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SECTION I

1F Number Theory

Let p be an odd prime number. Prove that 2 is a quadratic residue modulo p when
p ≡ 7 (mod 8). Deduce that, if q is a prime number strictly greater than 3 with q ≡ 3
(mod 4) such that 2q + 1 is also a prime number, then 2q − 1 is necessarily composite.
Why does the argument break down for q = 3?

2F Topics in Analysis

Write
P+ = {(x, y) ∈ R2 : x, y > 0}.

Suppose that K is a convex, compact subset of R2 with K ∩ P+ 6= ∅. Show that there is
a unique point (x0, y0) ∈ K ∩ P+ such that

xy 6 x0y0

for all (x, y) ∈ K ∩ P+.

3G Geometry of Group Actions

Explain what is meant by a lattice in the Euclidean plane R2. Prove that such a
lattice is either Zw for some vector w ∈ R2 or else Zw1+Zw2 for two linearly independent
vectors w1,w2 in R2.

4G Coding and Cryptography

Briefly explain how and why a signature scheme is used. Describe the El Gamal
scheme.
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5I Statistical Modelling

Consider the linear regression setting where the responses Yi, i = 1, . . . , n are
assumed independent with means µi = xT

i β. Here xi is a vector of known explanatory
variables and β is a vector of unknown regression coefficients.

Show that if the response distribution is Laplace, i.e.,

Yi ∼ f(yi;µi, σ) = (2σ)−1 exp
{
−|yi − µi|

σ

}
, i = 1, . . . , n; yi, µi ∈ R; σ ∈ (0,∞);

then the maximum likelihood estimate β̂ of β is obtained by minimising

S1(β) =
n∑

i=1

|Yi − xT
i β|.

Obtain the maximum likelihood estimate for σ in terms of S1(β̂).

Briefly comment on why the Laplace distribution cannot be written in exponential
dispersion family form.

6B Mathematical Biology

A field contains Xn seed-producing poppies in August of year n. On average each
poppy produces γ seeds, a number that is assumed not to vary from year to year. A
fraction σ of seeds survive the winter and a fraction α of those germinate in May of year
n+ 1. A fraction β of those that survive the next winter germinate in year n+ 2 . Show
that Xn satisfies the following difference equation:

Xn+1 = ασγXn + βσ2(1− α)γXn−1 .

Write down the general solution of this equation, and show that the poppies in the field
will eventually die out if

σγ[(1− α)βσ + α] < 1 .

7E Dynamical Systems

Find and classify the fixed points of the system

ẋ = (1− x2)y ,

ẏ = x(1− y2) .

What are the values of their Poincaré indices? Prove that there are no periodic orbits.
Sketch the phase plane.
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8B Further Complex Methods

The function I(z) is defined by

I(z) =
1

Γ(z)

∫ ∞

0

tz−1

et + 1
dt .

For what values of z is I(z) analytic?

By considering I(z)−ζ(z), where ζ(z) is the Riemann zeta function which you may
assume is given by

ζ(z) =
1

Γ(z)

∫ ∞

0

tz−1

et − 1
dt (Re z > 1) ,

show that I(z) =
(
1− 21−z

)
ζ(z) . Deduce from this result that the analytic continuation

of I(z) is an entire function. [You may use properties of ζ(z) without proof.]

9C Classical Dynamics

The Lagrangian for a particle of mass m and charge e moving in a magnetic field
with position vector r = (x, y, z) is given by

L = 1
2mṙ2 + e

ṙ ·A
c

,

where the vector potential A(r), which does not depend on time explicitly, is related to
the magnetic field B through

B = ∇×A .

Write down Lagrange’s equations and use them to show that the equation of motion of
the particle can be written in the form

mr̈ = e
ṙ×B
c

.

Deduce that the kinetic energy, T, is constant.

When the magnetic field is of the form B = (0, 0, dF/dx) for some specified function
F (x), show further that

ẋ2 =
2T
m

−
(
eF (x) + C

)2

m2c2
+ D ,

where C and D are constants.

Paper 2



5

10A Cosmology

The number density of photons in thermal equilibrium at temperature T takes the
form

n =
8π
c3

∫
ν2dν

exp(hν/kT )− 1
.

At time t = tdec and temperature T = Tdec, photons decouple from thermal equilibrium.
By considering how the photon frequency redshifts as the universe expands, show that
the form of the equilibrium frequency distribution is preserved, with the temperature for
t > tdec defined by

T ≡ a(tdec)
a(t)

Tdec .

Show that the photon number density n and energy density ε can be expressed in
the form

n = αT 3 , ε = ξT 4 ,

where the constants α and ξ need not be evaluated explicitly.
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SECTION II

11G Coding and Cryptography

Define the capacity of a discrete memoryless channel. State Shannon’s second
coding theorem and use it to show that the discrete memoryless channel with channel
matrix (

1 0
1
2

1
2

)
has capacity log 5− 2 .

12F Topics in Analysis

(i) Suppose that f : [0, 1] → R is continuous. Prove the theorem of Bernstein which
states that, if we write

fm(t) =
m∑

r=0

(
m

r

)
f(r/m)tr(1− t)m−r,

for 0 6 t 6 1 , then fm → f uniformly as m→∞ .

(ii) Let n > 1 , a1,n, a2,n, . . . , an,n ∈ R and let x1,n, x2,n, . . . , xn,n be distinct points
in [0, 1] . We write

In(g) =
n∑

j=1

aj,ng(xj,n)

for every continuous function g : [0, 1] → R . Show that, if

In(P ) =
∫ 1

0

P (t) dt ,

for all polynomials P of degree 2n− 1 or less, then aj,n > 0 for all 1 6 j 6 n and∑n
j=1 aj,n = 1 .

(iii) If In satisfies the conditions set out in (ii), show that

In(f) →
∫ 1

0

f(t) dt

as n→∞ whenever f : [0, 1] → R is continuous.
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13B Mathematical Biology

Show that the concentration C(x, t) of a diffusible chemical substance in a station-
ary medium satisfies the partial differential equation

∂C

∂t
= ∇ · (D∇C) + F ,

where D is the diffusivity and F (x, t) is the rate of supply of the chemical.

A finite amount of the chemical, 4πM , is supplied at the origin at time t = 0 , and
spreads out in a spherically symmetric manner, so that C = C(r, t) for r > 0, t > 0 , where
r is the radial coordinate. The diffusivity is given by D = kC , for constant k . Show, by
dimensional analysis or otherwise, that it is appropriate to seek a similarity solution in
which

C =
Mα

(k t)β
f(ξ) , ξ =

r

(Mkt)γ
and

∫ ∞

0

ξ2f(ξ) dξ = 1 ,

where α, β, γ are constants to be determined, and derive the ordinary differential equation
satisfied by f(ξ).

Solve this ordinary differential equation, subject to appropriate boundary condi-
tions, and deduce that the chemical occupies a finite spherical region of radius

r0(t) = (75Mkt)1/5 .

[Note: in spherical polar coordinates

∇C ≡
(
∂C

∂r
, 0, 0

)
and ∇ · (V (r, t), 0, 0) ≡ 1

r2
∂

∂r
(r2V ) .

]

14B Further Complex Methods

Show that the equation

zw′′ − (1 + z)w′ + 2(1− z)w = 0

has solutions of the form w(z) =
∫

γ
eztf(t) dt, where

f(t) =
1

(t− 2)(t+ 1)2
,

provided that γ is suitably chosen.

Hence find the general solution, evaluating the integrals explicitly. Show that the
general solution is entire, but that there is no solution that satisfies w(0) = 0 and w′(0) 6= 0.
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15C Classical Dynamics

(a) A Hamiltonian system with n degrees of freedom is described by the phase space
coordinates (q1, q2, ..., qn) and momenta (p1, p2, ..., pn). Show that the phase-space
volume element

dτ = dq1dq2.....dqndp1dp2.....dpn

is conserved under time evolution.

(b) The Hamiltonian, H , for the system in part (a) is independent of time. Show that
if F (q1, ..., qn, p1, ..., pn) is a constant of the motion, then the Poisson bracket [F,H]
vanishes. Evaluate [F,H] when

F =
n∑

k=1

pk

and

H =
n∑

k=1

p2
k + V (q1, q2, ..., qn) ,

where the potential V depends on the qk (k = 1, 2, ..., n) only through quantities of
the form qi − qj for i 6= j .

(c) For a system with one degree of freedom, state what is meant by the transformation

(q, p) →
(
Q(q, p), P (q, p)

)
being canonical. Show that the transformation is canonical if and only if the Poisson
bracket [Q,P ] = 1 .

16G Set Theory and Logic

Explain carefully what is meant by a deduction in the propositional calculus. State
the completeness theorem for the propositional calculus, and deduce the compactness
theorem.

Let P,Q,R be three pairwise-disjoint sets of primitive propositions, and suppose
given compound propositions s ∈ L(P ∪Q) and t ∈ L(Q∪R) such that (s ` t) holds. Let
U denote the set

{u ∈ L(Q) | (s ` u)} .

If v : Q→ 2 is any valuation making all the propositions in U true, show that the set

{s} ∪ {q | q ∈ Q, v(q) = 1} ∪ {¬q | q ∈ Q, v(q) = 0}

is consistent. Deduce that U ∪ {¬t} is inconsistent, and hence show that there exists
u ∈ L(Q) such that (s ` u) and (u ` t) both hold.
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17H Graph Theory

The Ramsey number R(G) of a graph G is the smallest n such that in any red/blue
colouring of the edges of Kn there is a monochromatic copy of G.

Show that R(Kt) 6
(
2t−2
t−1

)
for every t > 3.

Let H be the graph on four vertices obtained by adding an edge to a triangle. Show
that R(H) = 7.

18F Galois Theory

Let L = K(ξn), where ξn is a primitive nth root of unity and G = Aut(L/K).
Prove that there is an injective group homomorphism χ : G→ (Z/nZ)∗.

Show that, if M is an intermediate subfield of K(ξn)/K, then M/K is Galois. State
carefully any results that you use.

Give an example where G is non-trivial but χ is not surjective. Show that χ is
surjective when K = Q and n is a prime.

Determine all the intermediate subfields M of Q(ξ7) and the automorphism groups
Aut(Q (ξ7)/M). Write the quadratic subfield in the form Q(

√
d) for some d ∈ Q.

19H Representation Theory

Let G be a finite group and let Z be its centre. Show that if ρ is a complex
irreducible representation of G, assumed to be faithful (that is, the kernel of ρ is trivial),
then Z is cyclic.

Now assume that G is a p-group (that is, the order of G is a power of the prime
p), and assume that Z is cyclic. If ρ is a faithful representation of G, show that some
irreducible component of ρ is faithful.

[You may use without proof the fact that, since G is a p-group, Z is non-trivial and any
non-trivial normal subgroup of G intersects Z non-trivially.]

Deduce that a finite p-group has a faithful irreducible representation if and only if
its centre is cyclic.
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20H Number Fields

Let K = Q(
√

10) and put ε = 3 +
√

10.

(a) Show that 2, 3 and ε+1 are irreducible elements in OK . Deduce from the equation

6 = 2 · 3 = (ε+ 1)(ε̄+ 1)

that OK is not a principal ideal domain.

(b) Put p2 = [2, ε+ 1] and p3 = [3, ε+ 1]. Show that

[2] = p2
2 , [3] = p3p̄3 , p2p3 = [ε+ 1] , p2p̄3 = [ε− 1] .

Deduce that K has class number 2.

(c) Show that ε is the fundamental unit of K. Hence prove that all solutions in integers
x, y of the equation x2 − 10y2 = 6 are given by

x+
√

10y = ±εn(ε+ (−1)n) , n = 0, 1, 2, . . .

21H Algebraic Topology

State the Mayer–Vietoris sequence for a simplicial complex X which is a union of
two subcomplexes A and B. Define the homomorphisms in the sequence (but do not check
that they are well-defined). Prove exactness of the sequence at the term Hi(A ∩B).

22G Linear Analysis

Let X be a Banach space, Y a normed vector space, and T : X → Y a bounded
linear map. Assume that T (X) is of second category in Y . Show that T is surjective and
T (U) is open whenever U is open. Show that, if T is also injective, then T−1 exists and is
bounded.

Give an example of a continuous map f : R → R such that f(R) is of second
category in R but f is not surjective. Give an example of a continuous surjective map
f : R → R which does not take open sets to open sets.
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23F Riemann Surfaces

A function ψ is defined for z ∈ C by

ψ(z) =
∞∑

n=−∞
exp

(
πi

(
n+ 1

2

)2
τ + 2πi

(
n+ 1

2

) (
z + 1

2

))
where τ is a complex parameter with Im(τ) > 0. Prove that this series converges uniformly
on the subsets {|Im(z)| 6 R} for R > 0 and deduce that ψ is holomorphic on C.

You may assume without proof that

ψ(z + 1) = −ψ(z) and ψ(z + τ) = − exp(−πiτ − 2πiz)ψ(z)

for all z ∈ C. Let `(z) be the logarithmic derivative `(z) =
ψ′(z)
ψ(z)

. Show that

`(z + 1) = `(z) and `(z + τ) = −2πi+ `(z)

for all z ∈ C. Deduce that ψ has only one zero in the parallelogram P with vertices
1
2 (±1± τ). Find all of the zeros of ψ.

Let Λ be the lattice in C generated by 1 and τ . Show that, for λj , aj ∈ C
(j = 1, . . . , n), the formula

f(z) = λ1
ψ′(z − a1)
ψ(z − a1)

+ . . .+ λn
ψ′(z − an)
ψ(z − an)

gives a Λ-periodic meromorphic function f if and only if λ1 + . . .+ λn = 0. Deduce that
d

dz

(
ψ′(z − a)
ψ(z − a)

)
is Λ-periodic.

24H Differential Geometry

(i) What is a minimal surface? Explain why minimal surfaces always have non-positive
Gaussian curvature.

(ii) A smooth map f : S1 → S2 between two surfaces in 3-space is said to be conformal
if

〈dfp(v1), dfp(v2)〉 = λ(p)〈v1, v2〉

for all p ∈ S1 and all v1, v2 ∈ TpS1, where λ(p) 6= 0 is a number which depends
only on p.

Let S be a surface without umbilical points. Prove that S is a minimal surface if
and only if the Gauss map N : S → S2 is conformal.

(iii) Show that isothermal coordinates exist around a non-planar point in a minimal
surface.
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25J Probability and Measure

(a) State and prove the first Borel–Cantelli lemma. State the second Borel–Cantelli
lemma.

(b) Let X1, X2, . . . be a sequence of independent random variables that converges in
probability to the limit X. Show that X is almost surely constant.

A sequence X1, X2, . . . of random variables is said to be completely convergent to X if∑
n∈N

P
(
An(ε)

)
<∞ for all ε > 0 , where An(ε) =

{
|Xn −X| > ε

}
.

(c) Show that complete convergence implies almost sure convergence.

(d) Show that, for sequences of independent random variables, almost sure convergence
also implies complete convergence.

(e) Find a sequence of (dependent) random variables that converges almost surely but
does not converge completely.

26J Applied Probability

In this question we work with a continuous-time Markov chain where the rate of
jump i→ j may depend on j but not on i. A virus can be in one of s strains 1, . . . , s, and
it mutates to strain j with rate rj > 0 from each strain i 6= j. (Mutations are caused by
the chemical environment.) Set R = r1 + . . .+ rs.

(a) Write down the Q-matrix (the generator) of the chain (Xt) in terms of rj and R.

(b) If R = 0, that is, r1 = . . . = rs = 0, what are the communicating classes of the
chain (Xt)?

(c) From now on assume that R > 0. State and prove a necessary and sufficient
condition, in terms of the numbers rj , for the chain (Xt) to have a single
communicating class (which therefore should be closed).

(d) In general, what is the number of closed communicating classes in the chain (Xt)?
Describe all open communicating classes of (Xt).

(e) Find the equilibrium distribution of (Xt). Is the chain (Xt) reversible? Justify your
answer.

(f) Write down the transition matrix P̂ = (p̂ij) of the discrete-time jump chain for
(Xt) and identify its equilibrium distribution. Is the jump chain reversible? Justify
your answer.
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27I Principles of Statistics

(i) State Wilks’ likelihood ratio test of the null hypothesis H0 : θ ∈ Θ0 against the
alternative H1 : θ ∈ Θ1, where Θ0 ⊂ Θ1. Explain when this test may be used.

(ii) Independent identically-distributed observations X1, . . . , Xn take values in the set
S = {1, . . . ,K}, with common distribution which under the null hypothesis is of
the form

P (X1 = k|θ) = f(k|θ) (k ∈ S)

for some θ ∈ Θ0, where Θ0 is an open subset of some Euclidean space Rd,
d < K − 1. Under the alternative hypothesis, the probability mass function of
the Xi is unrestricted.

Assuming sufficient regularity conditions on f to guarantee the existence and
uniqueness of a maximum-likelihood estimator θ̂n(X1, . . . , Xn) of θ for each n,
show that for large n the Wilks’ likelihood ratio test statistic is approximately of
the form

K∑
j=1

(Nj − nπ̂j)2/Nj ,

where Nj =
∑n

i=1 I{Xi=j}, and π̂j = f(j|θ̂n). What is the asymptotic distribution
of this statistic?

28J Stochastic Financial Models

In the context of a single-period financial market with n traded assets, what is an
arbitrage? What is an equivalent martingale measure?

Fix ε ∈ (0, 1) and consider the following single-period market with 3 assets:

Asset 1 is a riskless bond and pays no interest.

Asset 2 is a stock with initial price £1 per share; its possible final prices are u = 1+ε
with probability 3/5 and d = 1− ε with probability 2/5 .

Asset 3 is another stock that behaves like an independent copy of asset 2.

Find all equivalent martingale measures for the problem and characterise all contingent
claims that can be replicated.

Consider a contingent claim Y that pays 1 if both risky assets move in the same
direction and zero otherwise. Show that the lower arbitrage bound, simply obtained by
calculating all possible prices as the pricing measure ranges over all equivalent martingale
measures, is zero. Why might someone pay for such a contract?
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29I Optimization and Control

State Pontryagin’s maximum principle in the case where both the terminal time
and the terminal state are given.

Show that π is the minimum value taken by the integral

1
2

∫ 1

0

(u2
t + v2

t ) dt

subject to the constraints x0 = y0 = z0 = x1 = y1 = 0 and z1 = 1, where

ẋt = ut, ẏt = vt, żt = utyt − vtxt, 0 6 t 6 1.

[You may find it useful to note the fact that the problem is rotationally symmetric about
the z-axis, so that the angle made by the initial velocity (ẋ0, ẏ0) with the positive x-axis
may be chosen arbitrarily.]

30A Partial Differential Equations

Define (i) the Fourier transform of a tempered distribution T ∈ S ′(R3), and
(ii) the convolution T ∗ g of a tempered distribution T ∈ S ′(R3) and a Schwartz function
g ∈ S(R3). Give a formula for the Fourier transform of T ∗ g (“convolution theorem”).

Let t > 0. Compute the Fourier transform of the tempered distribution At ∈ S ′(R3)
defined by

〈At, φ〉 =
∫
‖y‖=t

φ(y)dΣ(y), ∀φ ∈ S(R3),

and deduce the Kirchhoff formula for the solution u(t, x) of

∂2u

∂t2
−∆u = 0,

u(0, x) = 0,
∂u

∂t
(0, x) = g(x), g ∈ S(R3) .

Prove, by consideration of the quantities e = 1
2 (u2

t + |∇u|2) and p = −ut∇u, that any C2

solution is also given by the Kirchhoff formula (uniqueness).

Prove a corresponding uniqueness statement for the initial value problem

∂2w

∂t2
−∆w + V (x)w = 0,

w(0, x) = 0,
∂w

∂t
(0, x) = g(x), g ∈ S(R3)

where V is a smooth positive real-valued function of x ∈ R3 only.
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31E Integrable Systems

Solve the following linear singular equation

(
t+ t−1

)
φ(t) +

(
t− t−1

)
πi

−
∫

C

φ(τ)
τ − t

dτ −
(
t+ t−1

)
2πi

∮
C

(
τ + 2τ−1

)
φ(τ) dτ = 2t−1 ,

where C denotes the unit circle, t ∈ C and −
∫

C

denotes the principal value integral.

32D Principles of Quantum Mechanics

Let |sm〉 denote the combined spin eigenstates for a system of two particles, each
with spin 1. Derive expressions for all states with m = s in terms of product states.

Given that the particles are identical, and that the spatial wavefunction describing
their relative position has definite orbital angular momentum `, show that ` + s must
be even. Suppose that this two-particle state is known to arise from the decay of a
single particle, X, also of spin 1. Assuming that total angular momentum and parity are
conserved in this process, find the values of ` and s that are allowed, depending on whether
the intrinsic parity of X is even or odd.

[You may set ~ = 1 and use J±| j m 〉 =
√

(j ∓m)(j ±m+ 1) | j m±1 〉. ]

33A Applications of Quantum Mechanics

Describe the variational method for estimating the ground state energy of a
quantum system. Prove that an error of order ε in the wavefunction leads to an error
of order ε2 in the energy.

Explain how the variational method can be generalized to give an estimate of the
energy of the first excited state of a quantum system.

Using the variational method, estimate the energy of the first excited state of the
anharmonic oscillator with Hamiltonian

H = − d2

dx2
+ x2 + x4 .

How might you improve your estimate?

[Hint: If I2n =
∫∞
−∞ x2n e−ax2

dx then

I0 =
√
π

a
, I2 =

√
π

a

1
2a
, I4 =

√
π

a

3
4a2

, I6 =
√
π

a

15
8a3

.

]
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34D Statistical Physics

Derive the Maxwell relation(
∂S

∂p

)
T

= −
(
∂V

∂T

)
p

.

The diagram below illustrates the Joule–Thomson throttling process for a porous
barrier. A gas of volume V1, initially on the left-hand side of a thermally insulated pipe,
is forced by a piston to go through the barrier using constant pressure p1. As a result the
gas flows to the right-hand side, resisted by a piston which applies a constant pressure p2

(with p2 < p1). Eventually all of the gas occupies a volume V2 on the right-hand side.
Show that this process conserves enthalpy.

The Joule–Thomson coefficient µJT is the change in temperature with respect to
a change in pressure during a process that conserves enthalpy H. Express the Joule–

Thomson coefficient, µJT ≡
(
∂T

∂p

)
H

, in terms of T , V , the heat capacity at constant

pressure Cp, and the volume coefficient of expansion α ≡ 1
V

(
∂V

∂T

)
p

.

What is µJT for an ideal gas?

If one wishes to use the Joule–Thomson process to cool a real (non-ideal) gas, what
must the sign of µJT be?

Before

p1 V1
p2

After

p1 V2
p2

Key: insulated pipe

porous barrier

sliding pistons
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35A General Relativity

The symbol ∇a denotes the covariant derivative defined by the Christoffel connec-
tion Γa

bc for a metric gab. Explain briefly why

(∇a∇b −∇b∇a)φ = 0,
(∇a∇b −∇b∇a)vc 6= 0,

in general, where φ is a scalar field and vc is a covariant vector field.

A Killing vector field va satisfies the equation

Sab ≡ ∇avb +∇bva = 0 .

By considering the quantity ∇aSbc +∇bSac −∇cSab , show that

∇a∇bvc = −Rd
abcvd .

Find all Killing vector fields va in the case of flat Minkowski space-time.

For a metric of the form

ds2 = −f(x) dt2 + gij(x) dxidxj , i, j = 1, 2, 3 ,

where x denotes the coordinates xi, show that Γ0
00 = Γ0

ij = 0 and that Γ0
0i = Γ0

i0 =
1
2 (∂if) /f . Deduce that the vector field va = (1, 0, 0, 0) is a Killing vector field.

[You may assume the standard symmetries of the Riemann tensor.]
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36B Fluid Dynamics II

Viscous fluid is extracted through a small hole in the tip of the cone given by
θ = α in spherical polar coordinates (R, θ, φ). The total volume flux through the hole
takes the constant value Q. It is given that there is a steady solution of the Navier–Stokes
equations for the fluid velocity u. For small enough R, the velocity u is well approximated
by u ∼ (−A/R2, 0, 0), where A = Q/[2π(1 − cosα)] except in thin boundary layers near
θ = α.

(i) Verify that the volume flux through the hole is approximately Q.

(ii) Construct a Reynolds number (depending on R) in terms of Q and the kinematic
viscosity ν, and thus give an estimate of the value of R below which solutions of
this type will appear.

(iii) Assuming that there is a boundary layer near θ = α, write down the boundary layer
equations in the usual form, using local Cartesian coordinates x and y parallel and
perpendicular to the boundary. Show that the boundary layer thickness δ(x) is
proportional to x

3
2 , and show that the x component of the velocity ux may be

written in the form

ux = − A

x2
F ′(η), where η =

y

δ(x)
.

Derive the equation and boundary conditions satisfied by F . Give an expression, in terms
of F , for the volume flux through the boundary layer, and use this to derive the R-
dependence of the first correction to the flow outside the boundary layer.
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37C Waves

Show that for a one-dimensional flow of a perfect gas at constant entropy the
Riemann invariants u ± 2(c−c0)/(γ−1) are constant along characteristics dx/dt = u±c.

Define a simple wave. Show that in a right-propagating simple wave

∂u

∂t
+

(
c0 +

γ + 1
2

u

)
∂u

∂x
= 0 .

Now suppose instead that, owing to dissipative effects,

∂u

∂t
+

(
c0 +

γ + 1
2

u

)
∂u

∂x
= −αu

where α is a positive constant. Suppose also that u is prescribed at t = 0 for all x, say
u(x, 0) = v(x). Demonstrate that, unless a shock forms,

u(x, t) = v(x0) e−αt

where, for each x and t, x0 is determined implicitly as the solution of the equation

x− c0t = x0 +
γ + 1

2

(
1− e−αt

α

)
v(x0) .

Deduce that a shock will not form at any (x, t) if

α >
γ + 1

2
max
v′< 0

|v′(x0)| .

38C Numerical Analysis

(a) State the Householder–John theorem and explain how it can be used to design
iterative methods for solving a system of linear equations Ax = b .

(b) Let A = L+D+U where D is the diagonal part of A, and L and U are, respectively,
the strictly lower and strictly upper triangular parts of A. Given a vector b, consider
the following iterative scheme:

(D + ωL)x(k+1) = (1− ω)Dx(k) − ωUx(k) + ωb .

Prove that if A is a symmetric positive definite matrix, and ω ∈ (0, 2), then the
above iteration converges to the solution of the system Ax = b.

END OF PAPER
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