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SECTION I

1G Number Theory

(i) Let N be an integer > 2 . Define the addition and multiplication on the set of

congruence classes modulo N .

(ii) Let an integer M > 1 have expansion to the base 10 given by a s . . . a 0 . Prove

that 11 divides M if and only if
∑ s

i=0 (−1)ia i is divisible by 11.

2F Topics in Analysis

Let (X, d) be a non-empty complete metric space with no isolated points, G an open
dense subset of X and E a countable dense subset of X.

(i) Stating clearly any standard theorem you use, prove that G\E is a dense subset of X.

(ii) If G is only assumed to be uncountable and dense in X, does it still follow that G \E
is dense in X? Justify your answer.

3F Geometry of Group Actions

Explain what it means to say that G is a crystallographic group of isometries of the

Euclidean plane and that G is its point group. Prove the crystallographic restriction: a

rotation in such a point group G must have order 1, 2, 3, 4 or 6.

4H Coding and Cryptography

Explain what is meant by saying that a binary code C is a decodable code with

words Cj of length lj for 1 6 j 6 n. Prove the MacMillan inequality which states that,

for such a code,
n∑

j=1

2−lj 6 1 .

Part II, Paper 1
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5J Statistical Modelling

Consider a binomial generalised linear model for data y1, ..., yn modelled as realisa-
tions of independent Yi ∼ Bin(1, µi) and logit link µi = eβxi/(1 + eβxi) for some known
constants xi, i = 1, . . . , n, and unknown scalar parameter β. Find the log-likelihood for
β, and the likelihood equation that must be solved to find the maximum likelihood esti-
mator β̂ of β. Compute the second derivative of the log-likelihood for β, and explain the
algorithm you would use to find β̂.

6A Mathematical Biology

A delay model for a population Nt consists of

Nt+1 =
rNt

1 + bN 2
t−1

,

where t is discrete time, r > 1 and b > 0. Investigate the linear stability about the

positive steady state N∗. Show that r = 2 is a bifurcation value at which the steady state

bifurcates to a periodic solution of period 6.

7D Dynamical Systems

Consider the 2-dimensional flow

ẋ = −µx+ y , ẏ =
x2

1 + x2
− νy ,

where x(t) and y(t) are non-negative, the parameters µ and ν are strictly positive and

µ 6= ν. Sketch the nullclines in the x, y plane. Deduce that for µ < µc (where µc is to be

determined) there are three fixed points. Find them and determine their type.

Sketch the phase portrait for µ < µc and identify, qualitatively on your sketch,

the stable and unstable manifolds of the saddle point. What is the final outcome of this

system?
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8E Further Complex Methods

Let the complex-valued function f(z) be analytic in the neighbourhood of the point
z0 and let u(x, y) be the real part of f(z). Show that

f(z) = 2u

(
z + z̄0

2
,
z − z̄0

2i

)
− f(z0) , z = x+ iy .

Hence find the analytic function whose real part is

e−y[x cos x− y sinx ] .

9D Classical Dynamics

A system with coordinates qi, i = 1, . . . , n, has the Lagrangian L(qi, q̇i). Define the
energy E.

Consider a charged particle, of mass m and charge e, moving with velocity v in the
presence of a magnetic field B = ∇ × A. The usual vector equation of motion can be
derived from the Lagrangian

L =
1

2
m v2 + e v ·A ,

where A is the vector potential.

The particle moves in the presence of a field such that

A = (0, r g(z), 0) , g(z) > 0 ,

referred to cylindrical polar coordinates (r, φ, z). Obtain two constants of the motion, and
write down the Lagrangian equations of motion obtained by variation of r, φ and z.

Show that, if the particle is projected from the point (r0, φ0, z0) with velocity
(0,−2 (e/m) r0 g(z0), 0), it will describe a circular orbit provided that g′(z0) = 0.

Part II, Paper 1
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10D Cosmology

What is meant by the expression ‘Hubble time’?

For a(t) the scale factor of the universe and assuming a(0) = 0 and a(t0) = 1,

where t0 is the time now, obtain a formula for the size of the particle horizon R0 of the

universe.

Taking

a(t) = (t/t0)
α ,

show that R0 is finite for certain values of α. What might be the physically relevant values

of α? Show that the age of the universe is less than the Hubble time for these values of α.
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SECTION II

11F Geometry of Group Actions

For which circles Γ does inversion in Γ interchange 0 and ∞?

Let Γ be a circle that lies entirely within the unit disc D = {z ∈ C : |z| < 1}. Let K

be inversion in this circle Γ, let J be inversion in the unit circle, and let T be the Möbius

transformation K ◦ J . Show that, if z0 is a fixed point of T , then

J(z0) = K(z0)

and this point is another fixed point of T .

By applying a suitable isometry of the hyperbolic plane D, or otherwise, show that

Γ is the set of points at a fixed hyperbolic distance from some point of D.

12H Coding and Cryptography

State and prove Shannon’s theorem for the capacity of a noisy memoryless binary
symmetric channel, defining the terms you use.

[You may make use of any form of Stirling’s formula and any standard theorems from
probability, provided that you state them exactly.]

13J Statistical Modelling

Consider a generalised linear model with parameter β⊤ partitioned as (β⊤0 , β
⊤
1 ),

where β0 has p0 components and β1 has p − p0 components, and consider testing
H0 : β1 = 0 against H1 : β1 6= 0 . Define carefully the deviance, and use it to construct a
test for H0 .

[You may use Wilks’ theorem to justify this test, and you may also assume that the
dispersion parameter is known.]

Now consider the generalised linear model with Poisson responses and the canonical
link function with linear predictor η = (η1, ..., ηn)T given by ηi = x⊤i β , i = 1, ..., n ,
where x i1 = 1 for every i . Derive the deviance for this model, and argue that it may be
approximated by Pearson’s χ 2 statistic.
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14E Further Complex Methods

Consider the partial differential equation for u(x, t),

∂u

∂t
=
∂2u

∂x2
+ β

∂u

∂x
, β > 0 , 0 < x <∞ , t > 0 , (∗)

where u(x, t) is required to vanish rapidly for all t as x→ ∞.

(i) Verify that the PDE (∗) can be written in the following form

(
e−ikx+(k2−iβk)tu

)

t
=

(
e−ikx+(k2−iβk)t

[
(ik + β)u+ ux

])

x
.

(ii) Define û(k, t) =
∫ ∞
0 e−ikx u(x, t) dx, which is analytic for Im k 6 0. Determine

û(k, t) in terms of û(k, 0) and also the functions f0, f1 defined by

f0(ω, t) =

∫ t

0
e−ω(t−t′) u(0, t′) dt′ , f1(ω, t) =

∫ t

0
e−ω(t−t′) ux(0, t′) dt′ .

(iii) Show that in the inverse transform expression for u(x, t) the integrals involving
f0, f1 may be transformed to the contour

L =
{
k ∈ C : Re (k2 − iβk) = 0, Im k > β

}
.

By considering û(k′, t) where k′ = −k + iβ and k ∈ L, show that it is possible to obtain
an equation which allows f1 to be eliminated.

(iv) Obtain an integral expression for the solution of (∗) subject to the the initial-
boundary value conditions of given u(x, 0), u(0, t).

[You need to show that ∫

L

eikx û(k′, t) dk = 0 , x > 0 ,

by an appropriate closure of the contour which should be justified.]
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15D Cosmology

A star has pressure P (r) and mass density ρ(r), where r is the distance from the

centre of the star. These quantities are related by the pressure support equation

P ′ = − Gmρ

r 2
,

where P ′ = dP/dr and m(r) is the mass within radius r. Use this to derive the virial

theorem

Egrav = −3 〈P 〉V ,

where Egrav is the total gravitational potential energy and 〈P 〉 the average pressure.

The total kinetic energy of a spherically symmetric star is related to 〈P 〉 by

Ekin = α 〈P 〉V ,

where α is a constant. Use the virial theorem to determine the condition on α for

gravitational binding. By considering the relation between pressure and ‘internal energy’

U for an ideal gas, determine α for the cases of a) an ideal gas of non-relativistic particles,

b) an ideal gas of ultra-relativistic particles.

Why does your result imply a maximum mass for any star? Briefly explain what is

meant by the Chandrasekhar limit.

A white dwarf is in orbit with a companion star. It slowly accretes matter from the

other star until its mass exceeds the Chandrasekhar limit. Briefly explain its subsequent

evolution.

16G Logic and Set Theory

Show that ℵ 2
α = ℵα for all α .

An infinite cardinal m is called regular if it cannot be written as a sum of fewer than

m cardinals each of which is smaller than m. Prove that ℵ 0 and ℵ1 are regular.

Is ℵ2 regular? Is ℵω regular? Justify your answers.
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17F Graph Theory

(a) Define the Ramsey number R(s). Show that for all integers s > 2 the Ramsey

number R(s) exists and that R(s) 6 4s.

(b) For any graph G, let R(G) denote the least positive integer n such that in any

red-blue colouring of the edges of the complete graph Kn there must be a monochromatic

copy of G.

(i) How do we know that R(G) exists for every graph G?

(ii) Let s be a positive integer. Show that, whenever the edge of K2s are red-blue

coloured, there must be a monochromatic copy of the complete bipartite graph

K1,s.

(iii) Suppose s is odd. By exhibiting a suitable colouring of K2s−1, show that

R(K1,s) = 2s .

(iv) Suppose instead s is even. What is R(K1,s)? Justify your answer.

18H Galois Theory

Let Fq be a finite field with q elements and Fq its algebraic closure.

(i) Give a non-zero polynomial P (X) in Fq [X1, . . . ,Xn] such that

P (α1, . . . , αn) = 0 for all α1, . . . , αn ∈ Fq .

(ii) Show that every irreducible polynomial P (X) of degree n > 0 in Fq[X] can be

factored in Fq[X] as
(
X−α

)(
X−α q

)(
X−α q 2) · · ·

(
X−α q n−1)

for some α ∈ Fq . What
is the splitting field and the Galois group of P over Fq?

(iii) Let n be a positive integer and Φn(X) be the n-th cyclotomic polynomial.
Recall that if K is a field of characteristic prime to n , then the set of all roots of Φn in K
is precisely the set of all primitive n-th roots of unity in K . Using this fact, prove that if
p is a prime number not dividing n , then p divides Φn(x) in Z for some x ∈ Z if and only
if p = an+ 1 for some integer a . Write down Φn explicitly for three different values of n
larger than 2, and give an example of x and p as above for each n .
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19F Representation Theory

(i) Let N be a normal subgroup of the finite group G. Without giving detailed
proofs, define the process of lifting characters from G/N to G. State also the orthogonality
relations for G.

(ii) Let a, b be the following two permutations in S12,

a = (1 2 3 4 5 6)(7 8 9 10 11 12) ,

b = (1 7 4 10)(2 12 5 9)(3 11 6 8) ,

and let G = 〈a, b〉 , a subgroup of S12 . Prove that G is a group of order 12 and list the
conjugacy classes of G. By identifying a normal subgroup of G of index 4 and lifting
irreducible characters, calculate all the linear characters of G. Calculate the complete
character table of G. By considering 6th roots of unity, find explicit matrix representations
affording the non-linear characters of G.

20G Number Fields

Suppose that m is a square-free positive integer, m > 5 , m 6≡ 1 (mod 4) . Show

that, if the class number of K = Q(
√−m ) is prime to 3 , then x3 = y2 +m has at most

two solutions in integers. Assume the m is even.

21H Algebraic Topology

State the path lifting and homotopy lifting lemmas for covering maps. Suppose that

X is path connected and locally path connected, that p1 : Y1 → X and p2 : Y2 → X are cov-

ering maps, and that Y1 and Y2 are simply connected. Using the lemmas you have stated,

but without assuming the correspondence between covering spaces and subgroups of π1,

prove that Y1 is homeomorphic to Y2.
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22H Linear Analysis

a) State and prove the Banach–Steinhaus Theorem.

[You may use the Baire Category Theorem without proving it.]

b) Let X be a (complex) normed space and S ⊂ X. Prove that if {f(x) : x ∈ S} is
a bounded set in C for every linear functional f ∈ X∗ then there exists K > 0 such that
‖x‖ 6 K for all x ∈ S.

[You may use here the following consequence of the Hahn–Banach Theorem without
proving it: for a given x ∈ X, there exists f ∈ X∗ with ‖f‖ = 1 and |f(x)| = ‖x‖.]

c) Conclude that if two norms ‖.‖1 and ‖.‖2 on a (complex) vector space V are not
equivalent, there exists a linear functional f : V → C which is continuous with respect to
one of the two norms, and discontinuous with respect to the other.

23G Riemann Surfaces

Given a lattice Λ ⊂ C, we may define the corresponding Weierstrass ℘-function
to be the unique even Λ-periodic elliptic function ℘ with poles only on Λ and for which
℘(z) − 1/z2 → 0 as z → 0. For w 6∈ Λ , we set

f(z) = det




1 1 1

℘ (z) ℘ (w) ℘ (−z − w)
℘′(z) ℘′(w) ℘′(−z − w)



 ,

an elliptic function with periods Λ . By considering the poles of f , show that f has valency
at most 4 (i.e. is at most 4 to 1 on a period parallelogram).

If w 6∈ 1
3 Λ , show that f has at least six distinct zeros. If w ∈ 1

3 Λ , show that f
has at least four distinct zeros, at least one of which is a multiple zero. Deduce that the
meromorphic function f is identically zero.

If z1, z2, z3 are distinct non-lattice points in a period parallelogram such that
z1 + z2 + z3 ∈ Λ , what can be said about the points (℘(zi), ℘

′(zi)) ∈ C2 (i = 1, 2, 3)?
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24G Algebraic Geometry

(i) Let X = {(x, y) ∈ C 2 | x 2 = y 3}. Show that X is birational to A1, but not

isomorphic to it.

(ii) Let X be an affine variety. Define the dimension of X in terms of the tangent

spaces of X .

(iii) Let f ∈ k [x1, . . . , xn] be an irreducible polynomial, where k is an algebraically

closed field of arbitrary characteristic. Show that dim Z(f) = n− 1 .

[You may assume the Nullstellensatz.]

25H Differential Geometry

(i) State the definition of smooth manifold with boundary and define the notion
of boundary. Show that the boundary ∂X is a manifold (without boundary) with
dim ∂X = dim X − 1 .

(ii) Let 0 < a < 1 and let x1 , x2 , x3 , x4 denote Euclidean coordinates on R4.
Show that the set

X = {x 2
1 +x 2

2 +x 2
3 −x 2

4 6 a} ∩ {x 2
1 +x 2

2 +x 2
3 +x 2

4 = 1} ∩ {x 2
1 +2x 2

2 +x 2
3 +x 2

4 = 3/2}

is a manifold with boundary and compute its dimension. You may appeal to standard
results concerning regular values of smooth functions.

(iii) Determine if the following statements are true or false, giving reasons:

a. If X and Y are manifolds, f : X → Y smooth and Z ⊂ Y a submanifold of
codimension r such that f is not transversal to Z, then f−1(Z) is not a submanifold
of codimension r in X.

b. If X and Y are manifolds and f : X → Y is smooth, then the set of regular values
of f is open in Y .

c. If X and Y are manifolds and f : X → Y is smooth then the set of critical points
is of measure 0 in X.
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26I Probability and Measure

State Carathéodory’s extension theorem. Define all terms used in the statement.

Let A be the ring of finite unions of disjoint bounded intervals of the form

A =

m⋃

i=1

(ai, bi]

where m ∈ Z
+ and a1 < b1 < . . . < am < bm . Consider the set function µ defined on A

by

µ(A) =

m∑

i=1

(bi − ai) .

You may assume that µ is additive. Show that for any decreasing sequence (Bn : n ∈ N)

in A with empty intersection we have µ(Bn) → 0 as n→ ∞ .

Explain how this fact can be used in conjunction with Carathéodory’s extension

theorem to prove the existence of Lebesgue measure.
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27I Applied Probability

(a) Define what it means to say that π is an equilibrium distribution for a Markov
chain on a countable state space with Q-matrix Q = (q ij), and give an equation which
is satisfied by any equilibrium distribution. Comment on the possible non-uniqueness of
equilibrium distributions.

(b) State a theorem on convergence to an equilibrium distribution for a continuous-
time Markov chain.

A continuous-time Markov chain (Xt, t > 0) has three states 1, 2, 3 and the Q-
matrix Q = (q ij) is of the form

Q =




−λ1 λ1/2 λ1/2
λ2/2 −λ2 λ2/2
λ3/2 λ3/2 −λ3



 ,

where the rates λ1, λ2, λ3 ∈ [ 0,∞) are not all zero.

[Note that some of the λi may be zero, and those cases may need special treatment.]

(c) Find the equilibrium distributions of the Markov chain in question. Specify the
cases of uniqueness and non-uniqueness.

(d) Find the limit of the transition matrix P (t) = exp(tQ) when t→ ∞.

(e) Describe the jump chain (Yn) and its equilibrium distributions. If P̂ is the jump
probability matrix, find the limit of P̂ n as n→ ∞.

28J Principles of Statistics

The distribution of a random variable X is obtained from the binomial distribution
B(n; Π) by conditioning on X > 0; here Π ∈ (0, 1) is an unknown probability parameter
and n is known. Show that the distributions of X form an exponential family and identify
the natural sufficient statistic T , natural parameter Φ, and cumulant function k(φ). Using
general properties of the cumulant function, compute the mean and variance of X when
Π = π . Write down an equation for the maximum likelihood estimate Π̂ of Π and explain
why, when Π = π, the distribution of Π̂ is approximately normal N (π, π(1 − π)/n) for
large n.

Suppose we observe X = 1 . It is suggested that, since the condition X > 0 is
then automatically satisfied, general principles of inference require that the inference to
be drawn should be the same as if the distribution of X had been B(n; Π) and we had
observed X = 1 . Comment briefly on this suggestion.

Part II, Paper 1
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29I Stochastic Financial Models

What is a Brownian motion? State the reflection principle for Brownian motion.

Let W = (Wt)t >0 be a Brownian motion. Let M = max 0 6t 61Wt . Prove

P(M > x, W1 6 x− y) = P(M > x, W1 > x+ y)

for all x, y > 0 . Hence, show that the random variables M and |W1| have the same
distribution.

Find the density function of the random variable R = W1/M .
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30E Partial Differential Equations

(a) Solve by using the method of characteristics

x1
∂

∂x1
u+ 2x2

∂

∂x2
u = 5u , u(x1, 1) = g(x1) ,

where g : R → R is continuous. What is the maximal domain in R2 in which u is a solution
of the Cauchy problem?

(b) Prove that the function

u(x, t) =






0 , x < 0 , t > 0 ,
x/t , 0 < x < t , t > 0 ,
1 , x > t > 0 ,

is a weak solution of the Burgers equation

∂

∂t
u+

1

2

∂

∂x
u2 = 0 , x ∈ R, t > 0 , (∗)

with initial data

u(x, 0) =

{
0 , x < 0 ,
1 , x > 0 .

(c) Let u = u(x, t), x ∈ R, t > 0 be a piecewise C1-function with a jump
discontinuity along the curve

Γ : x = s(t)

and let u solve the Burgers equation (∗) on both sides of Γ. Prove that u is a weak solution
of (1) if and only if

ṡ(t) =
1

2
(ul(t) + ur(t))

holds, where ul(t), ur(t) are the one-sided limits

ul(t) = lim
xրs(t)−

u(x, t) , ur(t) = lim
xցs(t)+

u(x, t) .

[Hint: Multiply the equation by a test function φ ∈ C∞
0 (R × [0,∞)), split the integral

appropriately and integrate by parts. Consider how the unit normal vector along Γ can be

expressed in terms of ṡ.]
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31C Asymptotic Methods

For λ > 0 let

I(λ) =

∫ b

0
f(x) e−λx dx , with 0 < b <∞ .

Assume that the function f(x) is continuous on 0 < x 6 b, and that

f(x) ∼ xα
∞∑

n=0

an x
nβ,

as x→ 0+ , where α > −1 and β > 0.

(a) Explain briefly why in this case straightforward partial integrations in general
cannot be applied for determining the asymptotic behaviour of I(λ) as λ→ ∞.

(b) Derive with proof an asymptotic expansion for I(λ) as λ→ ∞.

(c) For the function

B(s, t) =

∫ 1

0
us−1 (1 − u)t−1 du , s, t > 0 ,

obtain, using the substitution u = e−x, the first two terms in an asymptotic expansion as
s→ ∞. What happens as t→ ∞?

[Hint: The following formula may be useful

Γ(y) =

∫ ∞

0
xy−1 e−x dt , for x > 0 . ]
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32E Integrable Systems

Define a Poisson structure on an open set U ⊂ Rn in terms of an anti-symmetric
matrix ωab : U −→ R , where a, b = 1, · · · , n. By considering the Poisson brackets of the
coordinate functions xa show that

n∑

d=1

(
ωdc ∂ ω

ab

∂ xd
+ ωdb ∂ ω

ca

∂ xd
+ ωda ∂ ω

bc

∂ xd

)
= 0 .

Now set n = 3 and consider ωab =
∑3

c=1 ε
abc xc, where εabc is the totally

antisymmetric symbol on R3 with ε123 = 1. Find a non–constant function f : R3 −→ R

such that
{f, xa} = 0 , a = 1, 2, 3 .

Consider the Hamiltonian

H(x1, x2, x3) =
1

2

3∑

a,b=1

Mab xa xb ,

where Mab is a constant symmetric matrix and show that the Hamilton equations of
motion with ωab =

∑3
c=1 ε

abc xc are of the form

ẋa =
3∑

b, c=1

Qabc xb xc ,

where the constants Qabc should be determined in terms of Mab.
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33C Principles of Quantum Mechanics

Two states |j1 m1〉1, |j2 m2〉2, with angular momenta j1, j2, are combined to form
states |J M〉 with total angular momentum

J = |j1 − j2|, |j1 − j2| + 1 , . . . , j1 + j2 .

Write down the state with J = M = j1 + j2 in terms of the original angular momentum
states. Briefly describe how the other combined angular momentum states may be found
in terms of the original angular momentum states.

If j1 = j2 = j, explain why the state with J = 0 must be of the form

|0 0〉 =

j∑

m=−j

αm|j m〉1|j −m〉2 .

By considering J+|0 0〉, determine a relation between αm+1 and αm, hence find αm .

If the system is in the state |j j〉1|j −j〉2 what is the probability, written in terms
of j, of measuring the combined total angular momentum to be zero?

[Standard angular momentum states |j m〉 are joint eigenstates of J2 and J3, obeying

J±|j m〉 =
√

(j ∓m)(j ±m+ 1) |j m±1〉 .

Units in which ~ = 1 have been used throughout.]
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34B Applications of Quantum Mechanics

Give an account of the variational principle for establishing an upper bound on the
ground-state energy, E0, of a particle moving in a potential V (x) in one dimension.

Explain how an upper bound on the energy of the first excited state can be found
in the case that V (x) is a symmetric function.

A particle of mass 2m = ~2 moves in the potential

V (x) = −V0 e
−x2

, V0 > 0 .

Use the trial wavefunction
ψ(x) = e−

1

2
ax2

,

where a is a positive real parameter, to establish the upper bound E0 6 E(a) for the
energy of the ground state, where

E(a) =
1

2
a− V0

√
a√

1 + a
.

Show that, for a > 0, E(a) has one zero and find its position.

Show that the turning points of E(a) are given by

(1 + a)3 =
V 2

0

a
,

and deduce that there is one turning point in a > 0 for all V0 > 0.

Sketch E(a) for a > 0 and hence deduce that V (x) has at least one bound state for
all V0 > 0.

For 0 < V0 ≪ 1 show that

−V0 < E0 6 ǫ(V0) ,

where ǫ(V0) = − 1
2 V

2
0 + O(V 4

0 ).

[You may use the result that
∫ ∞
−∞ e−bx2

dx =
√

π
b

for b > 0.]
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35B Electrodynamics

The vector potential Aµ is determined by a current density distribution jµ in the

gauge ∂µA
µ = 0 by

�Aµ = −µ 0 j
µ , � = − ∂2

∂t2
+ ∇2 ,

in units where c = 1.

Describe how to justify the result

Aµ(x, t) =
µ0

4π

∫
d 3x′

jµ(x′, t′)

|x − x′| , t′ = t− |x − x′| .

A plane square loop of thin wire, edge lengths l, has its centre at the origin and lies

in the (x, y) plane. For t < 0, no current is flowing in the loop, but at t = 0 a constant

current I is turned on.

Find the vector potential at the point (0, 0, z) as a function of time due to a single

edge of the loop.

What is the electric field due to the entire loop at (0, 0, z) as a function of time?

Give a careful justification of your answer.

36B General Relativity

Consider a spacetime M with a metric gab(x
c) and a corresponding connection Γa

bc.

Write down the differential equation satisfied by a geodesic xa(λ), where λ is an affine

parameter.

Show how the requirement that

δ

∫
gab(x

c)
d

dλ
xa(λ)

d

dλ
xb(λ) dλ = 0 ,

where δ denotes variation of the path, gives the geodesic equation and determines Γa
bc.

Show that the timelike geodesics for the 2–manifold with line element

ds2 = t−2 (dx2 − dt2)

are given by

t2 = x2 + αx+ β ,

where α and β are constants.
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37A Fluid Dynamics II

Write down the Navier-Stokes equation for the velocity u(x, t) of an incompressible
viscous fluid of density ρ and kinematic viscosity ν. Cast the equation into dimensionless
form. Define rectilinear flow, and explain why the spatial form of any steady rectilinear
flow is independent of the Reynolds number.

(i) Such a fluid is contained between two infinitely long plates at y = 0, y = a. The
lower plate is at rest while the upper plate moves at constant speed U in the x direction.
There is an applied pressure gradient dp/dx = −Gρν in the x direction. Determine the
flow field.

(ii) Now there is no applied pressure gradient, but baffles are attached to the lower
plate at a distance L from each other (L ≫ a), lying between the plates so as to prevent
any net volume flux in the x direction. Assuming that far from the baffles the flow is
essentially rectilinear, determine the flow field and the pressure gradient in the fluid.

38A Waves

Derive the wave equation governing the velocity potential φ for linearized sound

waves in a compressible inviscid fluid. How is the pressure disturbance related to the

velocity potential?

A semi-infinite straight tube of uniform cross-section is aligned along the positive

x-axis with its end at x = −L. The tube is filled with fluid of density ρ1 and sound speed

c1 in −L < x < 0 and with fluid of density ρ2 and sound speed c2 in x > 0 . A piston at

the end of the tube performs small oscillations such that its position is x = −L+ ǫ e iωt,

with ǫ≪ L and ǫ ω ≪ c1, c2. Show that the complex amplitude of the velocity potential

in x > 0 is

−ǫ c1
(
c1
c2

cos
ωL

c1
+ i

ρ2

ρ1
sin

ωL

c1

)−1

.

Calculate the time-averaged acoustic energy flux in x > 0. Comment briefly on the

variation of this result with L for the particular case ρ2 ≪ ρ1 and c2 = O(c1).
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39A Numerical Analysis

(a) State the Householder–John theorem and explain its relation to the convergence
analysis of splitting methods for solving a system of linear equations Ax = b with a positive
definite matrix A.

(b) Describe the Jacobi method for solving a system Ax = b, and deduce from the
above theorem that if A is a symmetric positive definite tridiagonal matrix,

A =





a1 c1
c1 a2 c2 0

. . .
. . .

. . .

0 cn−2 an−1 cn−1

cn−1 an




,

then the Jacobi method converges.

[Hint: At the last step, you may find it useful to consider two vectors x = (x1, x2, . . . , xn)
and y = ((−1)x1, (−1)2x2, . . . , (−1)nxn).]

END OF PAPER
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