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SECTION I

1F Number Theory

Prove Legendre’s formula relating π(x) and π(
√
x) for any positive real number x.

Use this formula to compute π(48).

2F Topics in Analysis

State Brouwer’s fixed point theorem for a triangle in two dimensions.

Let A = (aij) be a 3 × 3 matrix with real positive entries and such that all its
columns are non-zero vectors. Show that A has an eigenvector with positive entries.

3G Geometry of Group Actions

Let Γ be a circle on the Riemann sphere. Explain what it means to say that two
points of the sphere are inverse points for the circle Γ. Show that, for each point z on the
Riemann sphere, there is a unique point z′ with z, z′ inverse points. Define inversion in Γ.

Prove that the composition of an even number of inversions is a Möbius transfor-
mation.

4G Coding and Cryptography

What is a linear feedback shift register? Explain the Berlekamp–Massey method
for recovering the feedback polynomial of a linear feedback shift register from its output.
Illustrate in the case when we observe output

1 0 1 0 1 1 0 0 1 0 0 0 . . . .
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5I Statistical Modelling

Consider the normal linear model Y = Xβ + ε in vector notation, where

Y =

 Y1
...
Yn

 , X =

xT
1
...
xT

n

 , β =

 β1
...
βp

 , ε =

 ε1
...
εn

 , εi ∼ i.i.d. N(0, σ2),

where xT
i = (xi1, . . . , xip) is known and X is of full rank (p < n). Give expressions for

maximum likelihood estimators β̂ and σ̂2 of β and σ2 respectively, and state their joint
distribution.

Suppose that there is a new pair (x∗, y∗), independent of (x1, y1), . . . , (xn, yn),
satisfying the relationship

y∗ = x∗Tβ + ε∗, where ε∗ ∼ N(0, σ2).

We suppose that x∗ is known, and estimate y∗ by ỹ = x∗Tβ̂. State the distribution of

ỹ − y∗

σ̃τ
, where σ̃2 =

n

n− p
σ̂2 and τ2 = x∗T(XTX)−1x∗ + 1.

Find the form of a (1− α)–level prediction interval for y∗.

6B Mathematical Biology

The non-dimensional equations for two competing populations are

du

dt
= u(1− υ)− ε1u

2,

dυ

dt
= α

[
υ(1− u)− ε2υ

2
]
.

Explain the meaning of each term in these equations.

Find all the fixed points of this system when α > 0, 0 < ε1 < 1 and 0 < ε2 < 1,
and investigate their stability.

Paper 4 [TURN OVER
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7E Dynamical Systems

By considering the binary representation of the sawtooth map, F (x) = 2x [mod 1]
for x ∈ [0, 1), show that:

(i) F has sensitive dependence on initial conditions on [0, 1).

(ii) F has topological transitivity on [0, 1).

(iii) Periodic points are dense in [0, 1).

Find all the 4-cycles of F and express them as fractions.

8B Further Complex Methods

The hypergeometric function F (a, b; c; z) is defined by

F (a, b; c; z) = K

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt

where |arg(1− tz)| < π and K is a constant determined by the condition F (a, b; c; 0) = 1.

(i) Express K in terms of Gamma functions.

(ii) By considering the nth derivative F (n)(a, b; c; 0), show that F (a, b; c; z) = F (b, a; c; z).

Paper 4
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9C Classical Dynamics

(a) Show that the principal moments of inertia for the oblate spheroid of mass M
defined by

(x2
1 + x2

2)
a2

+
x2

3

a2(1− e2)
6 1

are given by (I1, I2, I3) = 2
5Ma2 (1− 1

2e
2, 1− 1

2e
2, 1). Here a is the semi-major

axis and e is the eccentricity.

[You may assume that a sphere of radius a has principal moments of inertia 2
5Ma2.]

(b) The spheroid in part (a) rotates about an axis that is not a principal axis. Euler’s
equations governing the angular velocity (ω1, ω2, ω3) as viewed in the body frame
are

I1
dω1

dt
= (I2 − I3)ω2ω3 ,

I2
dω2

dt
= (I3 − I1)ω3ω1 ,

and
I3
dω3

dt
= (I1 − I2)ω1ω2 .

Show that ω3 is constant. Show further that the angular momentum vector
precesses around the x3 axis with period

P =
2π(2− e2)
e2ω3

.
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10A Cosmology

The equation governing density perturbation modes δk(t) in a matter-dominated
universe (with a(t) = (t/t0)2/3) is

δ̈k + 2
ȧ

a
δ̇k −

3
2

(
ȧ

a

)2

δk = 0 ,

where k is the comoving wavevector. Find the general solution for the perturbation,
showing that there is a growing mode such that

δk(t) ≈ a(t)
a(ti)

δk(ti) (t� ti) .

Show that the physical wavelength corresponding to the comoving wavenumber k = |k|
crosses the Hubble radius cH−1 at a time tk given by

tk
t0

=
(
k0

k

)3

, where k0 =
2π

cH−1
0

.

According to inflationary theory, the amplitude of the variance at horizon-crossing is
constant, that is, 〈|δk(tk)|2〉 = AV −1/k3 where A and V (the volume) are constants.
Given this amplitude and the results obtained above, deduce that the power spectrum
today takes the form

P (k) ≡ V 〈|δk(t0)|2〉 =
A

k4
0

k .
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SECTION II

11F Number Theory

Let p be a prime number, and let f(x) be a polynomial with integer coefficients,
whose leading coefficient is not divisible by p. Prove that the congruence

f(x) ≡ 0 (mod p)

has at most d solutions, where d is the degree of f(x).

Deduce that all coefficients of the polynomial

xp−1 − 1−
(
(x− 1)(x− 2) · · · (x− p+ 1)

)
must be divisible by p, and prove that:

(i) (p− 1)! + 1 ≡ 0 (mod p);

(ii) if p is odd, the numerator of the fraction

up = 1 +
1
2

+ · · ·+ 1
p− 1

is divisible by p.

Assume now that p > 5. Show by example that (i) cannot be strengthened to
(p− 1)! + 1 ≡ 0 (mod p2).

12G Geometry of Group Actions

Explain what it means to say that a group G is a Kleinian group. What is the
definition of the limit set for the group G? Prove that a fixed point of a parabolic element
in G must lie in the limit set.

Show that the matrix
(

1 + aw −aw2

a 1− aw

)
represents a parabolic transformation

for any non-zero choice of the complex numbers a and w. Find its fixed point.

The Gaussian integers are Z[i] = {m+ in : m,n ∈ Z}. Let G be the set of Möbius

transformations z 7→ az + b

cz + d
with a, b, c, d ∈ Z[i] and ad − bc = 1. Prove that G is a

Kleinian group. For each point w =
p+ iq

r
with p, q, r non-zero integers, find a parabolic

transformation T ∈ G that fixes w. Deduce that the limit set for G is all of the Riemann
sphere.
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13I Statistical Modelling

Let Y have a Gamma distribution with density

f(y;α, λ) =
λαyα−1

Γ(α)
e−λy .

Show that the Gamma distribution is of exponential dispersion family form. Deduce
directly the corresponding expressions for E[Y ] and Var[Y ] in terms of α and λ. What is
the canonical link function?

Let p < n. Consider a generalised linear model (g.l.m.) for responses yi, i = 1, . . . , n
with random component defined by the Gamma distribution with canonical link g(µ), so
that g(µi) = ηi = xT

i β, where β = (β1, . . . , βp)T is the vector of unknown regression
coefficients and xi = (xi1, . . . , xip)T is the vector of known values of the explanatory
variables for the ith observation, i = 1, . . . , n.

Obtain expressions for the score function and Fisher information matrix and explain
how these can be used in order to approximate β̂, the maximum likelihood estimator
(m.l.e.) of β.

[Use the canonical link function and assume that the dispersion parameter is known.]

Finally, obtain an expression for the deviance for a comparison of the full (sat-
urated) model to the g.l.m. with canonical link using the m.l.e. β̂ (or estimated mean
µ̂ = Xβ̂).

Paper 4
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14E Dynamical Systems

Consider the one-dimensional map F : R → R defined by

xi+1 = F (xi) = xi(ax2
i + bxi + µ),

where a and b are constants, µ is a parameter and a 6= 0.

(i) Find the fixed points of F and determine the linear stability of x = 0. Hence show
that there are bifurcations at µ = 1, at µ = −1 and, if b 6= 0, at µ = 1 + b2/4a.

Sketch the bifurcation diagram for each of the cases:

(1) a > b = 0, (2) a, b > 0 and (3) a, b < 0.

In each case show the locus and stability of the fixed points in the (µ, x)-plane, and
state the type of each bifurcation. [Assume that there are no further bifurcations
in the region sketched.]

(ii) For the case F (x) = x(µ− x2) (i.e. a = −1, b = 0), you may assume that

F 2(x) = x+ x(µ− 1− x2)(µ+ 1− x2)(1− µx2 + x4) .

Show that there are at most three 2-cycles and determine when they exist. By
considering F ′(xi)F ′(xi+1), or otherwise, show further that one 2-cycle is always
unstable when it exists and that the others are unstable when µ >

√
5. Sketch the

bifurcation diagram showing the locus and stability of the fixed points and 2-cycles.
State briefly what you would expect to occur in the region µ >

√
5.
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15C Classical Dynamics

The Hamiltonian for an oscillating particle with one degree of freedom is

H =
p2

2m
+ V (q, λ) .

The mass m is a constant, and λ is a function of time t alone. Write down Hamilton’s
equations and use them to show that

dH

dt
=

∂H

∂λ

dλ

dt
.

Now consider a case in which λ is constant and the oscillation is exactly periodic.
Denote the constant value of H in that case by E. Consider the quantity I =
(2π)−1

∮
p dq, where the integral is taken over a single oscillation cycle. For any given

function V (q, λ) show that I can be expressed as a function of E and λ alone, namely

I = I(E, λ) =
(2m)1/2

2π

∮ (
E − V (q, λ)

)1/2
dq ,

where the sign of the integrand alternates between the two halves of the oscillation cycle.
Let τ be the period of oscillation. Show that the function I(E, λ) has partial derivatives

∂ I

∂E
=

τ

2π
and

∂ I

∂λ
= − 1

2π

∮
∂V

∂λ
dt .

You may assume without proof that ∂/∂E and ∂/∂λ may be taken inside the integral.

Now let λ change very slowly with time t , by a negligible amount during an
oscillation cycle. Assuming that, to sufficient approximation,

d〈H〉
dt

=
∂〈H〉
∂λ

dλ

dt

where 〈H〉 is the average value of H over an oscillation cycle, and that

d I

dt
=

∂ I

∂E

d〈H〉
dt

+
∂ I

∂λ

dλ

dt
,

deduce that d I/dt = 0 , carefully explaining your reasoning.

When
V (q, λ) = λq2n

with n a positive integer and λ positive, deduce that

〈H〉 = Cλ1/(n+1)

for slowly-varying λ, where C is a constant.

[Do not try to solve Hamilton’s equations. Rather, consider the form taken by I. ]
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16G Set Theory and Logic

Explain what is meant by a well-founded binary relation on a set.

Given a set a, we say that a mapping f : a → Pa is recursive if, given any set b
equipped with a mapping g : Pb→ b, there exists a unique h : a→ b such that h = g◦h∗◦f ,
where h∗ : Pa → Pb denotes the mapping a′ 7→ {h(x) | x ∈ a′}. Show that f is recursive
if and only if the relation {〈x, y〉 | x ∈ f(y)} is well-founded.

[If you need to use any form of the recursion theorem, you should prove it.]

17H Graph Theory

Let G be a graph with n vertices and m edges. Show that if G contains no C4,
then m 6 n

4 (1 +
√

4n− 3).

Let C4(G) denote the number of subgraphs of G isomorphic to C4. Show that if
m > n(n−1)

4 , then G contains at least n(n−1)(n−3)
8 paths of length 2. By considering the

numbers r1, r2, . . . , r(n
2) of vertices joined to each pair of vertices of G, deduce that

C4(G) > 1
2

(
n

2

)(
(n− 3)/4

2

)
.

Now let G = G(n, 1/2) be the random graph on {1, 2, . . . , n} in which each pair of
vertices is joined independently with probability 1/2. Find the expectation E(C4(G)) of
C4(G). Deduce that if 0 < ε < 1/2, then

Pr
(
C4(G) 6 (1 + 2ε)

3
16

(
n

4

))
> ε.

18F Galois Theory

Let f(x) ∈ K[x] be a monic polynomial, L a splitting field for f , α1, . . . , αn the
roots of f in L. Let 4(f) =

∏
i<j(αi−αj)2 be the discriminant of f . Explain why 4(f) is

a polynomial function in the coefficients of f , and determine4(f) when f(x) = x3+px+q.

Compute the Galois group of the polynomial x3 − 3x+ 1 ∈ Q[x].

19H Representation Theory

Write an essay on the representation theory of SU2.

Your answer should include a description of each irreducible representation and an
explanation of how to decompose arbitrary representations into a direct sum of these.
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20H Number Fields

Let K be a finite extension of Q and let O = OK be its ring of integers. We will
assume that O = Z[θ] for some θ ∈ O. The minimal polynomial of θ will be denoted by
g. For a prime number p let

ḡ(X) = ḡ1(X)e1 · . . . · ḡr(X)er

be the decomposition of ḡ(X) = g(X)+pZ[X] ∈ (Z/pZ)[X] into distinct irreducible monic
factors ḡi(X) ∈ (Z/pZ)[X]. Let gi(X) ∈ Z[X] be a polynomial whose reduction modulo p
is ḡi(X). Show that

pi = [p, gi(θ)] , i = 1, . . . , r ,

are the prime ideals of O containing p, that these are pairwise different, and

[p] = pe1
1 · . . . · per

r .

21H Algebraic Topology

Compute the homology of the space obtained from the torus S1×S1 by identifying
S1 × {p} to a point and S1 × {q} to a point, for two distinct points p and q in S1.

22G Linear Analysis

Let X be a Banach space and T : X → X a bounded linear map. Define the
spectrum σ(T ), point spectrum σp(T ), resolvent RT (λ), and resolvent set ρ(T ). Show that
the spectrum is a closed and bounded subset of C. Is the point spectrum always closed?
Justify your answer.

Now suppose H is a Hilbert space, and T : H → H is self-adjoint. Show that the
point spectrum σp(T ) is real.

Paper 4
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23F Riemann Surfaces

Let R be a Riemann surface, R̃ a topological surface, and p : R̃→ R a continuous
map. Suppose that every point x ∈ R̃ admits a neighbourhood Ũ such that p maps Ũ
homeomorphically onto its image. Prove that R̃ has a complex structure such that p is a
holomorphic map.

A holomorphic map π : Y → X between Riemann surfaces is called a covering map
if every x ∈ X has a neighbourhood V with π−1(V ) a disjoint union of open sets Wk in Y ,
so that π : Wk → V is biholomorphic for each Wk. Suppose that a Riemann surface Y
admits a holomorphic covering map from the unit disc {z ∈ C : |z| < 1}. Prove that any
holomorphic map C → Y is constant.

[You may assume any form of the monodromy theorem and basic results about the lifts
of paths, provided that these are accurately stated.]

24H Differential Geometry

(i) What is a geodesic? Show that geodesics are critical points of the energy functional.

(ii) Let S be a surface which admits a parametrization φ(u, v) defined on an open subset
W of R2 such that E = G = U + V and F = 0, where U = U(u) is a function of u
alone and V = V (v) is a function of v alone. Let γ : I → φ(W ) be a geodesic and
write γ(t) = φ(u(t), v(t)). Show that[

U(u(t)) + V (v(t))
][
V (v(t))u̇2 − U(u(t))v̇2

]
is independent of t.
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25J Probability and Measure

Let (E, E , µ) be a measure space with µ(E) <∞ and let θ : E → E be measurable.

(a) Define an invariant set A ∈ E and an invariant function f : E → R.
What is meant by saying that θ is measure-preserving?
What is meant by saying that θ is ergodic?

(b) Which of the following functions θ1 to θ4 is ergodic? Justify your answer.

On the measure space
(
[0, 1],B([0, 1]), µ

)
with Lebesgue measure µ consider

θ1(x) = 1 + x , θ2(x) = x2 , θ3(x) = 1− x .

On the discrete measure space
(
{−1, 1},P({−1, 1}), 1

2δ−1 + 1
2δ1

)
consider

θ4(x) = −x .

(c) State Birkhoff’s almost everywhere ergodic theorem.

(d) Let θ be measure-preserving and let f : E → R be bounded.

Prove that
1
n

(
f + f ◦ θ + . . .+ f ◦ θn−1

)
converges in Lp for all p ∈ [1,∞).

Paper 4
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26J Applied Probability

A population of rare Monarch butterflies functions as follows. At the times of a
Poisson process of rate λ a caterpillar is produced from an egg. After an exponential time,
the caterpillar is transformed into a pupa which, after an exponential time, becomes a
butterfly. The butterfly lives for another exponential time and then dies. (The Poissonian
assumption reflects the fact that butterflies lay a huge number of eggs most of which do
not develop.) Suppose that all lifetimes are independent (of the arrival process and of each
other) and let their rate be µ. Assume that the population is in an equilibrium and let C
be the number of caterpillars, R the number of pupae and B the number of butterflies (so
that the total number of insects, in any metamorphic form, equals N = C +R+B). Let
π(c,r,b) be the equilibrium probability P(C = c,R = r,B = b) where c, r, b = 0, 1, . . ..

(a) Specify the rates of transitions (c, r, b) → (c′, r′, b′) for the resulting continuous-time
Markov chain (Xt) with states (c, r, b). (The rates are non-zero only when c′ = c
or c′ = c± 1 and similarly for other co-ordinates.) Check that the holding rate for
state (c, r, b) is λ+ µn where n = c+ r + b.

(b) Let Q be the Q-matrix from (a). Consider the invariance equation πQ = 0. Verify
that the only solution is

π(c,r,b) =
(3λ/µ)n

3nc!r!b!
exp

(
−3λ
µ

)
, n = c+ r + b.

(c) Derive the marginal equilibrium probabilities P(N = n) and the conditional
equilibrium probabilities P(C = c, R = r, B = b | N = n).

(d) Determine whether the chain (Xt) is positive recurrent, null-recurrent or transient.

(e) Verify that the equilibrium probabilities P(N = n) are the same as in the
corresponding M/GI/∞ system (with the correct specification of the arrival rate
and the service-time distribution).

27I Principles of Statistics

Assuming sufficient regularity conditions on the likelihood f(x|θ) for a univariate
parameter θ ∈ Θ, establish the Cramér–Rao lower bound for the variance of an unbiased
estimator of θ.

If θ̂(X) is an unbiased estimator of θ whose variance attains the Cramér–Rao lower
bound for every value of θ ∈ Θ, show that the likelihood function is an exponential family.
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28J Stochastic Financial Models

Briefly describe the Black–Scholes model. Consider a “cash-or-nothing” option with
strike price K , i.e. an option whose payoff at maturity is

f (ST ) =
{

1 if ST > K ,
0 if ST 6 K .

It can be interpreted as a bet that the stock will be worth at least K at time T . Find
a formula for its value at time t, in terms of the spot price St . Find a formula for its
Delta (i.e. its hedge ratio). How does the Delta behave as t→ T ? Why is it difficult, in
practice, to hedge such an instrument?

29I Optimization and Control

Consider the scalar controllable linear system, whose state Xn evolves by

Xn+1 = Xn + Un + εn+1,

with observations Yn given by
Yn+1 = Xn + ηn+1.

Here, Un is the control variable, which is to be determined on the basis of the observations
up to time n, and εn, ηn are independent N(0, 1) random variables. You wish to minimize
the long-run average expected cost, where the instantaneous cost at time n is X2

n + U2
n.

You may assume that the optimal control in equilibrium has the form Un = −KX̂n, where
X̂n is given by a recursion of the form

X̂n+1 = X̂n + Un +H(Yn+1 − X̂n),

and where H is chosen so that ∆n = Xn − X̂n is independent of the observations up
to time n. Show that K = H = (

√
5 − 1)/2 = 2/(

√
5 + 1), and determine the minimal

long-run average expected cost. You are not expected to simplify the arithmetic form of
your answer but should show clearly how you have obtained it.
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30A Partial Differential Equations

State and prove the mean value property for harmonic functions on R3.

Obtain a generalization of the mean value property for sub-harmonic functions on
R3, i.e. C2 functions for which

−∆u(x) 6 0

for all x ∈ R3.

Let φ ∈ C2(R3; C) solve the equation

−∆φ+ iV (x)φ = 0 ,

where V is a real-valued continuous function. By considering the function w(x) = |φ(x)|2
show that, on any ball B(y,R) = {x : ‖x− y‖ < R} ⊂ R3,

sup
x∈B(y,R)

|φ(x)| 6 sup
‖x−y‖=R

|φ(x)|.
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31B Asymptotic Methods

Consider the time-independent Schrödinger equation

d2ψ

dx2
+ λ2q(x)ψ(x) = 0,

where λ� 1 denotes ~−1 and q(x) denotes 2m[E − V (x)]. Suppose that

q(x) > 0 for a < x < b,

and q(x) < 0 for −∞ < x < a and b < x <∞

and consider a bound state ψ(x). Write down the possible Liouville–Green approximate
solutions for ψ(x) in each region, given that ψ → 0 as |x| → ∞.

Assume that q(x) may be approximated by q′(a)(x−a) near x = a, where q′(a) > 0,
and by q′(b)(x− b) near x = b, where q′(b) < 0. The Airy function Ai(z) satisfies

d2(Ai)
dz2

− z(Ai) = 0

and has the asymptotic expansions

Ai(z) ∼ 1
2π

−1/2z−1/4 exp
(
−2

3
z3/2

)
as z → +∞ ,

and

Ai(z) ∼ π−1/2|z|−1/4 cos
[(

2
3
|z|3/2

)
− π

4

]
as z → −∞ .

Deduce that the energies E of bound states are given approximately by the WKB
condition:

λ

∫ b

a

q1/2(x) dx =
(
n+ 1

2

)
π (n = 0, 1, 2, . . .).
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32D Principles of Quantum Mechanics

The Hamiltonian for a particle of spin 1
2 in a magnetic field B is

H = −1
2

~γB · σ where σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

and γ is a constant (the motion of the particle in space can be ignored). Consider a
magnetic field which is independent of time. Writing B = Bn, where n is a unit vector,
calculate the time evolution operator and show that if the particle is initially in a state
|χ〉 the probability of measuring it to be in an orthogonal state |χ′〉 after a time t is

| 〈χ′|n · σ|χ〉 |2 sin2 γBt

2
.

Evaluate this to find the probability for a transition from a state of spin up along the z
direction to one of spin down along the z direction when B = (Bx, 0, Bz).

Now consider a magnetic field whose x and y components are time-dependent but
small:

B = (A cosαt, A sinαt, Bz ) .

Show that the probability for a transition from a spin-up state at time zero to a spin-down
state at time t (with spin measured along the z direction, as before) is approximately

( γA

γBz+α

)2

sin2 (γBz+α)t
2

,

where you may assume |A| << |Bz +αγ−1| . Comment on how this compares, when α = 0,
with the result for a time-independent field.

[The first-order transition amplitude due to a perturbation V (t) is

− i

~

∫ t

0

dt′ei(E′−E)t′/~〈χ′|V (t′)|χ〉

where |χ〉 and |χ′〉 are orthogonal eigenstates of the unperturbed Hamiltonian with
eigenvalues E and E′ respectively. ]
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33A Applications of Quantum Mechanics

Consider a 1-dimensional chain of 2N atoms of mass m (with N large and with
periodic boundary conditions). The interactions between neighbouring atoms are modelled
by springs with alternating spring constants K and G, with K > G.

K G K G K G

m m m m m

In equilibrium, the separation of the atoms is a, the natural length of the springs.

Find the frequencies of the longitudinal modes of vibration for this system, and show
that they are labelled by a wavenumber q that is restricted to a Brillouin zone. Identify the
acoustic and optical bands of the vibration spectrum, and determine approximations for
the frequencies near the centre of the Brillouin zone. What is the frequency gap between
the acoustic and optical bands at the zone boundary?

Describe briefly the properties of the phonons in this system.

34D Statistical Physics

Consider a classical gas of diatomic molecules whose orientation is fixed by a strong
magnetic field. The molecules are not free to rotate, but they are free to vibrate. Assuming
that the vibrations are approximately harmonic, calculate the contribution to the partition
function due to vibrations.

Evaluate the free energy F = −kT lnZ, where Z is the total partition function for
the gas, and hence calculate the entropy.

[Note that
∫∞
−∞ exp(−au2)du =

√
π/a and

∫∞
0
u2 exp(−au2)du =

√
π/4a3/2. You may

approximate lnN ! by N lnN −N .]
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35E Electrodynamics

An action
S[ϕ] =

∫
d4xL(ϕ,ϕ,a)

is given, where ϕ(x) is a scalar field. Explain heuristically how to compute the functional
derivative δS/δϕ.

Consider the action for electromagnetism,

S[Aa] = −
∫

d4x

{
1

4µ0
F abFab + JaAa

}
.

Here Ja is the 4-current density, Aa is the 4-potential and Fab = Ab,a−Aa,b is the Maxwell
field tensor. Obtain Maxwell’s equations in 4-vector form.

Another action that is sometimes suggested is

Ŝ[Aa] = −
∫

d4x

{
1

2µ0
Aa,bAa,b + JaAa

}
.

Under which additional assumption can Maxwell’s equations be obtained using this action?

Using this additional assumption establish the relationship between the actions S
and Ŝ.
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36A General Relativity

Consider a particle on a trajectory xa(λ). Show that the geodesic equations, with
affine parameter λ, coincide with the variational equations obtained by varying the integral

I =
∫ λ1

λ0

gab(x)
dxa

dλ
dxb

dλ
dλ ,

the end-points being fixed.

In the case that f(r) = 1− 2GMu, show that the space-time metric is given in the
form

ds2 = −f(r) dt2 +
1

f(r)
dr2 + r2(dθ2 + sin2 θ dφ2) ,

for a certain function f(r). Assuming the particle motion takes place in the plane θ =
π

2
show that

dφ
dλ

=
h

r2
,

dt
dλ

=
E

f(r)
,

for h,E constants. Writing u = 1/r, obtain the equation(
du
dφ

)2

+ f(r)u2 = − k

h2
f(r) +

E2

h2
,

where k can be chosen to be 1 or 0, according to whether the particle is massive or massless.
In the case that f(r) = 1−GMu, show that

d2u

dφ2
+ u = k

GM

h2
+ 3GMu2 .

In the massive case, show that there is an approximate solution of the form

u =
1
`

(
1 + e cos (αφ)

)
,

where
1− α =

3GM
`

.

What is the interpretation of this solution?
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37B Fluid Dynamics II

(i) Assuming that axisymmetric incompressible flow u = (uR, uθ, 0), with vorticity
(0, 0, ω) in spherical polar coordinates (R, θ, φ) satisfies the equations

u = ∇×
(

0, 0,
Ψ

Rsin θ

)
, ω = − 1

Rsin θ
D2Ψ,

where

D2 ≡ ∂2

∂R2
+

sinθ
R2

∂

∂θ

(
1

sinθ
∂

∂θ

)
,

show that for Stokes flow Ψ satisfies the equation

D4Ψ = 0. (∗)

(ii) A rigid sphere of radius a moves at velocity U ẑ through viscous fluid of density
ρ and dynamic viscosity µ which is at rest at infinity. Assuming Stokes flow
and by applying the boundary conditions at R = a and as R → ∞, verify that
Ψ = (AR+B/R) sin2 θ is the appropriate solution to (∗) for this flow, where A and
B are to be determined.

(iii) Hence find the velocity field outside the sphere. Without direct calculation, explain
why the drag is in the z direction and has magnitude proportional to U .

(iv) A second identical sphere is introduced into the flow, at a distance b� a from the
first, and moving at the same velocity. Justify the assertion that, when the two
spheres are at the same height, or when one is vertically above the other, the drag
on each sphere is the same. Calculate the leading correction to the drag in each
case, to leading order in a/b.

[You may quote without proof the fact that, for an axisymmetric function F (R, θ),

∇× (0, 0, F ) =
(

1
R sin θ

∂

∂θ
(sin θF ), − 1

R

∂

∂R
(RF ), 0

)
in spherical polar coordinates (R, θ, φ).]
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38C Waves

Show that, for a plane acoustic wave, the acoustic intensity p̃u may be written as
ρ0c0|u|2k̂ in the standard notation.

Derive the general spherically-symmetric solution of the wave equation. Use it to
find the velocity potential φ(r, t) for waves radiated into an unbounded fluid by a pulsating
sphere of radius

a (1 + ε eiωt) (ε� 1) .

By considering the far field, or otherwise, find the time-average rate at which energy
is radiated by the sphere.[

You may assume that ∇2φ =
1
r2

∂

∂r

(
r2
∂φ

∂r

)
.

]

39C Numerical Analysis

(a) Suppose that A is a real n × n matrix, and that w ∈ Rn and λ1 ∈ R are given so
that Aw = λ1w. Further, let S be a non-singular matrix such that Sw = ce(1),
where e(1) is the first coordinate vector and c 6= 0. Let Â = SAS−1. Prove
that the eigenvalues of A are λ1 together with the eigenvalues of the bottom right
(n− 1)× (n− 1) submatrix of Â.

(b) Suppose again that A is a real n × n matrix, and that two linearly independent
vectors v, w ∈ Rn are given such that the linear subspace L{v, w} spanned by v
and w is invariant under the action of A, i.e.,

x ∈ L{v, w} ⇒ Ax ∈ L{v, w}.

Denote by V an n× 2 matrix whose two columns are the vectors v and w, and let
S be a non-singular matrix such that R = SV is upper triangular, that is,

R = SV = S ×


v1 w1

v2 w2

v3 w3

: :
vn wn

 =


r11 r12
0 r22
0 0
: :
0 0

 .

Again let Â = SAS−1. Prove that the eigenvalues of A are the eigenvalues of the
top left 2 × 2 submatrix of Â together with the eigenvalues of the bottom right
(n− 2)× (n− 2) submatrix of Â.

END OF PAPER
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