it carefully.

Part II, Paper 1
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10E Cosmology
Light of wavelength λe emitted by a distant object is observed by us to have

wavelength λ0. The redshift z of the object is defined by

1 + z =
λ0

λe
.

Assuming that the object is at a fixed comoving distance from us in a homogeneous and
isotropic universe with scale factor a(t), show that

1 + z =
a(t0)

a(te)
,

where te is the time of emission and t0 the time of observation (i.e. today).

[You may assume the non-relativistic Doppler shift formula ∆λ/λ = (v/c) cos θ for the
shift ∆λ in the wavelength of light emitted by a nearby object travelling with velocity v
at angle θ to the line of sight.]

Given that the object radiates energy L per unit time, explain why the rate at
which energy passes through a sphere centred on the object and intersecting the Earth is
L/(1 + z)2.
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SECTION II

11G Geometry and Groups

Prove that a group of Möbius transformations is discrete if, and only if, it acts

discontinuously on hyperbolic 3-space.

Let G be the set of Möbius transformations z 7→ az + b

cz + d
with

a, b, c, d ∈ Z[i] = {u+ iv : u, v ∈ Z} and ad− bc = 1 .

Show that G is a group and that it acts discontinuously on hyperbolic 3-space. Show that

G contains transformations that are elliptic, parabolic, hyperbolic and loxodromic.

12G Coding and Cryptography
Describe the Rabin–Williams coding scheme. Show that any method for breaking

it will enable us to factorise the product of two primes.

Explain how the Rabin–Williams scheme can be used for bit sharing (that is to say
‘tossing coins by phone’).

Part II, Paper 1
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13J Statistical Modelling
The data consist of the record times in 1984 for 35 Scottish hill races. The columns

list the record time in minutes, the distance in miles, and the total height gained during
the route. The data are displayed in R as follows (abbreviated):

> hills

dist climb time

Greenmantle 2.5 650 16.083

Carnethy 6.0 2500 48.350

Craig Dunain 6.0 900 33.650

Ben Rha 7.5 800 45.600

Ben Lomond 8.0 3070 62.267

[...]

Cockleroi 4.5 850 28.100

Moffat Chase 20.0 5000 159.833

Consider a simple linear regression of time on dist and climb. Write down this
model mathematically, and explain any assumptions that you make. How would you
instruct R to fit this model and assign it to a variable hills.lm1?

First, we test the hypothesis of no linear relationship to the variables dist and
climb against the full model. R provides the following ANOVA summary:

Res.Df RSS Df Sum of Sq F Pr(>F)

1 34 85138

2 32 6892 2 78247 181.66 < 2.2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Using the information in this table, explain carefully how you would test this hypothesis.
What do you conclude?

The R command

summary(hills.lm1)

provides the following (slightly abbreviated) summary:

[...]

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -8.992039 4.302734 -2.090 0.0447 *

dist 6.217956 0.601148 10.343 9.86e-12 ***

climb 0.011048 0.002051 5.387 6.45e-06 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

[...]
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Carefully explain the information that appears in each column of the table. What
are your conclusions? In particular, how would you test for the significance of the variable
climb in this model?
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Figure 1: Hills data: diagnostic plots

Finally, we perform model diagnostics on the full model, by looking at studentised
residuals versus fitted values, and the normal QQ-plot. The plots are displayed in Figure 1.
Comment on possible sources of model misspecification. Is it possible that the problem
lies with the data? If so, what do you suggest?
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14E Further Complex Methods

(i) By assuming the validity of the Fourier transform pair, prove the validity of the
following transform pair:

q̂(k) =

∫ ∞

0
e−ikxq(x) dx , Im k 6 0 , (1a)

q(x) =
1

2π

∫ ∞

−∞
eikxq̂(k) dk +

c

2π

∫

L
eikxq̂(−k) dk , 0 < x < ∞ , (1b)

where c is an arbitrary complex constant and L is the union of the two rays arg k = π
2

and arg k = 0 with the orientation shown in the figure below:

The contour L.

(ii) Verify that the partial differential equation

iqt + qxx = 0, 0 < x < ∞ , t > 0 , (2)

can be rewritten in the following form:

(
e−ikx+ik2tq

)
t
−

[
e−ikx+ik2t (−kq + iqx)

]
x
= 0 , k ∈ C . (3)

Consider equation (2) supplemented with the conditions

q(x, 0) = q0(x) , 0 < x < ∞ ,

q(x, t) vanishes sufficiently fast for all t as x → ∞ . (4)

By using equations (1a) and (3), show that

q̂(k, t) = e−ik2tq̂0(k) + e−ik2t
[
kg̃0(k

2, t)− ig̃1(k
2, t)

]
, Im k 6 0 , (5)

where

q̂0(k) =

∫ ∞

0
e−ikxq0(x) dx , Im k 6 0 ,

Part II, Paper 1 [TURN OVER
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g̃0(k, t) =

∫ t

0
eikτq(0, τ) dτ , g̃1(k, t) =

∫ t

0
eikτqx(0, τ) dτ , k ∈ C , t > 0 .

Use (1b) to invert equation (5) and furthermore show that

∫ ∞

−∞
eikx−ik2t

[
kg̃0(k

2, t) + ig̃1(k
2, t)

]
dk =

∫

L
eikx−ik2t

[
kg̃0(k

2, t) + ig̃1(k
2, t)

]
dk, t > 0 , x > 0 .

Hence determine the constant c so that the solution of equation (2), with the
conditions (4) and with the condition that either q(0, t) or qx(0, t) is given, can
be expressed in terms of an integral involving q̂0(k) and either g̃0 or g̃1.

Part II, Paper 1
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15E Cosmology
A homogeneous and isotropic universe, with scale factor a, curvature parameter k,

energy density ρ and pressure P , satisfies the Friedmann and energy conservation equations

H2 +
kc2

a2
=

8πG

3
ρ ,

ρ̇+ 3H(ρ+ P/c2) = 0 ,

where H = ȧ/a, and the dot indicates a derivative with respect to cosmological time t.

(i) Derive the acceleration equation

ä

a
= −4πG

3
(ρ+ 3P/c2) .

Given that the strong energy condition ρc2 + 3P > 0 is satisfied, show that (aH)2

is a decreasing function of t in an expanding universe. Show also that the density
parameter Ω = 8πGρ/(3H2) satisfies

Ω− 1 =
kc2

a2H2
.

Hence explain, briefly, the flatness problem of standard big bang cosmology.

(ii) A flat (k = 0) homogeneous and isotropic universe is filled with a radiation fluid
(wR = 1/3) and a dark energy fluid (wΛ = −1), each with an equation of state of the
form Pi = wiρic

2 and density parameters today equal to ΩR0 and ΩΛ0 respectively.
Given that each fluid independently obeys the energy conservation equation, show
that the total energy density (ρR + ρΛ)c

2 equals ρc2, where

ρ(t) =
3H2

0

8πG

ΩR0

a4

(
1 +

1− ΩR0

ΩR0
a4
)

,

with H0 being the value of the Hubble parameter today. Hence solve the Friedmann
equation to get

a(t) = α(sinh βt)1/2 ,

where α and β should be expressed in terms ΩR0 and ΩΛ0. Show that this result
agrees with the expected asymptotic solutions at both early (t → 0) and late
(t → ∞) times.

[Hint:
∫
dx/

√
x2 + 1 = arcsinhx.]

Part II, Paper 1 [TURN OVER



12

16H Logic and Set Theory

Give the inductive and synthetic definitions of ordinal addition, and prove that they

are equivalent.

Which of the following assertions about ordinals α, β and γ are always true, and

which can be false? Give proofs or counterexamples as appropriate.

(i) αβ = βα.

(ii) α(β + γ) = αβ + αγ.

(iii) If α > ω2 then α+ ω2 = ω2 + α.

(iv) If α > ω1 then αω1 = ω1α.

17F Graph Theory
Let G be a bipartite graph with vertex classes X and Y . What is a matching from

X to Y ?

Show that if |Γ(A)| > |A| for all A ⊂ X then G contains a matching from X to Y .

Let d be a positive integer. Show that if |Γ(A)| > |A| − d for all A ⊂ X then G
contains a set of |X| − d independent edges.

Show that if 0 is not an eigenvalue of G then G contains a matching from X to Y .

Suppose now that |X| = |Y | > 1 and that G does contain a matching from X to Y .
Must it be the case that 0 is not an eigenvalue of G? Justify your answer.

18H Galois Theory
Let K be a field.

(i) Let F and F ′ be two finite extensions ofK. When the degrees of these two extensions
are equal, show that every K-homomorphism F → F ′ is an isomorphism. Give an
example, with justification, of two finite extensions F and F ′ of K, which have the
same degrees but are not isomorphic over K.

(ii) Let L be a finite extension of K. Let F and F ′ be two finite extensions of L. Show
that if F and F ′ are isomorphic as extensions of L then they are isomorphic as
extensions of K. Prove or disprove the converse.

Part II, Paper 1
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19I Representation Theory
Let G be a finite group and Z its centre. Suppose that G has order n and Z has

order m. Suppose that ρ : G → GL(V ) is a complex irreducible representation of degree
d.

(i) For g ∈ Z, show that ρ(g) is a scalar multiple of the identity.

(ii) Deduce that d2 6 n/m.

(iii) Show that, if ρ is faithful, then Z is cyclic.

[Standard results may be quoted without proof, provided they are stated clearly.]

Now let G be a group of order 18 containing an elementary abelian subgroup P of
order 9 and an element t of order 2 with txt−1 = x−1 for each x ∈ P . By considering the
action of P on an irreducible CG-module prove that G has no faithful irreducible complex
representation.

20F Number Fields
Calculate the class group for the field K = Q(

√
−17).

[You may use any general theorem, provided that you state it accurately.]

Find all solutions in Z of the equation y2 = x5 − 17.

21H Algebraic Topology
Are the following statements true or false? Justify your answers.

(i) If x and y lie in the same path-component of X, then Π1(X,x) ∼= Π1(X, y).

(ii) If x and y are two points of the Klein bottle K, and u and v are two paths from x
to y, then u and v induce the same isomorphism from Π1(K,x) to Π1(K, y).

(iii) Π1(X × Y, (x, y)) is isomorphic to Π1(X,x)×Π1(Y, y) for any two spaces X and Y .

(iv) If X and Y are connected polyhedra and H1(X) ∼= H1(Y ), then Π1(X) ∼= Π1(Y ).
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22G Linear Analysis
State a version of the Stone–Weierstrass Theorem for real-valued functions on a

compact metric space.

Suppose that K : [0, 1]2 → R is a continuous function. Show that K(x, y) may be
uniformly approximated by functions of the form

∑n
i=1 fi(x)gi(y) with fi, gi : [0, 1] → R

continuous.

Let X,Y be Banach spaces and suppose that T : X → Y is a bounded linear
operator. What does it mean to say that T is finite-rank? What does it mean to say that
T is compact? Give an example of a bounded linear operator from C[0, 1] to itself which
is not compact.

Suppose that (Tn)
∞
n=1 is a sequence of finite-rank operators and that Tn → T in the

operator norm. Briefly explain why the Tn are compact. Show that T is compact.

Hence, show that the integral operator T : C[0, 1] → C[0, 1] defined by

Tf(x) =

∫ 1

0
f(y)K(x, y) dy

is compact.

23G Riemann Surfaces
Suppose that R1 and R2 are Riemann surfaces, and A is a discrete subset of R1. For

any continuous map α : R1 → R2 which restricts to an analytic map of Riemann surfaces
R1 \A → R2, show that α is an analytic map.

Suppose that f is a non-constant analytic function on a Riemann surface R. Show
that there is a discrete subset A ⊂ R such that, for P ∈ R \ A, f defines a local chart on
some neighbourhood of P .

Deduce that, if α : R1 → R2 is a homeomorphism of Riemann surfaces and f is a
non-constant analytic function on R2 for which the composite f ◦α is analytic on R1, then
α is a conformal equivalence. Give an example of a pair of Riemann surfaces which are
homeomorphic but not conformally equivalent.

[You may assume standard results for analytic functions on domains in the complex plane.]

Part II, Paper 1



15

24H Algebraic Geometry

(i) Let X be an affine variety over an algebraically closed field. Define what it means for
X to be irreducible, and show that if U is a non-empty open subset of an irreducible
X, then U is dense in X.

(ii) Show that n×n matrices with distinct eigenvalues form an affine variety, and are a
Zariski open subvariety of affine space An2

over an algebraically closed field.

(iii) Let charA(x) = det(xI − A) be the characteristic polynomial of A. Show that the
n× n matrices A such that charA(A) = 0 form a Zariski closed subvariety of An2

.

Hence conclude that this subvariety is all of An2
.

25I Differential Geometry
Let X and Y be manifolds and f : X → Y a smooth map. Define the notions

critical point, critical value, regular value of f . Prove that if y is a regular value of f , then
f−1(y) (if non-empty) is a smooth manifold of dimension dimX − dimY .

[The Inverse Function Theorem may be assumed without proof if accurately stated.]

Let Mn(R) be the set of all real n × n matrices and SO(n) ⊂ Mn(R) the group of
all orthogonal matrices with determinant 1. Show that SO(n) is a smooth manifold and
find its dimension.

Show further that SO(n) is compact and that its tangent space at A ∈ SO(n) is
given by all matrices H such that AHt +HAt = 0.
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26K Probability and Measure

(i) Let (E, E , µ) be a measure space and let 1 6 p < ∞. For a measurable function f ,
let ‖f‖p = (

∫
|f |pdµ)1/p. Give the definition of the space Lp. Prove that (Lp, ‖ · ‖p)

forms a Banach space.

[You may assume that Lp is a normed vector space. You may also use in your proof
any other result from the course provided that it is clearly stated.]

(ii) Show that convergence in probability implies convergence in distribution.

[Hint: Show the pointwise convergence of the characteristic function, using without
proof the inequality |eiy − eix| 6 |x− y| for x, y ∈ R.]

(iii) Let (αj)j>1 be a given real-valued sequence such that
∑∞

j=1 α
2
j = σ2 < ∞. Let

(Xj)j>1 be a sequence of independent standard Gaussian random variables defined
on some probability space (Ω,F ,P). Let

Yn =
n∑

j=1

αjXj .

Prove that there exists a random variable Y such that Yn → Y in L2.

(iv) Specify the distribution of the random variable Y defined in part (iii), justifying
carefully your answer.
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27J Applied Probability

(i) Let X be a Markov chain with finitely many states. Define a stopping time and
state the strong Markov property.

(ii) Let X be a Markov chain with state-space {−1, 0, 1} and Q-matrix

Q =



−(q + λ) λ q

0 0 0
q λ −(q + λ)


 , where q, λ > 0 .

Consider the integral

∫ t

0
X(s)ds, the signed difference between the times spent by

the chain at states +1 and −1 by time t, and let

Y = sup

[∫ t

0
X(s)ds : t > 0

]
,

ψ±(c) = P
(
Y > c

∣∣∣ X0 = ±1
)
, c > 0 .

Derive the equation

ψ−(c) =
∫ ∞

0
qe−(λ+q)uψ+(c+ u) du .

(iii) Obtain another equation relating ψ+ to ψ−.

(iv) Assuming that ψ+(c) = e−cA, c > 0, whereA is a non-negative constant, calculate A.

(v) Give an intuitive explanation why the function ψ+ must have the exponential form
ψ+(c) = e−cA for some A.

28K Principles of Statistics
Define admissible, Bayes, minimax decision rules.

A random vector X = (X1,X2,X3)
T has independent components, whereXi has the

normal distribution N (θi, 1) when the parameter vector Θ takes the value θ = (θ1, θ2, θ3)
T.

It is required to estimate Θ by a point a ∈ R3, with loss function L(θ, a) = ‖a − θ‖2.
What is the risk function of the maximum-likelihood estimator Θ̂ := X? Show that Θ̂ is
dominated by the estimator Θ̃ := (1− ‖X‖−2)X.
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29J Stochastic Financial Models
In a one-period market, there are n assets whose prices at time t are given by

St = (S1
t , . . . , S

n
t )

T , t = 0, 1. The prices S1 of the assets at time 1 have a N(µ, V )
distribution, with non-singular covariance V , and the prices S0 at time 0 are known
constants. In addition, there is a bank account giving interest r, so that one unit of
cash invested at time 0 will be worth (1 + r) units of cash at time 1.

An agent with initial wealth w0 chooses a portfolio θ = (θ1, . . . , θn) of the assets to
hold, leaving him with x = w0 − θ · S0 in the bank account. His objective is to maximize
his expected utility

E (− exp [ −γ {x(1 + r) + θ · S1 }]) (γ > 0) .

Find his optimal portfolio in each of the following three situations:

(i) θ is unrestricted;

(ii) no investment in the bank account is allowed: x = 0;

(iii) the initial holdings x of cash must be non-negative.

For the third problem, show that the optimal initial holdings of cash will be zero if and
only if

S0 · (γV )−1µ− w0

S0 · (γV )−1S0
> 1 + r .
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30A Partial Differential Equations
Let H = H(x, v), x, v ∈ Rn, be a smooth real-valued function which maps R2n into

R. Consider the initial value problem for the equation

ft +∇vH · ∇xf −∇xH · ∇vf = 0, x, v ∈ Rn, t > 0 ,

f(x, v, t = 0) = fI(x, v), x, v ∈ Rn ,

for the unknown function f = f(x, v, t).

(i) Use the method of characteristics to solve the initial value problem, locally in time.

(ii) Let fI > 0 on R2n. Use the method of characteristics to prove that f remains
non-negative (as long as it exists).

(iii) Let F : R → R be smooth. Prove that

∫

R2n

F (f(x, v, t)) dx dv =

∫

R2n

F (fI(x, v)) dx dv ,

as long as the solution exists.

(iv) Let H be independent of x, namely H(x, v) = a(v), where a is smooth and real-
valued. Give the explicit solution of the initial value problem.

31A Asymptotic Methods
A function f(n), defined for positive integer n, has an asymptotic expansion for

large n of the following form:

f(n) ∼
∞∑

k=0

ak
1

n2k
, n → ∞ . (∗)

What precisely does this mean?

Show that the integral

I(n) =

∫ 2π

0

cosnt

1 + t2
dt

has an asymptotic expansion of the form (∗). [The Riemann–Lebesgue lemma may be
used without proof.] Evaluate the coefficients a0, a1 and a2.
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32A Integrable Systems
Define a finite-dimensional integrable system and state the Arnold–Liouville theorem.

Consider a four-dimensional phase space with coordinates (q1, q2, p1, p2), where
q2 > 0 and q1 is periodic with period 2π. Let the Hamiltonian be

H =
(p1)

2

2(q2)2
+

(p2)
2

2
− k

q2
, where k > 0 .

Show that the corresponding Hamilton equations form an integrable system.

Determine the sign of the constant E so that the motion is periodic on the surface
H = E. Demonstrate that in this case, the action variables are given by

I1 = p1 , I2 = γ

∫ β

α

√
(q2 − α)(β − q2)

q2
dq2 ,

where α, β, γ are positive constants which you should determine.
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33D Principles of Quantum Mechanics
Two individual angular momentum states |j1, m1〉, |j2, m2〉, acted on by J(1) and

J(2) respectively, can be combined to form a combined state |J, M〉. What is the combined
angular momentum operator J in terms of J(1) and J(2)? [Units in which ~ = 1 are to be
used throughout.]

Defining raising and lowering operators J
(i)
± , where i ∈ {1, 2}, find an expression for

J2 in terms of J(i)2 , J
(i)
± and J

(i)
3 . Show that this implies

[
J2, J3

]
= 0 .

Write down the state with J = j1 + j2 and with J3 eigenvalue M = −j1 − j2 in
terms of the individual angular momentum states. From this starting point, calculate the
combined state with eigenvalues J = j1 + j2 − 1 and M = −j1 − j2 + 1 in terms of the
individual angular momentum states.

If j1 = 3 and j2 = 1 and the combined system is in the state |3, −3〉, what is the

probability of measuring the J
(i)
3 eigenvalues of individual angular momentum states to

be −3 and 0, respectively?

[You may assume without proof that standard angular momentum states |j, m〉 are joint
eigenstates of J2 and J3, obeying

J±|j, m〉 =
√

(j ∓m)(j ±m+ 1) |j, m+ 1〉,

and that
[J±, J3] = ±J± . ]
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34E Applications of Quantum Mechanics
In one dimension a particle of mass m and momentum ~k, k > 0, is scattered by

a potential V (x) where V (x) → 0 as |x| → ∞. Incoming and outgoing plane waves of
positive (+) and negative (−) parity are given, respectively, by

I+(k, x) = e−ik|x| , I−(k, x) = sgn(x)e−ik|x| ,
O+(k, x) = eik|x| , O−(k, x) = −sgn(x)eik|x| .

The scattering solutions to the time-independent Schrödinger equation with positive
and negative parity incoming waves are ψ+(x) and ψ−(x), respectively. State how the
asymptotic behaviour of ψ+ and ψ− can be expressed in terms of I+, I−, O+, O− and the
S-matrix denoted by

S =

(
S++ S+−
S−+ S−−

)
.

In the case where V (x) = V (−x) explain briefly why you expect S+− = S−+ = 0.

The potential V (x) is given by

V (x) = V0[δ(x− a) + δ(x+ a)] ,

where V0 is a constant. In this case, show that

S−−(k) = e−2ika

[
(2k − iU0)e

ika + iU0e
−ika

(2k + iU0)e−ika − iU0eika

]
,

where U0 = 2mV0/~2. Verify that |S−−|2 = 1 and explain briefly the physical meaning of
this result.

For V0 < 0, by considering the poles or zeros of S−−(k) show that there exists one
bound state of negative parity in this potential if U0a < −1.

For V0 > 0 and U0a≫ 1, show that S−−(k) has a pole at

ka = π + α− iγ

where, to leading order in 1/(U0a),

α = − π

U0a
, γ =

(
π

U0a

)2

.

Explain briefy the physical meaning of this result, and why you expect that γ > 0.
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35D Statistical Physics
Describe the physical relevance of the microcanonical, canonical and grand canonical

ensembles. Explain briefly the circumstances under which all ensembles are equivalent.

The Gibbs entropy for a probability distribution p(n) over states is

S = −kB
∑

n

p(n) log p(n) .

By imposing suitable constraints on p(n), show how maximising the entropy gives rise to
the probability distributions for the microcanonical and canonical ensembles.

A system consists of N non-interacting particles fixed at points in a lattice. Each
particle has three states with energies E = −ǫ, 0,+ǫ. If the system is at a fixed temperature
T , determine the average energy E and the heat capacity C. Evaluate each in the limits
T → ∞ and T → 0.

Describe a configuration of the system that would have negative temperature. Does
this system obey the third law of thermodynamics?

36C Electrodynamics

In the Landau–Ginzburg model of superconductivity, the energy of the system is

given, for constants α and β, by

E =

∫ {
1

2µ0
B2 +

1

2m
[(i~∇− qA)ψ∗ · (−i~∇− qA)ψ] + αψ∗ψ + β(ψ∗ψ)2

}
d3x ,

where B is the time-independent magnetic field derived from the vector potential A, and

ψ is the wavefunction of the charge carriers, which have mass m and charge q.

Describe the physical meaning of each of the terms in the integral.

Explain why in a superconductor one must choose α < 0 and β > 0. Find an

expression for the number density n of the charge carriers in terms of α and β.

Show that the energy is invariant under the gauge transformations

A → A+∇Λ , ψ → ψ eiqΛ/~ .

Assuming that the number density n is uniform, show that, if E is a minimum under

variations of A, then

curlB = −µ0q
2n

m
(A− ~

q
∇φ) ,

where φ = argψ.

Find a formula for ∇2B and use it to explain why there cannot be a magnetic field

inside the bulk of a superconductor.
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37D General Relativity
Consider a metric of the form

ds2 = −2 du dv + dx2 + dy2 − 2H(u, x, y)du2 .

Let xa(λ) describe an affinely-parametrised geodesic, where xa ≡ (x1, x2, x3, x4) =
(u, v, x, y). Write down explicitly the Lagrangian

L = gabẋ
aẋb ,

with ẋa = dxa/dλ, using the given metric. Hence derive the four geodesic equations. In
particular, show that

v̈ + 2

(
∂H

∂x
ẋ+

∂H

∂y
ẏ

)
u̇+

∂H

∂u
u̇2 = 0.

By comparing these equations with the standard form of the geodesic equation,
show that Γ2

13 = ∂H/∂x and derive the other Christoffel symbols.

The Ricci tensor, Rab, is defined by

Rab = Γd
ab,d − Γd

ad,b + Γd
dfΓ

f
ba − Γd

bfΓ
f
da .

By considering the case a = 1, b = 1, show that the vacuum Einstein field equations imply

∂2H

∂x2
+

∂2H

∂y2
= 0 .
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38B Fluid Dynamics II
The steady two-dimensional boundary-layer equations for flow primarily in the x-

direction are

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= −dP

dx
+ µ

∂2u

∂y2
,

∂u

∂x
+
∂v

∂y
= 0 .

A thin, steady, two-dimensional jet emerges from a point at the origin and flows
along the x-axis in a fluid at rest far from the x-axis. Show that the momentum flux

F =

∫ ∞

−∞
ρu2 dy

is independent of position x along the jet. Deduce that the thickness δ(x) of the jet
increases along the jet as x2/3, while the centre-line velocity U(x) decreases as x−1/3.

A similarity solution for the jet is sought with a streamfunction ψ of the form

ψ(x, y) = U(x)δ(x)f(η) with η = y/δ(x) .

Derive the nonlinear third-order non-dimensional differential equation governing f , and
write down the boundary and normalisation conditions which must be applied.

39B Waves
An inviscid fluid with sound speed c0 occupies the region 0 < y < πα, 0 < z < πβ

enclosed by the rigid boundaries of a rectangular waveguide. Starting with the acoustic
wave equation, find the dispersion relation ω(k) for the propagation of sound waves in the
x-direction.

Hence find the phase speed c(k) and the group velocity cg(k) of both the dispersive
modes and the nondispersive mode, and sketch the form of the results for k, ω > 0.

Define the time and cross-sectional average appropriate for a mode with frequency
ω. For each dispersive mode, show that the average kinetic energy is equal to the average
compressive energy.

A general multimode acoustic disturbance is created within the waveguide at t = 0
in a region around x = 0. Explain briefly how the amplitude of the disturbance varies
with time as t → ∞ at the moving position x = V t for each of the cases 0 < V < c0,
V = c0 and V > c0. [You may quote without proof any generic results from the method
of stationary phase.]
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40A Numerical Analysis
The nine-point method for the Poisson equation ∇2u = f (with zero Dirichlet

boundary conditions) in a square, reads

2

3
(ui−1,j + ui+1,j + ui,j−1 + ui,j+1) +

1

6
(ui−1,j−1 + ui−1,j+1 + ui+1,j−1 + ui+1,j+1)

− 10

3
ui,j = h2fi,j, i, j = 1, . . . ,m,

where u0,j = um+1,j = ui,0 = ui,m+1 = 0, for all i, j = 0, . . . ,m+ 1.

(i) By arranging the two-dimensional arrays {ui,j}i,j=1,...,m and {fi,j}i,j=1,...,m into

column vectors u ∈ Rm2
and b ∈ Rm2

respectively, the linear system above takes
the matrix form Au = b. Prove that, regardless of the ordering of the points on the
grid, the matrix A is symmetric and negative definite.

(ii) Formulate the Jacobi method with relaxation for solving the above linear system.

(iii) Prove that the iteration converges if the relaxation parameter ω is equal to 1.

[You may quote without proof any relevant result about convergence of iterative
methods.]

END OF PAPER
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