
MATHEMATICAL TRIPOS Part II

Friday, 4 June, 2010 9:00 am to 12:00 pm

PAPER 4

Before you begin read these instructions carefully.

The examination paper is divided into two sections. Each question in Section II

carries twice the number of marks of each question in Section I. Candidates may

attempt at most six questions from Section I and any number of questions from

Section II.

Complete answers are preferred to fragments.

Write on one side of the paper only and begin each answer on a separate sheet.

Write legibly; otherwise you place yourself at a grave disadvantage.

At the end of the examination:

Tie up your answers in bundles, marked A, B, C, . . ., J according to the code letter

affixed to each question. Include in the same bundle all questions from Sections I

and II with the same code letter.

Attach a completed gold cover sheet to each bundle.

You must also complete a green master cover sheet listing all the questions you have

attempted.

Every cover sheet must bear your examination number and desk number.

STATIONERY REQUIREMENTS

Gold cover sheet

Green master cover sheet

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.



2

SECTION I

1G Number Theory

Let p be a prime number, and put

ak = kp , Nk = a p
k − 1 (k = 1, 2, ... ) .

Prove that ak has exact order p modulo Nk for all k > 1 , and deduce that Nk must be

divisible by a prime q with q ≡ 1 (mod p) . By making a suitable choice of k, prove that

there are infinitely many primes q with q ≡ 1 (mod p) .

2F Topics in Analysis

Find explicitly a polynomial p of degree 6 3 such that

sup
x∈[−1,1]

|x4 − p(x)| 6 sup
x∈[−1,1]

|x4 − q(x)|

for every polynomial q of degree 6 3 . Justify your answer.

3F Geometry of Group Actions

Define loxodromic transformations and explain how to determine when a Möbius

transformation

T : z 7→ az + b

cz + d
with ad− bc = 1

is loxodromic.

Show that any Möbius transformation that maps a disc ∆ onto itself cannot be

loxodromic.

4H Coding and Cryptography

What is the discrete logarithm problem?

Describe the Diffie–Hellman key exchange system for two people. What is the
connection with the discrete logarithm problem? Why might one use this scheme rather
than just a public key system or a classical (pre-1960) coding system?

Extend the Diffie–Hellman system to n people using n(n− 1) transmitted numbers.

Part II, Paper 4
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5J Statistical Modelling

Below is a simplified 1993 dataset of US cars. The columns list index, make, model,
price (in $1000), miles per gallon, number of passengers, length and width in inches, and
weight (in pounds). The data are displayed in R as follows (abbreviated):

> cars

make model price mpg psngr length width weight

1 Acura Integra 15.9 31 5 177 68 2705

2 Acura Legend 33.9 25 5 195 71 3560

3 Audi 90 29.1 26 5 180 67 3375

4 Audi 100 37.7 26 6 193 70 3405

5 BMW 535i 30.0 30 4 186 69 3640

... ... ...

92 Volvo 240 22.7 28 5 190 67 2985

93 Volvo 850 26.7 28 5 184 69 3245

It is reasonable to assume that prices for different makes of car are independent. We model
the logarithm of the price as a linear combination of the other quantitative properties of
the cars and an error term. Write down this model mathematically. How would you
instruct R to fit this model and assign it to a variable “fit”?

R provides the following (slightly abbreviated) summary:

> summary(fit)

[...]

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.8751080 0.7687276 5.041 2.50e-06 ***

mpg -0.0109953 0.0085475 -1.286 0.201724

psngr -0.1782818 0.0290618 -6.135 2.45e-08 ***

length 0.0067382 0.0032890 2.049 0.043502 *

width -0.0517544 0.0151009 -3.427 0.000933 ***

weight 0.0008373 0.0001302 6.431 6.60e-09 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

[...]

Briefly explain the information that is being provided in each column of the table. What
are your conclusions and how would you try to improve the model?
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6A Mathematical Biology

A concentration u(x, t) obeys the differential equation

∂u

∂t
= Duxx + f(u) ,

in the domain 0 6 x 6 L , with boundary conditions u(0, t) = u(L, t) = 0 and initial
condition u(x, 0) = u0(x), and where D is a positive constant. Assume f(0) = 0 and
f ′(0) > 0. Linearising the dynamics around u = 0, and representing u(x, t) as a suitable
Fourier expansion, show that the condition for the linear stability of u = 0 can be expressed
as the following condition on the domain length

L < π

[

D

f ′(0)

]1/2

.

7D Dynamical Systems

Consider the 2-dimensional flow

ẋ = y +
1

4
x

(

1 − 2x2 − 2y2

)

, ẏ = −x+
1

2
y
(

1 − x2 − y2
)

.

Use the Poincaré–Bendixson theorem, which should be stated carefully, to obtain a domain

D in the xy-plane, within which there is at least one periodic orbit.

8E Further Complex Methods

The hypergeometric function F (a, b; c; z) can be expressed in the form

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1 − t)c−b−1 (1 − tz)−a dt ,

for appropriate restrictions on c, b, z.

Express the following integral in terms of a combination of hypergeometric functions

I(u,A) =

∫ π

2

−π

2

eit(u+1)

eit + iA
dt , |A| > 1 .

[You may use without proof that Γ(z + 1) = zΓ(z) .]
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9D Classical Dynamics

A system with one degree of freedom has Lagrangian L(q, q̇). Define the canonical

momentum p and the energy E. Show that E is constant along any classical path.

Consider a classical path qc(t) with the boundary–value data

qc(0) = qI , qc(T ) = qF , T > 0 .

Define the action Sc(qI , qF , T ) of the path. Show that the total derivative dSc/dT along

the classical path obeys
dSc

dT
= L .

Using Lagrange’s equations, or otherwise, deduce that

∂Sc

∂qF
= pF ,

∂Sc

∂T
= −E ,

where pF is the final momentum.

10D Cosmology

The linearised equation for the growth of density perturbations, δk, in an isotropic

and homogenous universe is

δ̈k + 2
ȧ

a
δ̇k +

(

cs
2 k2

a 2
− 4π Gρ

)

δk = 0 ,

where ρ is the density of matter, cs the sound speed, cs
2 = dP/dρ , and k is the comoving

wavevector and a(t) is the scale factor of the universe.

What is the Jean’s length? Discuss its significance for the growth of perturbations.

Consider a universe filled with pressure-free matter with a(t) = (t/t 0)
2/3. Compute

the resulting equation for the growth of density perturbations. Show that your equation

has growing and decaying modes and comment briefly on the significance of this fact.
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SECTION II

11G Number Theory

Let S be the set of all positive definite binary quadratic forms with integer
coefficients. Define the action of the group SL2(Z) on S, and prove that equivalent forms
under this action have the same discriminant.

Find necessary and sufficient conditions for an odd positive integer n, prime to 35,
to be properly represented by at least one of the two forms

x2 + xy + 9y2 , 3x2 + xy + 3y2 .

12F Geometry of Group Actions

Explain briefly how Möbius transformations of the Riemann sphere are extended to

give isometries of the unit ball B3 ⊂ R3 for the hyperbolic metric.

Which Möbius transformations have extensions that fix the origin in B3?

For which Möbius transformations T can we find a hyperbolic line in B3 that T maps

onto itself? For which of these Möbius transformations is there only one such hyperbolic

line?

Part II, Paper 4
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13J Statistical Modelling

Every day, Barney the darts player comes to our laboratory. We record his facial
expression, which can be either “mad”, “weird” or “relaxed”, as well as how many units
of beer he has drunk that day. Each day he tries a hundred times to hit the bull’s-eye,
and we write down how often he succeeds. The data look like this:

>

Day Beer Expression BullsEye

1 3 Mad 30

2 3 Mad 32
. . . .. . . .. . . .

60 2 Mad 37

61 4 Weird 30
. . . .. . . .. . . .

110 4 Weird 28

111 2 Relaxed 35
. . . .. . . .. . . .

150 3 Relaxed 31

Write down a reasonable model for Y1, . . . , Yn, where n = 150 and where Yi is the number
of times Barney has hit bull’s-eye on the ith day. Explain briefly why we may wish initially
to include interactions between the variables. Write the R code to fit your model.

The scientist of the above story fitted her own generalized linear model, and
subsequently obtained the following summary (abbreviated):

> summary(barney)

[...]

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.37258 0.05388 -6.916 4.66e-12 ***

Beer -0.09055 0.01595 -5.676 1.38e-08 ***

ExpressionWeird -0.10005 0.08044 -1.244 0.213570

ExpressionRelaxed 0.29881 0.08268 3.614 0.000301 ***

Beer:ExpressionWeird 0.03666 0.02364 1.551 0.120933

Beer:ExpressionRelaxed -0.07697 0.02845 -2.705 0.006825 **

[...]

Why are ExpressionMad and Beer:ExpressionMad not listed? Suppose on a particular
day, Barney’s facial expression is weird, and he drank three units of beer. Give the linear
predictor in the scientist’s model for this day.

Based on the summary, how could you improve your model? How could one fit this
new model in R (without modifying the data file)?
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14D Dynamical Systems

Let I = [ 0, 1 ] and consider continuous maps F : I → I. Give an informal outline

description of the two different bifurcations of fixed points of F that can occur.

Illustrate your discussion by considering in detail the logistic map

F (x) = µx (1 − x) ,

for µ ∈ (0, 1 +
√

6 ] .

Describe qualitatively what happens for µ ∈ (1 +
√

6, 4].

[You may assume without proof that

x− F 2(x) = x (µx− µ+ 1) (µ2x2 − µ(µ+ 1)x+ µ+ 1 ) . ]

15D Classical Dynamics

A system is described by the Hamiltonian H(q, p). Define the Poisson bracket {f, g}
of two functions f(q, p, t), g(q, p, t), and show from Hamilton’s equations that

df

dt
= {f,H} +

∂f

∂t
.

Consider the Hamiltonian

H =
1

2
(p2 + ω2q2) ,

and define

a = (p− iωq)/(2ω)1/2 , a∗ = (p + iωq)/(2ω)1/2 ,

where i =
√
−1. Evaluate {a, a} and {a, a∗}, and show that {a,H} = −iωa and

{a∗,H} = iωa∗. Show further that, when f(q, p, t) is regarded as a function of the

independent complex variables a, a∗ and of t, one has

df

dt
= iω

(

a∗
∂f

∂a∗
− a

∂f

∂a

)

+
∂f

∂t
.

Deduce that both log a∗ − iωt and log a+ iωt are constant during the motion.
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16G Logic and Set Theory

State and prove the Completeness Theorem for Propositional Logic.

[You do not need to give definitions of the various terms involved. You may assume

that the set of primitive propositions is countable. You may also assume the Deduction

Theorem.]

Explain briefly how your proof should be modified if the set of primitive propositions

is allowed to be uncountable.

17F Graph Theory

State Euler’s formula relating the number of vertices, edges and faces in a drawing

of a connected planar graph. Deduce that every planar graph has chromatic number at

most 5.

Show also that any triangle-free planar graph has chromatic number at most 4.

Suppose G is a planar graph which is minimal 5-chromatic; that is to say, χ(G) = 5

but if H is a subgraph of G with H 6= G then χ(H) < 5 . Prove that δ(G) > 5 . Does

this remain true if we drop the assumption that G is planar? Justify your answer.

[The Four Colour Theorem may not be assumed.]

18H Galois Theory

Let K be a field of characteristic 6= 2, 3 , and assume that K contains a primitive
cubic root of unity ζ. Let P ∈ K[X] be an irreducible cubic polynomial, and let α, β, γ
be its roots in the splitting field F of P over K . Recall that the Lagrange resolvent x of
P is defined as x = α+ ζβ + ζ 2 γ .

(i) List the possibilities for the group Gal(F/K), and write out the set
{σ(x) | σ ∈ Gal(F/K)} in each case.

(ii) Let y = α + ζγ + ζ 2β . Explain why x 3, y 3 must be roots of a quadratic
polynomial in K[X] . Compute this polynomial for P = X 3 + bX + c , and deduce the
criterion to identify Gal(F/K) through the element −4b 3 − 27c 2 of K .
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19F Representation Theory

Define the circle group U(1). Give a complete list of the irreducible representations
of U(1).

Define the spin group G = SU(2), and explain briefly why it is homeomorphic to
the unit 3-sphere in R4. Identify the conjugacy classes of G and describe the classification
of the irreducible representations of G. Identify the characters afforded by the irreducible
representations. You need not give detailed proofs but you should define all the terms you
use.

Let G act on the space M3(C) of 3 × 3 complex matrices by conjugation, where
A ∈ SU(2) acts by

A : M 7→ A1MA1
−1 ,

in which A1 denotes the 3 × 3 block diagonal matrix

(

A 0
0 1

)

. Show that this gives a

representation of G and decompose it into irreducibles.

20G Number Fields

Suppose that α is a zero of x 3 −x+3 and that K = Q(α) . Show that [K : Q] = 3.

Show that OK , the ring of integers in K, is OK = Z [α] .

[You may quote any general theorem that you wish, provided that you state it clearly.

Note that the discriminant of x 3 + px+ q is −4 p3 − 27q2 .]

21H Algebraic Topology

State the Snake Lemma. Explain how to define the boundary map which appears

in it, and check that it is well-defined. Derive the Mayer-Vietoris sequence from the Snake

Lemma.

Given a chain complex C, let A ⊂ C be the span of all elements in C with grading

greater than or equal to n , and let B ⊂ C be the span of all elements in C with grading

less than n . Give a short exact sequence of chain complexes relating A , B, and C. What

is the boundary map in the corresponding long exact sequence?
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22H Linear Analysis

Let X be a Banach space.

a) What does it mean for a bounded linear map T : X → X to be compact?

b) Let B(X) be the Banach space of all bounded linear maps S : X → X. Let
B0(X) be the subset of B(X) consisting of all compact operators. Show that B0(X) is a
closed subspace of B(X). Show that, if S ∈ B(X) and T ∈ B0(X), then ST, TS ∈ B0(X).

c) Let

X = ℓ2 =

{

x = (x1, x2, . . . ) : xj ∈ C and ‖x‖2
2 =

∞
∑

j=1

|xj|2 <∞
}

,

and T : X → X be defined by

(Tx)k =
xk+1

k + 1
.

Is T compact? What is the spectrum of T ? Explain your answers.

23G Algebraic Geometry

Let E ⊆ P2 be the projective curve obtained from the affine curve

y 2 = (x− λ1)(x− λ2)(x− λ3), where the λ i are distinct and λ1 λ2 λ3 6= 0 .

(i) Show there is a unique point at infinity, P∞ .

(ii) Compute div(x), div(y).

(iii) Show L (P∞) = k .

(iv) Compute l(nP∞) for all n .

[You may not use the Riemann–Roch theorem.]
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24H Differential Geometry

(i) Let S ⊂ R3 be a regular surface. Define the notions exponential map, geodesic

polar coordinates, geodesic circles.

(ii) State and prove Gauss’ lemma.

(iii) Let S be a regular surface. For fixed r > 0, and points p, q in S, let Sr(p),
Sr(q) denote the geodesic circles around p, q, respectively, of radius r. Show the following
statement: for each p ∈ S , there exists an r = r(p) > 0 and a neighborhood Up containing
p such that for all q ∈ Up , the sets Sr(p) and Sr(q) are smooth 1-dimensional manifolds
which intersect transversally. What is the cardinality mod 2 of Sr(p) ∩ Sr(q)?

25I Probability and Measure

Let (Xn : n ∈ N) be a sequence of independent normal random variables having

mean 0 and variance 1. Set Sn = X1 + . . . + Xn and Un = Sn − ⌊Sn⌋ . Thus Un is the

fractional part of Sn . Show that Un converges to U in distribution, as n→ ∞ where U is

uniformly distributed on [0, 1].

26I Applied Probability

(a) Let (Xt) be an irreducible continuous-time Markov chain on a finite or countable
state space. What does it mean to say that the chain is (i) transient, (ii) recurrent,
(iii) positive recurrent, (iv) null recurrent? What is the relation between equilibrium
distributions and properties (iii) and (iv)?

A population of microorganisms develops in continuous time; the size of the
population is a Markov chain (Xt) with states 0, 1, 2, ... Suppose Xt = n. It is known
that after a short time s , the probability that Xt increased by one is λ(n+ 1)s+ o(s) and
(if n > 1) the probability that the population was exterminated between times t and t+ s
and never revived by time t + s is µs + o(s). Here λ and µ are given positive constants.
All other changes in the value of Xt have a combined probability o(s).

(b) Write down the Q-matrix of Markov chain (Xt) and determine if (Xt) is
irreducible. Show that (Xt) is non-explosive. Determine the jump chain.

(c) Now assume that
µ = λ .

Determine whether the chain is transient or recurrent, and in the latter case whether it
is positive or null recurrent. Answer the same questions for the jump chain. Justify your
answers.
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27J Principles of Statistics

Define completeness and bounded completeness of a statistic T in a statistical
experiment.

Random variables X1, X2, X3 are generated as Xi = Θ1/2 Z + (1−Θ)1/2 Yi , where
Z, Y1, Y2, Y3 are independently standard normal N (0, 1), and the parameter Θ takes
values in (0, 1). What is the joint distribution of (X1, X2, X3) when Θ = θ? Write
down its density function, and show that a minimal sufficient statistic for Θ based on
(X1, X2, X3) is T = (T1, T2) := (

∑3
i=1X

2
i , (
∑3

i=1Xi)
2).

[Hint: You may use that if I is the n× n identity matrix and J is the n× n matrix all of

whose entries are 1, then aI + bJ has determinant an−1(a+nb), and inverse cI + dJ with

c = 1/a , d = −b/(a(a+ nb)).]

What is Eθ(T1)? Is T complete for Θ?

Let S := Prob(X2
1 6 1 | T ). Show that Eθ(S) is a positive constant c which does

not depend on θ, but that S is not identically equal to c . Is T boundedly complete for Θ?
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28J Optimization and Control

Dr Seuss’ wealth xt at time t evolves as

dx

dt
= rxt + ℓt − ct,

where r > 0 is the rate of interest earned, ℓt is his intensity of working (0 6 ℓ 6 1), and
ct is his rate of consumption. His initial wealth x0 > 0 is given, and his objective is to
maximize

∫ T

0
U(ct, ℓt) dt,

where U(c, ℓ) = cα(1− ℓ)β , and T is the (fixed) time his contract expires. The constants α
and β satisfy the inequalities 0 < α < 1, 0 < β < 1, and α+ β > 1. At all times, ct must
be non-negative, and his final wealth xT must be non-negative. Establish the following
properties of the optimal solution (x∗, c∗, ℓ∗):

(i) βc∗t = α(1 − ℓ∗t );

(ii) c∗t ∝ e−γrt, where γ ≡ (β − 1 + α)−1;

(iii) x∗t = Aert +Be−γrt − r−1 for some constants A and B.

Hence deduce that the optimal wealth is

x∗t =
(1 − e−γrT (1 + rx0))e

rt + ((1 + rx0)e
rT − 1)e−γrt

r(erT − e−γrT )
− 1

r
.

Part II, Paper 4
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29I Stochastic Financial Models

Consider a market with no riskless asset and d risky stocks where the price of stock
i ∈ {1, . . . , d} at time t ∈ {0, 1} is denoted S i

t . We assume the vector S0 ∈ R
d is not

random, and we let µ = ES1 and V = E [(S1 −µ)(S1 −µ)T ] . Assume V is not singular.

Suppose an investor has initial wealth X0 = x , which he invests in the d stocks
so that his wealth at time 1 is X1 = πTS1 for some π ∈ R

d. He seeks to minimize the
var(X1) subject to his budget constraint and the condition that EX1 = m for a given
constant m ∈ R.

Illustrate this investor’s problem by drawing a diagram of the mean-variance efficient
frontier. Write down the Lagrangian for the problem. Show that there are two vectors πA

and πB (which do not depend on the constants x and m) such that the investor’s optimal
portfolio is a linear combination of πA and πB .

Another investor with initial wealth Y0 = y seeks to maximize EU(Y1) his expected
utility of time 1 wealth, subject to his budget constraint. Assuming that S1 is Gaussian
and U(w) = −e−γw for a constant γ > 0 , show that the optimal portfolio in this case is
also a linear combination of πA and πB .

[You may use the moment generating function of the Gaussian distribution without
derivation.]

Continue to assume S1 is Gaussian, but now assume that U is increasing, concave,
and twice differentiable, and that U, U ′ and U ′′ are of exponential growth but not
necessarily of the form U(w) = −e−γw . (Recall that a function f is of exponential
growth if |f(w)| 6 ae b |w| for some constants positive constants a, b.) Prove that the
utility maximizing investor still holds a linear combination of πA and πB .

[You may use the Gaussian integration by parts formula

E [∇f(Z)] = E [Zf(Z)]

where Z = (Z1, . . . , Zd)
T is a vector of independent standard normal random variables,

and f is differentiable and of exponential growth. You may also interchange integration
and differentiation without justification.]
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30E Partial Differential Equations

a) Solve the Dirichlet problem for the Laplace equation in a disc in R
2

∆u = 0 in G = {x2 + y2 < R2} ⊆ R
2 , R > 0 ,

u = uD on ∂G ,

using polar coordinates (r, ϕ) and separation of variables, u(x, y) = R(r)Θ(ϕ). Then use
the ansatz R(r) = rα for the radial function.

b) Solve the Dirichlet problem for the Laplace equation in a square in R
2

∆u = 0 in G = [0, a] × [0, a] ,

u(x, 0) = f1(x) , u(x, a) = f2(x) , u(0, y) = f3(y) , u(a, y) = f4(y) .

31C Asymptotic Methods

(a) Consider for λ > 0 the Laplace type integral

I(λ) =

∫ b

a
f(t) e−λφ(t) dt ,

for some finite a, b ∈ R and smooth, real-valued functions f(t), φ(t). Assume that the
function φ(t) has a single minimum at t = c with a < c < b. Give an account of Laplace’s
method for finding the leading order asymptotic behaviour of I(λ) as λ → ∞ and briefly
discuss the difference if instead c = a or c = b, i.e. when the minimum is attained at the
boundary.

(b) Determine the leading order asymptotic behaviour of

I(λ) =

∫ 1

−2
cos t e−λt2 dt , (∗)

as λ→ ∞.

(c) Determine also the leading order asymptotic behaviour when cos t is replaced
by sin t in (∗).

Part II, Paper 4



17

32C Principles of Quantum Mechanics

The Hamiltonian for a quantum system in the Schrödinger picture is

H0 + V (t) ,

where H0 is independent of time. Define the interaction picture corresponding to this
Hamiltonian and derive a time evolution equation for interaction picture states.

Let |a〉 and |b〉 be orthonormal eigenstates of H0 with eigenvalues Ea and Eb

respectively. Assume V (t) = 0 for t 6 0. Show that if the system is initially, at t = 0, in
the state |a〉 then the probability of measuring it to be the state |b〉 after a time t is

1

~2

∣

∣

∣

∣

∫ t

0
dt′〈b|V (t′)|a〉e i(Eb−Ea)t′/~

∣

∣

∣

∣

2

(∗)

to order V (t)2.

Suppose a system has a basis of just two orthonormal states |1〉 and |2〉, with respect
to which

H0 = E I , V (t) = vt σ1 , t > 0 ,

where

I =

(

1 0
0 1

)

, σ1 =

(

0 1
1 0

)

.

Use (∗) to calculate the probability of a transition from state |1〉 to state |2〉 after a time
t to order v2.

Show that the time dependent Schrödinger equation has a solution

|ψ(t)〉 = exp

(

− i

~

(

Et I + 1
2vt

2 σ1

)

)

|ψ(0)〉 .

Calculate the transition probability exactly. Hence find the condition for the order v2

approximation to be valid.
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33B Applications of Quantum Mechanics

The scattering amplitude for electrons of momentum ~k incident on an atom located
at the origin is f(r̂) where r̂ = r/r. Explain why, if the atom is displaced by a position
vector a, the asymptotic form of the scattering wave function becomes

ψk(r) ∼ e ik·r + e ik·a e
ikr′

r′
f(r̂′) ∼ e ik·r + e i(k−k′)·a e

ikr

r
f(r̂) ,

where r′ = r − a, r′ = |r′|, r̂′ = r′/r′ and k = |k|, k′ = kr̂. For electrons incident on
N atoms in a regular Bravais crystal lattice show that the differential cross-section for
scattering in the direction r̂ is

dσ

dΩ
= N |f(r̂)|2 ∆(k − k′) .

Derive an explicit form for ∆(Q) and show that it is strongly peaked when Q ≈ b for b

a reciprocal lattice vector.

State the Born approximation for f(r̂) when the scattering is due to a potential
V (r). Calculate the Born approximation for the case V (r) = −a δ(r).

Electrons with de Broglie wavelength λ are incident on a target composed of many
randomly oriented small crystals. They are found to be scattered strongly through an angle
of 60◦. What is the likely distance between planes of atoms in the crystal responsible for
the scattering?
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34C Statistical Physics

(i) Let ρi be the probability that a system is in a state labelled by i with Ni particles
and energy Ei. Define

s(ρi) = −k
∑

i

ρi log ρi .

s(ρi) has a maximum, consistent with a fixed mean total number of particles N ,
mean total energy E and

∑

i ρi = 1, when ρi = ρ̄i. Let S(E,N) = s(ρ̄i) and show
that

∂S

∂E
=

1

T
,

∂S

∂N
= −µ

T
,

where T may be identified with the temperature and µ with the chemical potential.

(ii) For two weakly coupled systems 1,2 then ρi,j = ρ1,i ρ2,j and Ei,j = E1,i + E2,j,
Ni,j = N1,i +N2,j. Show that S(E,N) = S1(E1,N1)+S2(E2,N2) where, if S(E,N)
is stationary under variations in E1, E2 and N1,N2 for E = E1 +E2, N = N1 +N2

fixed, we must have T1 = T2, µ1 = µ2.

(iii) Define the grand partition function Z(T, µ) for the system in (i) and show that

k logZ = S − 1

T
E +

µ

T
N , S =

∂

∂T

(

kT logZ
)

.

(iv) For a system with single particle energy levels ǫr the possible states are labelled by
i = {nr : nr = 0, 1}, where Ni =

∑

r nr, Ei =
∑

r nrǫr and
∑

i =
∏

r

∑

nr=0,1. Show
that

ρ̄i =
∏

r

e−nr(ǫr−µ)/kT

1 + e−(ǫr−µ)/kT
.

Calculate n̄r. How is this related to a free fermion gas?

35B Electrodynamics

In a superconductor the number density of charge carriers of charge q is ns . Suppose

that there is a time-independent magnetic field described by the three-vector potential A.

Derive an expression for the superconducting current.

Explain how your answer is gauge invariant.

Suppose that for z < 0 there is a constant magnetic field B0 in a vacuum and, for

z > 0, there is a uniform superconductor. Derive the magnetic field for z > 0.
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36B General Relativity

The Schwarzschild line element is given by

ds2 = −Fdt2 + F −1dr2 + r2 (dθ2 + sin2 θ dφ2) ,

where F = 1 − rs/r and rs is the Schwarzschild radius. Obtain the equation of geodesic

motion of photons moving in the equatorial plane, θ = π/2, in the form

(dr

dτ

)2
= E2 − h2F

r2
,

where τ is proper time, and E and h are constants whose physical significance should be

indicated briefly.

Defining u = 1/r show that light rays are determined by

(du

dφ

)2
=
(1

b

)2
− u2 + rs u

3 ,

where b = h/E and rs may be taken to be small. Show that, to zeroth order in rs, a light

ray is a straight line passing at distance b from the origin. Show that, to first order in rs,

the light ray is deflected through an angle 2rs/b. Comment briefly on some observational

evidence for the result.
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37A Fluid Dynamics II

An axisymmetric incompressible Stokes flow has the Stokes stream function Ψ(R, θ)
in spherical polar coordinates (R, θ, φ). Give expressions for the components uR, uθ of the
flow field in terms of Ψ. Show that the equation satisfied by Ψ is

D2(D2Ψ) = 0 , where D2 =
∂2

∂R2
+

sin θ

R2

∂

∂θ

(

1

sin θ

∂

∂θ

)

. (∗)

Fluid is contained between the two spheres R = a,R = b, with b ≫ a. The fluid velocity
vanishes on the outer sphere, while on the inner sphere uR = U cos θ, uθ = 0. It is assumed
that Stokes flow applies.

(i) Show that the Stokes stream function,

Ψ(R, θ) = a2U sin2 θ

(

A
( a

R

)

+B

(

R

a

)

+ C

(

R

a

)2

+D

(

R

a

)4
)

,

is the general solution of (∗) proportional to sin2 θ and write down the conditions on
A,B,C,D that allow all the boundary conditions to be satisfied.

(ii) Now let b → ∞, with |u| → 0 as R → ∞ . Show that A = B = 1/4 with
C = D = 0.

(iii) Show that when b/a is very large but finite, then the coefficients have the
approximate form

C ≈ − 3

8

a

b
, D ≈ 1

8

a3

b3
, A ≈ 1

4
− 3

16

a

b
, B ≈ 1

4
+

9

16

a

b
.
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38A Waves

Starting from the equations for one-dimensional unsteady flow of an inviscid

compressible fluid, show that it is possible to find Riemann invariants u ± Q that are

constant on characteristics C± given by

dx

dt
= u± c ,

where u(x, t) is the velocity of the fluid and c(x, t) is the local speed of sound. Show

that Q = 2(c − c0)/(γ − 1) for the case of a perfect gas with adiabatic equation of state

p = p0(ρ/ρ0)
γ , where p0 , ρ0 and γ are constants, γ > 1 and c = c0 when ρ = ρ0.

Such a gas initially occupies the region x > 0 to the right of a piston in an infinitely

long tube. The gas is initially uniform and at rest with density ρ0 . At t = 0 the piston

starts moving to the left at a constant speed V . Assuming that the gas keeps up with

the piston, find u(x, t) and c(x, t) in each of the three distinct regions that are defined by

families of C+ characteristics.

Now assume that the gas does not keep up with the piston. Show that the gas

particle at x = x0 when t = 0 follows a trajectory given, for t > x0/c0, by

x(t) =
γ + 1

γ − 1

(

c0t

x0

)2/(γ+1)

x0 −
2 c0t

γ − 1
.

Deduce that the velocity of any given particle tends to −2 c0/(γ − 1) as t → ∞.

39A Numerical Analysis

An s-stage explicit Runge–Kutta method of order p, with constant step size h > 0,
is applied to the differential equation y′ = λ y, t > 0.

(a) Prove that
yn+1 = Ps(λh) yn .

where Ps is a polynomial of degree s.

(b) Prove that the order p of any s-stage explicit Runge–Kutta method satisfies the
inequality p 6 s and, for p = s, write down an explicit expression for Ps.

(c) Prove that no explicit Runge–Kutta method can be A-stable.

END OF PAPER
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