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SECTION I

1F Number Theory

Determine the continued fraction of
√

7. Deduce two pairs of solutions in positive
integers x, y of the equation

x2 − 7y2 = 1.

2F Topics in Analysis

State a version of Runge’s theorem and use it to prove the following theorem:

Let D = {z ∈ C : |z| < 1} and define f : D → C by the condition

f(reiθ) = r3/2e3iθ/2

for all 0 6 r < 1 and all 0 6 θ < 2π. (We take r1/2 to be the positive square root.) Then
there exists a sequence of analytic functions fn : D → C such that fn(z) → f(z) for each
z ∈ D as n→∞.

3G Geometry of Group Actions

Let G be a 2-dimensional Euclidean crystallographic group. Define the lattice and
point group corresponding to G.

Prove that any non-trivial rotation in the point group of G must have order 2, 3, 4
or 6.

4G Coding and Cryptography

Compute the rank and minimum distance of the cyclic code with generator
polynomial g(X) = X3 +X + 1 and parity-check polynomial h(X) = X4 +X2 +X + 1.
Now let α be a root of g(X) in the field with 8 elements. We receive the word
r(X) = X5 + X3 + X (mod X7 − 1). Verify that r(α) = α4, and hence decode r(X)
using minimum-distance decoding.

Paper 3
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5I Statistical Modelling

Consider two possible experiments giving rise to observed data yij where
i = 1, . . . , I, j = 1, . . . , J .

1. The data are realizations of independent Poisson random variables, i.e.,

Yij ∼ f1(yij ;µij) =
µ

yij

ij

yij !
exp{−µij}

where µij = µij(β), with β an unknown (possibly vector) parameter. Write β̂ for
the maximum likelihood estimator (m.l.e.) of β and ŷij = µij(β̂) for the (i, j)th
fitted value under this model.

2. The data are components of a realization of a multinomial random ‘vector’

Y ∼ f2((yij);n, (pij)) = n!
I∏

i=1

J∏
j=1

p
yij

ij

yij !

where the yij are non-negative integers with

I∑
i=1

J∑
j=1

yij = n and pij(β) =
µij(β)
n

.

Write β∗ for the m.l.e. of β and y∗ij = npij(β∗) for the (i, j)th fitted value under
this model.

Show that, if
I∑

i=1

J∑
j=1

ŷij = n ,

then β̂ = β∗ and ŷij = y∗ij for all i, j. Explain the relevance of this result in the context
of fitting multinomial models within a generalized linear model framework.
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6B Mathematical Biology

Consider a birth and death process in which births always give rise to two offspring,
with rate λ, while the death rate per individual is β.

Write down the master equation (or probability balance equation) for this system.

Show that the population mean is given by

〈n〉 =
2λ
β

(1− e−βt) + n0e
−βt

where n0 is the initial population mean, and that the population variance satisfies

σ2 → 3λ/β as t→∞ .

7E Dynamical Systems

State the Poincaré–Bendixson Theorem for a system ẋ = f(x) in R2.

Prove that if k2 < 4 then the system

ẋ = x− y − x3 − xy2 − k2xy2

ẏ = y + x− x2y − y3 − k2x2y

has a periodic orbit in the region 2/(2 + k2) 6 x2 + y2 6 1.

8B Further Complex Methods

Let w1(z) and w2(z) be any two linearly independent branches of the P -function 0 ∞ 1
α β γ z
α′ β′ γ′

 ,

where α+ α′ + β + β′ + γ + γ′ = 1, and let W (z) be the Wronskian of w1(z) and w2(z).

(i) How is W (z) related to the Wronskian of the principal branches of the P -function
at z = 0?

(ii) Show that z−α−α′+1(1− z)−γ−γ′+1W (z) is an entire function.

(iii) Given that zβ+β′+1W (z) is bounded as z →∞, show that

W (z) = Azα+α′−1(1− z)γ+γ′−1,

where A is a non-zero constant.

Paper 3
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9C Classical Dynamics

A particle of mass m1 is constrained to move in the horizontal (x, y) plane, around
a circle of fixed radius r1 whose centre is at the origin of a Cartesian coordinate system
(x, y, z). A second particle of mass m2 is constrained to move around a circle of fixed
radius r2 that also lies in a horizontal plane, but whose centre is at (0, 0, a). It is given
that the Lagrangian L of the system can be written as

L =
m1

2
r21 φ̇

2
1 +

m2

2
r22 φ̇

2
2 + ω2r1r2 cos(φ2 − φ1) ,

using the particles’ cylindrical polar angles φ1 and φ2 as generalized coordinates. Deduce
the equations of motion and use them to show that m1r

2
1 φ̇1 + m2r

2
2 φ̇2 is constant, and

that ψ = φ2 − φ1 obeys an equation of the form

ψ̈ = −k2 sinψ ,

where k is a constant to be determined.

Find two values of ψ corresponding to equilibria, and show that one of the two
equilibria is stable. Find the period of small oscillations about the stable equilibrium.

10A Cosmology

The number density of a non-relativistic species in thermal equilibrium is given by

n = gs

(
2πmkT
h2

)3/2

exp
[
(µ−mc2)/kT

]
.

Suppose that thermal and chemical equilibrium is maintained between protons p (mass
mp, degeneracy gs = 2), neutrons n (mass mn ≈ mp, degeneracy gs = 2) and helium-4
nuclei 4He (mass mHe ≈ 4mp, degeneracy gs = 1) via the interaction

2p + 2n ↔ 4He + γ ,

where you may assume the photons γ have zero chemical potential µγ = 0. Given that
the binding energy of helium-4 obeys BHe/c

2 ≡ 2mp + 2nn −mHe � mHe, show that the
ratio of the number densities can be written as

n2
p n

2
n

nHe
= 2

(
2πmpkT

h2

)9/2

exp(−BHe/kT ) . (†)

Explain briefly why the baryon-to-photon ratio η ≡ nB/nγ remains constant during
the expansion of the universe, where nB ≈ np + nn + 4nHe and nγ ≈ (16π/(hc)3)(kT )3.

By considering the fractional densities Xi ≡ ni/nB of the species i, re-express the
ratio (†) in the form

X2
pX

2
n

XHe
= η−3 1

32

(π
2

)3/2
(
mpc

2

kT

)9/2

exp (−BHe/kT ) .

Given that BHe ≈ 30MeV, verify (very approximately) that this ratio approaches unity
when kT ≈ 0.3MeV. In reality, helium-4 is not formed until after deuterium production
at a considerably lower temperature. Explain briefly the reason for this delay.
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SECTION II

11F Number Theory

State the Chinese remainder theorem. Let n be an odd positive integer. If n is
divisible by the square of a prime number p, prove that there exists an integer z such that
zp ≡ 1 (mod n) but z 6≡ 1 (mod n).

Define the Jacobi symbol (a
n

)
for any non-zero integer a. Give a numerical example to show that(a

n

)
= +1

does not imply in general that a is a square modulo n. State and prove the law of quadratic
reciprocity for the Jacobi symbol.

[You may assume the law of quadratic reciprocity for the Legendre symbol.]

Assume now that n is divisible by the square of a prime number. Prove that there
exists an integer a with (a, n) = 1 such that the congruence

a
n−1

2 ≡
(a
n

)
(mod n)

does not hold. Show further that this congruence fails to hold for at least half of all
relatively prime residue classes modulo n.

Paper 3
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12F Topics in Analysis

(i) State and prove Liouville’s theorem on approximation of algebraic numbers by
rationals.

(ii) Consider the continued fraction

x =
1

a1 +
1

a2 +
1

a3 +
1

a4 + . . .

where the aj are strictly positive integers. You may assume the following algebraic
facts about the nth convergent pn/qn.

pnqn−1 − pn−1qn = (−1)n, qn = anqn−1 + qn−2.

Show that ∣∣∣∣pn

qn
− x

∣∣∣∣ 6
1

qnqn+1
.

Give explicit values for an so that x is transcendental and prove that you have done
so.

13B Mathematical Biology

The number density of a population of cells is n(x, t). The cells produce a chemical
whose concentration is C(x, t) and respond to it chemotactically. The equations governing
n and C are

∂n

∂t
= γn(n0 − n) +Dn∇2n− χ∇ · (n∇C)

∂C

∂t
= αn− βC +Dc∇2C.

(i) Give a biological interpretation of each term in these equations, where you may
assume that α, β, γ, n0, Dn, Dc and χ are all positive.

(ii) Show that there is a steady-state solution that is stable to spatially invariant
disturbances.

(iii) Analyse small, spatially-varying perturbations to the steady state that satisfy
∇2φ = −k2φ for any variable φ, and show that a chemotactic instability is possible
if

χαn0 > βDn + γn0Dc + (4βγn0DnDc)1/2 .

(iv) Find the critical value of k at which the instability first appears as χ is increased.
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14E Dynamical Systems

The Lorenz equations are

ẋ = σ(y − x)
ẏ = rx− y − xz

ż = xy − bz

where r, σ and b are positive constants and (x, y, z) ∈ R3.

(i) Show that the origin is globally asymptotically stable for 0 < r < 1 by considering
a function V (x, y, z) = 1

2 (x2 + Ay2 + Bz2) with a suitable choice of constants A
and B.

(ii) State, without proof, the Centre Manifold Theorem.

Show that the fixed point at the origin is nonhyperbolic at r = 1. What are the
dimensions of the linear stable and (non-extended) centre subspaces at this point?

(iii) Let σ = 1 from now on. Make the substitutions u = x+ y, v = x− y and µ = r− 1
and derive the resulting equations for u̇, v̇ and ż.

The extended centre manifold is given by

v = V (u, µ), z = Z(u, µ)

where V and Z can be expanded as power series about u = µ = 0. What
is known about V and Z from the Centre Manifold Theorem? Assuming that
µ = O(u2), determine Z correct to O(u2) and V to O(u3). Hence obtain the
evolution equation on the extended centre manifold correct to O(u3), and identify
the type of bifurcation.

Paper 3
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15A Cosmology

A spherically symmetric star with outer radius R has mass density ρ(r) and pressure
P (r), where r is the distance from the centre of the star. Show that hydrostatic equilibrium
implies the pressure support equation,

dP

dr
= −Gmρ

r2
, (†)

where m(r) is the mass inside radius r. State without proof any results you may need.

Write down an integral expression for the total gravitational potential energy Egrav

of the star. Hence use (†) to deduce the virial theorem

Egrav = −3〈P 〉V , (∗)

where 〈P 〉 is the average pressure and V is the volume of the star.

Given that a non-relativistic ideal gas obeys P = 2Ekin/3V and that an ultra-
relativistic gas obeys P = Ekin/3V , where Ekin is the kinetic energy, discuss briefly the
gravitational stability of a star in these two limits.

At zero temperature, the number density of particles obeying the Pauli exclusion
principle is given by

n =
4πgs

h3

∫ pF

0

p2dp =
4πgs

3

(pF

h

)3

,

where pF is the Fermi momentum, gs is the degeneracy and h is Planck’s constant. Deduce
that the non-relativistic internal energy Ekin of these particles is

Ekin =
4πgsV h

2

10mp

(pF

h

)5

,

where mp is the mass of a particle. Hence show that the non-relativistic Fermi degeneracy
pressure satisfies

P ∼ h2

mp
n5/3 .

Use the virial theorem (∗) to estimate that the radius R of a star supported by
Fermi degeneracy pressure is approximately

R ∼ h2M−1/3

Gm
8/3
p

,

where M is the total mass of the star.

[Hint: Assume ρ(r) = mpn(r) ∼ mp〈n〉 and note that M ≈ (4πR3/3)mp〈n〉.]
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16G Set Theory and Logic

Write down the recursive definitions of ordinal addition, multiplication and expo-
nentiation. Prove carefully that ωα > α for all α, and hence show that for each non-zero
ordinal α there exists a unique α0 6 α such that

ωα0 6 α < ωα0+1 .

Deduce that any non-zero ordinal α has a unique representation of the form

ωα0 · a0 + ωα1 · α1 + · · ·+ ωαn · an

where α > α0 > α1 > · · · > αn and a0, a1, . . . , an are non-zero natural numbers.

Two ordinals β, γ are said to be commensurable if we have neither β + γ = γ nor
γ + β = β. Show that β and γ are commensurable if and only if there exists α such that
both β and γ lie in the set

{δ | ωα 6 δ < ωα+1} .

17H Graph Theory

Let G be a bipartite graph with vertex classes X and Y , each of size n. State and
prove Hall’s theorem giving a necessary and sufficient condition for G to contain a perfect
matching.

A vertex x ∈ X is flexible if every edge from x is contained in a perfect matching.
Show that if |Γ(A)| > |A| for every subset A of X with ∅ 6= A 6= X, then every x ∈ X is
flexible.

Show that whenever G contains a perfect matching, there is at least one flexible
x ∈ X.

Give an example of such a G where no x ∈ X of minimal degree is flexible.

18F Galois Theory

(i) Let K be the splitting field of the polynomial x4− 3 over Q. Describe the field K,
the Galois group G = Aut(K/Q), and the action of G on K.

(ii) Let K be the splitting field of the polynomial x4 + 4x2 + 2 over Q. Describe the
field K and determine Aut(K/Q).

Paper 3
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19H Representation Theory

Let G be a finite group with a permutation action on the set X. Describe the
corresponding permutation character πX . Show that the multiplicity in πX of the principal
character 1G equals the number of orbits of G on X.

Assume that G is transitive on X, with |X| > 1. Show that G contains an element
g which is fixed-point-free on X, that is, gα 6= α for all α in X.

Assume that πX = 1G +mχ, with χ an irreducible character of G, for some natural
number m. Show that m = 1.

[You may use without proof any facts about algebraic integers, provided you state them
correctly.]

Explain how the action of G on X induces an action of G on X2. Assume that G
has r orbits on X2. If now

πX = 1G +m2χ2 + . . .+mkχk,

with 1G, χ2, . . . , χk distinct irreducible characters of G, and m2, . . . ,mk natural numbers,
show that r = 1+m2

2+. . .+m2
k. Deduce that, if r 6 5, then k = r and m2 = . . . = mk = 1.

20H Algebraic Topology

Define what it means for a group G to act on a topological space X. Prove that,
if G acts freely, in a sense that you should specify, then the quotient map X → X/G is a
covering map and there is a surjective group homomorphism from the fundamental group
of X/G to G.

21G Linear Analysis

State and prove the Arzela–Ascoli theorem.

Let N be a positive integer. Consider the subset SN ⊂ C([0, 1]) consisting of all
thrice differentiable solutions to the differential equation

f ′′ = f + (f ′)2 with |f(0)| 6 N , |f(1)| 6 N , |f ′(0)| 6 N , |f ′(1)| 6 N .

Show that this set is totally bounded as a subset of C([0, 1]).

[It may be helpful to consider interior maxima.]
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22F Riemann Surfaces

(i) Let R and S be compact connected Riemann surfaces and f : R→ S a non-constant
holomorphic map. Define the branching order vf (p) at p ∈ R showing that it is
well defined. Prove that the set of ramification points {p ∈ R : vf (p) > 1} is finite.
State the Riemann–Hurwitz formula.

Now suppose that R and S have the same genus g. Prove that, if g > 1, then f
is biholomorphic. In the case when g = 1, write down an example where f is not
biholomorphic.

[The inverse mapping theorem for holomorphic functions on domains in C may be
assumed without proof if accurately stated.]

(ii) Let Y be a non-singular algebraic curve in C2. Describe, without detailed proofs,
a family of charts for Y , so that the restrictions to Y of the first and second
projections C2 → C are holomorphic maps. Show that the algebraic curve

Y = {(s, t) ∈ C2 : t4 = (s2 − 1)(s− 4)}

is non-singular. Find all the ramification points of the map f : Y → C; (s, t) 7→ s.

23H Differential Geometry

(i) Let f : X → Y be a smooth map between manifolds without boundary. Define
critical point, critical value and regular value. State Sard’s theorem.

(ii) Explain how to define the degree modulo 2 of a smooth map f , indicating clearly
the hypotheses on X and Y . Show that a smooth map with non-zero degree modulo
2 must be surjective.

(iii) Let S be the torus of revolution obtained by rotating the circle (y− 2)2 + z2 = 1 in
the yz-plane around the z-axis. Describe the critical points and the critical values
of the Gauss map N of S. Find the degree modulo 2 of N . Justify your answer by
means of a sketch or otherwise.

Paper 3
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24J Probability and Measure

Let (E, E , µ) be a finite measure space, i.e. µ(E) <∞, and let 1 6 p 6 ∞.

(a) Define the Lp-norm ‖f‖p of a measurable function f : E → R, define the space
Lp(E, E , µ) and define convergence in Lp.

In the following you may use inequalities from the lectures without proof, provided they
are clearly stated.

(b) Let f, f1, f2, . . . ∈ Lp(E, E , µ). Show that fn → f in Lp implies ‖fn‖p → ‖f‖p.

(c) Let f : E → R be a bounded measurable function with ‖f‖∞ > 0. Let

Mn =
∫

E

|f |ndµ .

Show that Mn ∈ (0,∞) and Mn+1Mn−1 > M2
n.

By using Jensen’s inequality, or otherwise, show that

µ(E)−1/n‖f‖n 6 Mn+1/Mn 6 ‖f‖∞.

Prove that lim
n→∞

Mn+1/Mn = ‖f‖∞.[
Observe that |f | > 1{

|f |>‖f‖∞−ε
}(
‖f‖∞ − ε

)
.

]
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25J Applied Probability

For a discrete-time Markov chain, if the probability of transition i → j does not
depend on i then the chain is reduced to a sequence of independent random variables
(states). In this case, the chain forgets about its initial state and enters equilibrium
after a single transition. In the continuous-time case, a Markov chain whose rates qij of
transition i→ j depend on j but not on i 6= j still ‘remembers’ its initial state and reaches
equilibrium only in the limit as the time grows indefinitely. This question is an illustration
of this property.

A protean sea sponge may change its colour among s varieties 1, . . . , s, under the
influence of the environment. The rate of transition from colour i to j equals rj > 0 and
does not depend on i, i 6= j. Consider a Q-matrix Q = (qij) with entries

qij =
{
rj , i 6= j,
−R+ ri, i = j,

where R = r1 + . . .+ rs. Assume that R > 0 and let (Xt) be the continuous-time Markov
chain with generator Q. Given t > 0, let P (t) = (pij(t)) be the matrix of transition
probabilities in time t in chain (Xt).

(a) State the exponential relation between the matrices Q and P (t).

(b) Set πj = rj/R, j = 1, . . . , s. Check that π1, . . ., πs are equilibrium probabilities for
the chain (Xt). Is this a unique equilibrium distribution? What property of the
vector with entries πj relative to the matrix Q is involved here?

(c) Let x be a vector with components x1, . . . , xs such that x1 + . . . + xs = 0. Show
that xTQ = −RxT. Compute xTP (t).

(d) Now let δi denote the (column) vector whose entries are 0 except for the ith
one which equals 1. Observe that the ith row of P (t) is δTi P (t). Prove that
δTi P (t) = πT + e−tR(δTi − πT).

(e) Deduce the expression for transition probabilities pij(t) in terms of rates rj and
their sum R.
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26I Principles of Statistics

(i) In the context of decision theory, what is a Bayes rule with respect to a given loss
function and prior? What is an extended Bayes rule?

Characterise the Bayes rule with respect to a given prior in terms of the posterior
distribution for the parameter given the observation. When Θ = A = Rd for some
d, and the loss function is L(θ, a) = ‖θ − a‖2, what is the Bayes rule?

(ii) Suppose that A = Θ = R, with loss function L(θ, a) = (θ−a)2 and suppose further
that under Pθ, X ∼ N(θ, 1).

Supposing that a N(0, τ−1) prior is taken over θ, compute the Bayes risk of the
decision rule dλ(X) = λX. Find the posterior distribution of θ given X, and
confirm that its mean is of the form dλ(X) for some value of λ which you should
identify. Hence show that the decision rule d1 is an extended Bayes rule.

27J Stochastic Financial Models

Suppose that over two periods a stock price moves on a binomial tree

15

30

12

45

36

16

10

(i) Determine for what values of the riskless rate r there is no arbitrage. From here
on, fix r = 1/4 and determine the equivalent martingale measure.

(ii) Find the time-zero price and replicating portfolio for a European put option with
strike 15 and expiry 2.

(iii) Find the time-zero price and optimal exercise policy for an American put option
with the same strike and expiry.

(iv) Deduce the corresponding (European and American) call option prices for the same
strike and expiry.
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28I Optimization and Control

Let P be a discrete-time controllable dynamical system (or Markov decision process)
with countable state-space S and action-space A. Consider the n-horizon dynamic
optimization problem with instantaneous costs c(k, x, a), on choosing action a in state
x at time k 6 n− 1, with terminal cost C(x), in state x at time n. Explain what is meant
by a Markov control and how the choice of a control gives rise to a time-inhomogeneous
Markov chain.

Suppose we can find a bounded function V and a Markov control u∗ such that

V (k, x) 6 (c+ PV )(k, x, a), 0 6 k 6 n− 1, x ∈ S, a ∈ A,

with equality when a = u∗(k, x), and such that V (n, x) = C(x) for all x. Here PV (k, x, a)
denotes the expected value of V (k+ 1, Xk+1), given that we choose action a in state x at
time k. Show that u∗ is an optimal Markov control.

A well-shuffled pack of cards is placed face-down on the table. The cards are turned
over one by one until none are left. Exactly once you may place a bet of £1000 on the
event that the next two cards will be red. How should you choose the moment to bet?
Justify your answer.

29A Partial Differential Equations

Write down the formula for the solution u = u(t, x) for t > 0 of the initial value
problem for the heat equation in one space dimension

∂u

∂t
− ∂2u

∂x2
= 0 ,

u(0, x) = g(x) ,

for g : R → C a given smooth bounded function.

Define the distributional derivative of a tempered distribution T ∈ S ′(R). Define a
fundamental solution of a constant-coefficient linear differential operator P , and show that
the distribution defined by the function 1

2e
−|x| is a fundamental solution for the operator

P = − d2

dx2
+ 1.

For the equation
∂u

∂t
− ∂2u

∂x2
= etφ(x), (∗)

where φ ∈ S(R), prove that there is a unique solution of the form etv(x) with v ∈ S(R).
Hence write down the solution of (∗) with general initial data u(0, x) = f(x) and describe
the large time behaviour.
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30B Asymptotic Methods

Explain the method of stationary phase for determining the behaviour of the
integral

I(x) =
∫ b

a

du eixf(u)

for large x. Here, the function f(u) is real and differentiable, and a, b and x are all real.

Apply this method to show that the first term in the asymptotic behaviour of the
function

Γ(m+ 1) =
∫ ∞

0

du um e−u ,

where m = i n with n > 0 and real, is

Γ(i n+ 1) ∼
√

2π e−i n exp
[(
i n+ 1

2

) (
iπ

2
+ log n

)]
as n→∞.

31E Integrable Systems

Find a Lax pair formulation for the linearised NLS equation

iqt + qxx = 0 .

Use this Lax pair formulation to show that the initial value problem on the infinite
line of the linearised NLS equation is associated with the following Riemann–Hilbert
problem

M+(x, t, k) = M−(x, t, k)
(

1 eikx−ik2tq̂0(k)
0 1

)
, k ∈ R ,

M =
(

1 0
0 1

)
+O

(
1
k

)
, k →∞ .

By deforming the above problem obtain the Riemann–Hilbert problem and hence
the linear integral equation associated with the following system of nonlinear evolution
PDEs

iqt + qxx − 2ϑq2 = 0 ,

−iϑt + ϑxx − 2ϑ2q = 0 .
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32D Principles of Quantum Mechanics

Let

x̂ =
( ~

2mω

)1/2

(a+ a†) , p̂ =
(~mω

2

)1/2

i(a† − a)

be the position and momentum operators for a one-dimensional harmonic oscillator of
mass m and frequency ω. Write down the commutation relations obeyed by a and a† and
give an expression for the oscillator Hamiltonian H(x̂, p̂) in terms of them. Prove that the
only energies allowed are En = ~ω(n + 1

2 ) with n = 0, 1, 2, . . . and give, without proof, a
formula for a general normalised eigenstate |n〉 in terms of |0〉.

A three-dimensional oscillator with charge is subjected to a weak electric field so
that its total Hamiltonian is

H1 + H2 + H3 + λmω2( x̂1x̂2 + x̂2x̂3 + x̂3x̂1 )

where Hi = H(x̂i, p̂i) for i = 1, 2, 3 and λ is a small, dimensionless parameter. Express the
general eigenstate for the Hamiltonian with λ = 0 in terms of one-dimensional oscillator
states, and give the corresponding energy eigenvalue. Use perturbation theory to compute
the changes in energies of states in the lowest two levels when λ 6= 0, working to the
leading order at which non-vanishing corrections occur.
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33A Applications of Quantum Mechanics

Consider the Hamiltonian
H = B(t) · S

for a particle of spin 1
2 fixed in space, in a rotating magnetic field, where

S1 =
~
2

(
0 1
1 0

)
, S2 =

~
2

(
0 −i
i 0

)
, S3 =

~
2

(
1 0
0 −1

)
and

B(t) = B(sinα cosωt, sinα sinωt, cosα)

with B, α and ω constant, and B > 0, ω > 0.

There is an exact solution of the time-dependent Schrödinger equation for this
Hamiltonian,

χ(t) =
(

cos
(

1
2λt

)
− i

B − ω cosα
λ

sin
(

1
2λt

))
e−iωt/2 χ+ + i

(ω
λ

sinα sin
(

1
2λt

))
eiωt/2 χ−

where λ ≡ (ω2 − 2ωB cosα+B2)1/2 and

χ+ =
(

cos α
2

eiωt sin α
2

)
, χ− =

(
e−iωt sin α

2

− cos α
2

)
.

Show that, for ω � B, this exact solution simplifies to a form consistent with the adiabatic
approximation. Find the dynamic phase and the geometric phase in the adiabatic regime.
What is the Berry phase for one complete cycle of B?

The Berry phase can be calculated as an integral of the form

Γ = i

∮
〈ψ|∇Rψ〉 · dR .

Evaluate Γ for the adiabatic evolution described above.
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34D Statistical Physics

For a 2-dimensional gas of N nonrelativistic, non-interacting, spinless bosons,
find the density of states g(ε) in the neighbourhood of energy ε. [Hint: consider the gas in
a box of size L×L which has periodic boundary conditions. Work in the thermodynamic
limit N →∞, L→∞, with N/L2 held finite.]

Calculate the number of particles per unit area at a given temperature and chemical
potential.

Explain why Bose–Einstein condensation does not occur in this gas at any temper-
ature.

[Recall that

1
Γ(n)

∫ ∞

0

xn−1dx

z−1ex − 1
=

∞∑
`=1

z`

`n
.

]

35E Electrodynamics

Consider a particle of charge q moving with 3-velocity v. If the particle is moving
slowly then Larmor’s formula asserts that the instantaneous radiated power is

P =
µ0

6π
q2

∣∣∣∣dvdt
∣∣∣∣2 .

Suppose, however, that the particle is moving relativistically. Give reasons why
one should conclude that P is a Lorentz invariant. Writing the 4-velocity as Ua = (γ, γv)
where γ = 1/

√
1− |v|2 and c = 1, show that

U̇a = (γ3α, γ3αv + γv̇)

where α = v · v̇ and ḟ = df/ds where s is the particle’s proper time. Show also that

U̇aU̇a = −γ4α2 − γ2|v̇|2.

Deduce the relativistic version of Larmor’s formula.

Suppose the particle moves in a circular orbit perpendicular to a uniform magnetic
field B. Show that

P =
µ0

6π
q4

m2
(γ2 − 1)|B|2,

where m is the mass of the particle, and comment briefly on the slow motion limit.
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36B Fluid Dynamics II
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Viscous fluid of kinematic viscosity ν and density ρ flows in a curved pipe of constant
rectangular cross section and constant curvature. The cross-section has height 2a and
width 2b (in the radial direction) with b� a, and the radius of curvature of the inner wall
is R, with R� b. A uniform pressure gradient −G is applied along the pipe.

(i) Assume to a first approximation that the pipe is straight, and ignore variation in
the x-direction, where (x, y, z) are Cartesian coordinates referred to an origin at
the centre of the section, with x increasing radially and z measured along the pipe.
Find the flow field along the pipe in the form u = (0, 0, w(y)).

(ii) It is given that the largest component of the inertial acceleration u · ∇u due to the
curvature of the pipe is −w2/R in the x direction. Consider the secondary flow us

induced in the x, y plane, again ignoring variations in x and any end effects (except
for the requirement that there be zero total mass flux in the x direction). Show
that us takes the form us = (u(y), 0, 0), where

u(y) =
G2

120ρ2ν3R

(
5a2y4 − y6

)
+
C

2
y2 +D,

and write down two equations determining the constants C and D. [It is not
necessary to solve these equations.]

Give conditions on the parameters that ensure that |u| � |w|.
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37C Waves

Waves propagating in a slowly-varying medium satisfy the local dispersion relation

ω = Ω(k,x, t)

in the standard notation. Give a brief derivation of the ray-tracing equations for such
waves; a formal justification is not required.

An ocean occupies the region x > 0 , −∞ < y <∞ . Water waves are incident
on a beach near x = 0. The undisturbed water depth is

h(x) = αxp

with α a small positive constant and p positive. The local dispersion relation is

Ω2 = gκ tanh(κh) where κ2 = k2
1 + k2

2

and where k1, k2 are the wavenumber components in the x, y directions. Far from the
beach, the waves are planar with frequency ω∞ and crests making an acute angle θ∞ with
the shoreline x = 0 . Obtain a differential equation (in implicit form) for a ray y = y(x) ,
and show that near the shore the ray satisfies

y − y0 ∼ Axq

where A and q should be found. Sketch the appearance of the wavecrests near the shoreline.
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38C Numerical Analysis

(a) Prove that all Toeplitz symmetric tridiagonal M ×M matrices

A =


a b 0 · · · 0

b a b
. . .

...

0
. . . . . . . . . 0

...
. . . b a b

0 · · · 0 b a


share the same eigenvectors (v(k))M

k=1 with components v
(k)
i = sin

kiπ

M + 1
,

i = 1, . . . ,M , and eigenvalues to be determined.

(b) The diffusion equation

∂u

∂t
=
∂2u

∂x2
, 0 6 x 6 1, 0 6 t 6 T,

is approximated by the Crank–Nicolson scheme

un+1
m − 1

2µ
(
un+1

m−1 − 2un+1
m + un+1

m+1

)
= un

m + 1
2µ

(
un

m−1 − 2un
m + un

m+1

)
,

for m = 1, . . . ,M,

where µ = ∆t/(∆x)2, ∆x = 1/(M + 1), and un
m is an approximation to

u(m∆x, n∆t). Assuming that u(0, t) = u(1, t) = 0, ∀t, show that the above
scheme can be written in the form

Bun+1 = Cun, 0 6 n 6 (T/∆t)− 1

where un = [un
1 , . . . , u

n
M ]T and the real matrices B and C should be found. Using

matrix analysis, find the range of µ for which the scheme is stable. [Do not use
Fourier analysis.]

END OF PAPER
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