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SECTION I

1H Number Theory

If n is an odd integer and b is an integer prime with n, state what it means for n
to be a pseudoprime to the base b. What is a Carmichael number? State a criterion for n
to be a Carmichael number and use the criterion to show that:

(i) Every Carmichael number is the product of at least three distinct primes.

(ii) 561 is a Carmichael number.

2F Topics in Analysis

(i) Let D ⊂ C be a domain, let f : D → C be an analytic function and let z0 ∈ D.
What does Taylor’s theorem say about z0, f and D?

(ii) Let K be the square consisting of all complex numbers z such that

−1 6 Re(z) 6 1 and − 1 6 Im(z) 6 1 ,

and let w be a complex number not belonging to K. Prove that the function f(z) =
(z − w)−1 can be uniformly approximated on K by polynomials.

3G Geometry of Group Actions

Show that a set F ⊂ Rn with Hausdorff dimension strictly less than one is totally
disconnected.

What does it mean for a Möbius transformation to pair two discs? By considering
a pair of disjoint discs and a pair of tangent discs, or otherwise, explain in words why there
is a 2-generator Schottky group with limit set Λ ⊂ S2 which has Hausdorff dimension at
least 1 but which is not homeomorphic to a circle.

4J Coding and Cryptography

What does it mean to transmit reliably at rate r through a binary symmetric
channel (BSC) with error probability p? Assuming Shannon’s second coding theorem,
compute the supremum of all possible reliable transmission rates of a BSC. What happens
if (i) p is very small, (ii) p = 1/2, or (iii) p > 1/2?

Paper 4
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5I Statistical Modelling

You see below five R commands, and the corresponding output (which is slightly
abbreviated). Without giving any mathematical proofs, explain the purpose of these
commands, and interpret the output.

> Yes = c(12, 27,11,24)

> Total = c(117,170,52,118)

> Sclass = c("a","a","b","b")

> Sclass = factor(Sclass)

> summary(glm(Yes/Total~ Sclass, binomial, weights=Total))

Coefficients:

Estimate Std. Error z value

(Intercept) -1.8499 0.1723 -10.739

Sclassb 0.4999 0.2562 1.951

Residual deviance: 1.9369 on 2 degrees of freedom

Number of Fisher Scoring iterations: 4
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6E Mathematical Biology

The output of a linear perceptron is given by y = w · x, where w is a vector
of weights connecting a fluctuating input vector x to an output unit. The weights are
given random initial values and are then updated according to a learning rule that has a
time-constant τ much greater than the fluctuation timescale of the inputs.

(a) Find the behaviour of |w| for each of the following two rules

(i) τ
dw
dt

= yx

(ii) τ
dw
dt

= yx− αy2w|w|2, where α is a positive constant.

(b) Consider a third learning rule

(iii) τ
dw
dt

= yx−w|w|2 .

Show that in a steady state the vector of weights satisfies the eigenvalue equation

Cw = λw ,

where the matrix C and eigenvalue λ should be identified.

(c) Comment briefly on the biological implications of the three rules.

7B Dynamical Systems

Find and classify the fixed points of the system

ẋ = x(1− y)

ẏ = −y + x2 .

Sketch the phase plane.

What is the ω-limit for the point (2,−1)? Which points have (0, 0) as their ω-limit?
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8A Further Complex Methods

Write down necessary and sufficient conditions on the functions p(z) and q(z) for
the point z = 0 to be (i) an ordinary point and (ii) a regular singular point of the equation

w′′ + p(z)w′ + q(z)w = 0. (∗)

Show that the point z = ∞ is an ordinary point if and only if

p(z) = 2z−1 + z−2P (z−1), q(z) = z−4Q(z−1),

where P and Q are analytic in a neighbourhood of the origin.

Find the most general equation of the form (∗) that has a regular singular point at
z = 0 but no other singular points.

9C Classical Dynamics

Define a canonical transformation for a one-dimensional system with coordinates
(q, p) → (Q,P ). Show that if the transformation is canonical then {Q,P} = 1.

Find the values of constants α and β such that the following transformations are
canonical:

(i) Q = pqβ , P = αq−1 .

(ii) Q = qα cos(βp), P = qα sin(βp).

10D Cosmology

The linearised equation for the growth of a density fluctuation δk in a homogeneous
and isotropic universe is

d2δk
dt2

+ 2
ȧ

a

dδk
dt

−
(

4πGρm − v2
sk

2

a2

)
δk = 0 , (∗)

where ρm is the non-relativistic matter density, k is the comoving wavenumber and vs is
the sound speed (v2

s ≡ dP/dρ).

(a) Define the Jeans length λJ and discuss its significance for perturbation growth.

(b) Consider an Einstein–de Sitter universe with a(t) = (t/t0)2/3 filled with
pressure-free matter (P = 0). Show that the perturbation equation (∗) can be re-expressed
as

δ̈k +
4
3t
δ̇k −

2
3t2

δk = 0 .

By seeking power law solutions, find the growing and decaying modes of this equation.

(c) Qualitatively describe the evolution of non-relativistic matter perturbations
(k > aH) in the radiation era, a(t) ∝ t1/2, when ρr � ρm. What feature in the power
spectrum is associated with the matter–radiation transition?
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SECTION II

11H Number Theory

(a) Let N be a non-square integer. Describe the integer solutions of the Pell
equation x2 −Ny2 = 1 in terms of the convergents to

√
N . Show that the set of integer

solutions forms an abelian group. Denote the addition law in this group by ◦; given
solutions (x0, y0) and (x1, y1), write down an explicit formula for (x0, y0) ◦ (x1, y1). If
(x, y) is a solution, write down an explicit formula for (x, y) ◦ (x, y) ◦ (x, y) in the group
law.

(b) Find the continued fraction expansion of
√

11. Find the smallest solution in
integers x, y > 0 of the Pell equation x2 − 11y2 = 1. Use the formula in Part (a) to
compute (x, y) ◦ (x, y) ◦ (x, y).

12G Geometry of Group Actions

For real s > 0 and F ⊂ Rn, give a careful definition of the s-dimensional Hausdorff
measure of F and of the Hausdorff dimension dimH(F ) of F .

For 1 6 i 6 k, suppose Si : Rn → Rn is a similarity with contraction factor
ci ∈ (0, 1). Prove there is a unique non-empty compact invariant set I for the {Si}. State
a formula for the Hausdorff dimension of I, under an assumption on the Si you should
state.

Hence show the Hausdorff dimension of the fractal F given by iterating the scheme
below (at each stage replacing each edge by a new copy of the generating template) is
dimH(F ) = 3/2.

4

[Numbers denote lengths]

1

1

1

1

1

2

1
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13I Statistical Modelling

(i) Suppose that Y1, . . . , Yn are independent random variables, and that Yi has
probability density function

f(yi|β, ν) =
(
νyi

µi

)ν

e−yiν/µi
1

Γ(ν)
1
yi

for yi > 0

where
1/µi = βTxi , for 1 6 i 6 n,

and x1, . . . , xn are given p-dimensional vectors, and ν is known.

Show that E(Yi) = µi and that var (Yi) = µ2
i /ν.

(ii) Find the equation for β̂, the maximum likelihood estimator of β, and suggest
an iterative scheme for its solution.

(iii) If p = 2, and xi =
(

1
zi

)
, find the large-sample distribution of β̂2. Write your

answer in terms of a, b, c and ν, where a, b, c are defined by

a =
∑

µ2
i , b =

∑
ziµ

2
i , c =

∑
z2
i µ

2
i .

14A Further Complex Methods

Two representations of the zeta function are

ζ(z) =
Γ(1− z)

2πi

∫ (0+)

−∞

tz−1

e−t − 1
dt and ζ(z) =

∞∑
1

n−z ,

where, in the integral representation, the path is the Hankel contour and the principal
branch of tz−1, for which | arg z| < π, is to be used. State the range of z for which each
representation is valid.

Evaluate the integral ∫
γ

tz−1

e−t − 1
dt,

where γ is a closed path consisting of the straight line z = πi + x, with |x| < 2Nπ, and
the semicircle |z − πi| = 2Nπ, with Im z > π, where N is a positive integer.

Making use of this result and assuming, when necessary, that the integral along the
curved part of γ is negligible when N is large, derive the functional equation

ζ(z) = 2zπz−1 sin(πz/2)Γ(1− z)ζ(1− z)

for z 6= 1.
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15D Cosmology

For an ideal gas of bosons, the average occupation number can be expressed as

n̄k =
gk

e(Ek−µ)/kT − 1
, (∗)

where gk has been included to account for the degeneracy of the energy level Ek. In the
approximation in which a discrete set of energies Ek is replaced with a continuous set with
momentum p, the density of one-particle states with momentum in the range p to p+ dp
is g(p)dp. Explain briefly why

g(p) ∝ p2V ,

where V is the volume of the gas. Using this formula with equation (∗), obtain an
expression for the total energy density ε = E/V of an ultra-relativistic gas of bosons
at zero chemical potential as an integral over p. Hence show that

ε ∝ Tα ,

where α is a number you should find. Why does this formula apply to photons?

Prior to a time t ∼ 100, 000 years, the universe was filled with a gas of photons and
non-relativistic free electrons and protons. Subsequently, at around t ∼ 400, 000 years,
the protons and electrons began combining to form neutral hydrogen,

p+ e− ↔ H + γ .

Deduce Saha’s equation for this recombination process stating clearly the steps required:

n2
e

nH
=
(

2πmekT

h2

)3/2

exp(−I/kT ) ,

where I is the ionization energy of hydrogen. [Note that the equilibrium number density of
a non-relativistic species (kT � mc2) is given by n = gs

(
2πmkT

h2

)3/2
exp

[
(µ−mc2)/kT

]
,

while the photon number density is nγ = 16πζ(3)
(

kT
hc

)3
, where ζ(3) ≈ 1.20.... ]

Consider now the fractional ionization Xe = ne/nB, where nB = np + nH = ηnγ is
the baryon number of the universe and η is the baryon-to-photon ratio. Find an expression
for the ratio

(1−Xe)/X2
e

in terms only of kT and constants such as η and I. One might expect neutral hydrogen
to form at a temperature given by kT ≈ I ≈ 13 eV, but instead in our universe it forms
at the much lower temperature kT ≈ 0.3 eV. Briefly explain why.
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16F Logic and Set Theory

State and prove the Completeness Theorem for Propositional Logic. [You do not
need to give definitions of the various terms involved. You may assume that the set of
primitive propositions is countable. You may also assume the Deduction Theorem, provided
that you state it clearly.]

Where in your argument have you used the third axiom, namely (¬¬p) ⇒ p?

State the Compactness Theorem, and deduce it from the Completeness Theorem.

17F Graph Theory

Write an essay on extremal graph theory. Your essay should include the proof of
at least one extremal theorem. You should state the Erdős–Stone theorem, as well as
describing its proof and showing how it can be applied.

18G Galois Theory

(i) Let K be the splitting field of the polynomial

x4 − 4x2 − 1

over Q. Show that [K : Q] = 8, and hence show that the Galois group of K/Q is the
dihedral group of order 8.

(ii) Let L be the splitting field of the polynomial

x4 − 4x2 + 1

over Q. Show that [L : Q] = 4. Show that the Galois group of L/Q is C2 × C2.

19G Representation Theory

(i) State and prove the Weyl integration formula for SU(2).

(ii) Determine the characters of the symmetric powers of the standard 2-dimensional
representation of SU(2) and prove that they are irreducible.

[Any general theorems from the course may be used.]
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20G Number Fields

State Dedekind’s theorem on the factorisation of rational primes into prime ideals.

A rational prime is said to ramify totally in a field with degree n if it is the n-th
power of a prime ideal in the field. Show that, in the quadratic field Q(

√
d) with d a square-

free integer, a rational prime ramifies totally if and only if it divides the discriminant of
the field.

Verify that the same holds in the cyclotomic field Q(ζ), where ζ = e2πi/q with q an
odd prime, and also in the cubic field Q( 3

√
2).

[The cases d ≡ 2, 3 (mod 4) and d ≡ 1 (mod 4) for the quadratic field should be carefully
distinguished. It can be assumed that Q(ζ) has a basis 1, ζ, . . . , ζq−2 and discriminant
(−1)(q−1)/2qq−1, and that Q( 3

√
2) has a basis 1, 3

√
2, ( 3

√
2)2 and discriminant −108.]

21H Algebraic Topology

Let X be a simplicial complex. Suppose X = B∪C for subcomplexes B and C, and
let A = B ∩ C. Show that the inclusion of A in B induces an isomorphism H∗A→ H∗B
if and only if the inclusion of C in X induces an isomorphism H∗C → H∗X.

22F Linear Analysis

Let X and Y be normed vector spaces. Show that a linear map T : X → Y is
continuous if and only if it is bounded.

Now let X, Y , Z be Banach spaces. We say that a map F : X × Y → Z is bilinear
if

F (αx+ βy, z) = αF (x, z) + βF (y, z), for all scalars α, β and x, y ∈ X, z ∈ Y

F (x, αy + βz) = αF (x, y) + βF (x, z), for all scalars α, β and x ∈ X, y, z ∈ Y .

Suppose that F is bilinear and is continuous in each variable separately. Show that there
exists a constant M > 0 such that

||F (x, y)|| 6 M ||x|| ||y||

for all x ∈ X, y ∈ Y .

[Hint: For each fixed x ∈ X, consider the map y 7→ F (x, y) from Y to Z.]

Paper 4
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23H Riemann Surfaces

Define what is meant by the degree of a non-constant holomorphic map between
compact connected Riemann surfaces, and state the Riemann–Hurwitz formula.

Let EΛ = C/Λ be an elliptic curve defined by some lattice Λ. Show that the map

ψ : z + Λ ∈ EΛ → −z + Λ ∈ EΛ

is biholomorphic, and that there are four points in EΛ fixed by ψ.

Let S = EΛ/ ∼ be the quotient surface (the topological surface obtained by
identifying z + Λ and ψ(z + Λ), for each z) and let π : EΛ → S be the corresponding
projection map. Denote by E0

Λ ⊂ EΛ the complement of the four points fixed by ψ, and
let S0 = π(E0

Λ). Describe briefly a family of charts making S0 into a Riemann surface, so
that π : E0

Λ → S0 is a holomorphic map.

Now assume that the complex structure of S0 extends to S, so that S is a Riemann
surface, and that the map π is in fact holomorphic on all of EΛ. Calculate the genus of S.

Paper 4 [TURN OVER



12

24H Differential Geometry

(i) Define what is meant by an isothermal parametrization. Let φ : U → R3 be an
isothermal parametrization. Prove that

φuu + φvv = 2λ2 H,

where H is the mean curvature vector and λ2 = 〈φu, φu〉.

Define what it means for φ to be minimal, and deduce that φ is minimal if and only
if ∆φ = 0.

[You may assume that the mean curvature H can be written as

H =
eG− 2fF + gE

2(EG− F 2)
. ]

(ii) Write φ(u, v) = (x(u, v), y(u, v), z(u, v)). Consider the complex valued functions

ϕ1 = xu − ixv, ϕ2 = yu − iyv, ϕ3 = zu − izv.

Show that φ is isothermal if and only if ϕ2
1 + ϕ2

2 + ϕ2
3 ≡ 0.

Suppose now that φ is isothermal. Prove that φ is minimal if and only if ϕ1, ϕ2

and ϕ3 are holomorphic functions.

(iii) Consider the immersion φ : R2 → R3 given by

φ(u, v) = (u− u3/3 + uv2, −v + v3/3− u2v, u2 − v2).

Find ϕ1, ϕ2 and ϕ3. Show that φ is an isothermal parametrization of a minimal surface.
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13

25J Probability and Measure

Let f : R2 → R be Borel-measurable. State Fubini’s theorem for the double integral∫
y∈R

∫
x∈R

f(x, y) dx dy .

Let 0 < a < b. Show that the function

f(x, y) =
{
e−xy if x ∈ (0,∞), y ∈ [a, b]
0 otherwise

is measurable and integrable on R2.

Evaluate
∞∫
0

e−ax − e−bx

x
dx

by Fubini’s theorem or otherwise.
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26I Applied Probability

A particle performs a continuous-time nearest neighbour random walk on a regular
triangular lattice inside an angle π/3, starting from the corner. See the diagram below.
The jump rates are 1/3 from the corner and 1/6 in each of the six directions if the particle
is inside the angle. However, if the particle is on the edge of the angle, the rate is 1/3
along the edge away from the corner and 1/6 to each of three other neighbouring sites in
the angle. See the diagram below, where a typical trajectory is also shown.

1/3

1/6
1/6

1/6

1/3
1/61/6

1/6

1/3 1/3

1/61/6

1/6 1/6

1/6 1/6

The particle position at time t > 0 is determined by its vertical level Vt and its
horizontal position Gt. For k > 0, if Vt = k then Gt = 0, . . . , k. Here 1, . . . , k − 1 are
positions inside, and 0 and k positions on the edge of the angle, at vertical level k.

Let JV
1 , JV

2 , ... be the times of subsequent jumps of process (Vt) and consider the
embedded discrete-time Markov chains

Y in
n =

(
Ĝin

n , V̂n

)
and Y out

n =
(
Ĝout

n , V̂n

)
where V̂n is the vertical level immediately after time JV

n , Ĝin
n is the horizontal position

immediately after time JV
n , and Ĝout

n is the horizontal position immediately before time
JV

n+1.
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(a) Assume that (V̂n) is a Markov chain with transition probabilities

P
(
V̂n = k + 1

∣∣V̂n−1 = k) =
k + 2

2(k + 1)
, P

(
V̂n = k − 1

∣∣V̂n−1 = k) =
k

2(k + 1)
,

and that (Vt) is a continuous-time Markov chain with rates

qkk−1 =
k

3(k + 1)
, qkk = −2

3
, qkk+1 =

k + 2
3(k + 1)

.

[You will be asked to justify these assumptions in part (b) of the question.] Determine
whether the chains (V̂n) and (Vt) are transient, positive recurrent or null recurrent.

(b) Now assume that, conditional on V̂n = k and previously passed vertical levels,
the horizontal positions Ĝin

n and Ĝout
n are uniformly distributed on {0, . . . , k}. In other

words, for all attainable values k, kn−1, . . ., k1 and for all i = 0, . . . , k,

P
(
Ĝin

n = i
∣∣V̂n = k, V̂n−1 = kn−1, . . . , V̂1 = k1, V̂0 = 0

)
= P

(
Ĝout

n = i
∣∣V̂n = k, V̂n−1 = kn−1, . . . , V̂1 = k1, V̂0 = 0

)
=

1
k + 1

.
(∗)

Deduce that (V̂n) and (Vt) are indeed Markov chains with transition probabilities and
rates as in (a).

(c) Finally, prove property (∗).

Paper 4 [TURN OVER



16

27I Principles of Statistics

A group of n hospitals is to be ‘appraised’; the ‘performance’ θi of hospital i has
a N(0, 1/τ) prior distribution, different hospitals being independent. The ‘performance’
cannot be measured directly, so an expensive firm of management consultants has been
hired to arrive at each hospital’s Standardised Index of Quality [SIQ], this being a number
Xi for hospital i related to θi by the commercially-sensitive formula

Xi = θi + εi,

where the εi are independent with common N(0, 1/τε) distribution.

(i) Assume that τ and τε are known. What is the posterior distribution of θ given
X? Suppose that hospital j was the hospital with the lowest SIQ, with a value Xj = x;
conditional on X, what is the distribution of θj?

(ii) Now, instead of assuming τ and τε known, suppose that τ has a Gamma prior
with parameters (α, β), density

f(t) = (βt)α−1βe−βt/Γ(α)

for known α and β, and that τε = κτ , where κ is a known constant. Find the posterior
distribution of (θ, τ) given X. Comment briefly on the form of the distribution.

Paper 4
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28J Stochastic Financial Models

(a) In the context of the Black–Scholes formula, let S0 be spot price, K be strike price,
T be time to maturity, and assume constant interest rate r, volatility σ and absence
of dividends. Write down explicitly the prices of a European call and put,

EC (S0,K, σ, r, T ) and EP (S0,K, σ, r, T ) .

Use Φ for the normal distribution function. [No proof is required.]

(b) From here on assume r = 0. Keeping T, σ fixed, we shorten the notation to
EC (S0,K) and similarly for EP. Show that put-call symmetry holds:

EC (S0,K) = EP (K,S0) .

Check homogeneity: for every real α > 0

EC (αS0, αK) = αEC (S0,K) .

(c) Show that the price of a down-and-out European call with strike K < S0 and
barrier B 6 K is given by

EC (S0,K)− S0

B
EC

(
B2

S0
,K

)
.

(d)

(i) Specialize the last expression to B = K and simplify.

(ii) Answer a popular interview question in investment banks: What is the fair value
of a down-and-out call given that S0 = 100, B = K = 80, σ = 20%, r = 0, T = 1?
Identify the corresponding hedge. [It may be helpful to compute Delta first.]

(iii) Does this hedge work beyond the Black–Scholes model? When does it fail?
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29I Optimization and Control

A continuous-time control problem is defined in terms of state variable x(t) ∈ Rn

and control u(t) ∈ Rm, 0 6 t 6 T . We desire to minimize
∫ T

0
c(x, t) dt+K(x(T )), where T

is fixed and x(T ) is unconstrained. Given x(0) and ẋ = a(x, u), describe further boundary
conditions that can be used in conjunction with Pontryagin’s maximum principle to find
x, u and the adjoint variables λ1, . . . , λn.

Company 1 wishes to steal customers from Company 2 and maximize the profit it
obtains over an interval [0, T ]. Denoting by xi(t) the number of customers of Company i,
and by u(t) the advertising effort of Company 1, this leads to a problem

minimize
∫ T

0

[
x2(t) + 3u(t)

]
dt ,

where ẋ1 = ux2, ẋ2 = −ux2, and u(t) is constrained to the interval [0, 1]. Assuming
x2(0) > 3/T , use Pontryagin’s maximum principle to show that the optimal advertising
policy is bang-bang, and that there is just one change in advertising effort, at a time t∗,
where

3 et∗ = x2(0)(T − t∗) .

30C Partial Differential Equations

Write down the solution of the three-dimensional wave equation

utt −∆u = 0 , u(0, x) = 0 , ut(0, x) = g(x) ,

for a Schwartz function g. Here ∆ is taken in the variables x ∈ R3 and ut = ∂u/∂t
etc. State the “strong” form of Huygens principle for this solution. Using the method of
descent, obtain the solution of the corresponding problem in two dimensions. State the
“weak” form of Huygens principle for this solution.

Let u ∈ C2([0, T ]× R3) be a solution of

utt −∆u+ |x|2u = 0 , u(0, x) = 0 , ut(0, x) = 0 . (∗)

Show that
∂te+ ∇ · p = 0 , (∗∗)

where
e = 1

2

(
ut

2 + |∇u|2 + |x|2u2
)
, and p = −ut∇u .

Hence deduce, by integration of (∗∗) over the region

K =
{
(t, x) : 0 6 t 6 t0 − a 6 t0, |x− x0| 6 t0 − t

}
or otherwise, that (∗) satisfies the weak Huygens principle.
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31A Asymptotic Methods

Consider the differential equation

d2w

dx2
= q(x)w ,

where q(x) > 0 in an interval (a,∞). Given a solution w(x) and a further smooth function
ξ(x), define

W (x) = [ξ′(x)]1/2w(x) .

Show that, when ξ is regarded as the independent variable, the function W (ξ) obeys
the differential equation

d2W

dξ2
=

{
ẋ2q(x) + ẋ1/2 d

2

dξ2
[ẋ−1/2]

}
W, (∗)

where ẋ denotes dx/dξ.

Taking the choice

ξ(x) =
∫
q1/2(x)dx ,

show that equation (∗) becomes

d2W

dξ2
= (1 + φ)W ,

where

φ = − 1
q3/4

d2

dx2

( 1
q1/4

)
.

In the case that φ is negligible, deduce the Liouville–Green approximate solutions

w± = q−1/4 exp
(
±
∫
q1/2dx

)
.

Consider the Whittaker equation

d2w

dx2
=

[
1
4

+
s(s− 1)
x2

]
w ,

where s is a real constant. Show that the Liouville–Green approximation suggests the
existence of solutions wA,B(x) with asymptotic behaviour of the form

wA ∼ exp(x/2)

(
1 +

∞∑
n=1

anx
−n

)
, wB ∼ exp(−x/2)

(
1 +

∞∑
n=1

bnx
−n

)
as x→∞.

Given that these asymptotic series may be differentiated term-by-term, show that

an =
(−1)n

n!
(s− n)(s− n+ 1) . . . (s+ n− 1) .
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32D Principles of Quantum Mechanics

The Hamiltonian for a quantum system in the Schrödinger picture is

H0 + λV (t) ,

where H0 is independent of time and the parameter λ is small. Define the interaction
picture corresponding to this Hamiltonian and derive a time evolution equation for
interaction picture states.

Let |a〉 and |b〉 be eigenstates ofH0 with distinct eigenvalues Ea and Eb respectively.
Show that if the system is initially in state |a〉 then the probability of measuring it to be
in state |b〉 after a time t is

λ2

~2

∣∣∣∣ ∫ t

0

dt′〈b|V (t′)|a〉ei(Eb−Ea)t′/~
∣∣∣∣2 + O(λ3) .

Deduce that if V (t) = e−µt/~W , where W is a time-independent operator and µ is a
positive constant, then the probability for such a transition to have occurred after a very
long time is approximately

λ2

µ2 + (Eb − Ea)2
|〈b|W |a〉|2 .
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33B Applications of Quantum Mechanics

A semiconductor has a valence energy band with energies E 6 0 and density of
states gv(E), and a conduction energy band with energies E > Eg and density of states
gc(E). Assume that gv(E) ∼ Av(−E)

1
2 as E → 0, and that gc(E) ∼ Ac(E − Eg)

1
2

as E → Eg. At zero temperature all states in the valence band are occupied and
the conduction band is empty. Let p be the number of holes in the valence band and
n the number of electrons in the conduction band at temperature T . Under suitable
approximations derive the result

pn = NvNce
−Eg/kT

where
Nv = 1

2

√
πAv(kT )

3
2 , Nc = 1

2

√
πAc(kT )

3
2 .

Briefly describe how a semiconductor may conduct electricity but with a conductivity that
is strongly temperature dependent.

Describe how doping of the semiconductor leads to p 6= n. A pn junction is formed
between an n-type semiconductor, with Nd donor atoms, and a p-type semiconductor,
with Na acceptor atoms. Show that there is a potential difference Vnp = ∆E/|e| across
the junction, where e is the electron charge, and

∆E = Eg − kT ln
NvNc

NdNa
.

Two semiconductors, one p-type and one n-type, are joined to make a closed circuit
with two pn junctions. Explain why a current will flow around the circuit if the junctions
are at different temperatures.

[The Fermi–Dirac distribution function at temperature T and chemical potential µ is
g(E)

e(E−µ)/kT + 1
, where g(E) is the number of states with energy E.

Note that
∫ ∞

0

x
1
2 e−x dx = 1

2

√
π.]
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34D Statistical Physics

Write down an expression for the partition function of a classical particle of mass
m moving in three dimensions in a potential U(x) and in equilibrium with a heat bath at
temperature T .

A system of N non-interacting classical particles is placed in the potential

U(x) =
(x2 + y2 + z2)n

V 2n/3
,

where n is a positive integer. The gas is in equilibrium at temperature T . Using a suitable
rescaling of variables, show that the free energy F is given by

F

N
= −kT

(
log V +

3
2
n+ 1
n

log kT + log In

)
,

where

In =
(

2mπ
h2

)3/2 ∫ ∞

0

4πu2e−u2n

du .

Regarding V as an external parameter, find the thermodynamic force P , conjugate to V ,
exerted by this system. Find the equation of state and compare with that of an ideal gas
confined in a volume V .

Derive expressions for the entropy S, the internal energy E and the total heat
capacity CV at constant V .

Show that for all n the total heat capacity at constant P is given by

CP = CV +Nk .

[Note that
∫ ∞

0

u2e−u2/2 du =
√
π

2
. ]
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35B Electrodynamics

In Ginzburg–Landau theory, superconductivity is due to “supercarriers” of mass
ms and charge qs, which are described by a macroscopic wavefunction ψ with “Mexican
hat” potential

V = α(T )|ψ|2 +
1
2
β|ψ|4 .

Here, β > 0 is constant and α(T ) is a function of temperature T such that α(T ) > 0 for
T > Tc but α(T ) < 0 for T < Tc, where Tc is a critical temperature. In the presence of a
magnetic field B = ∇×A, the total energy of the superconducting system is

E[ψ,ψ∗,A] =
∫
d3x

[
1

2µ0
Ak,j

(
Ak,j −Aj,k

)
+

~2

2ms

∣∣∣ψ,k + i
qs
~
Akψ

∣∣∣2 + V

]
.

Use this to derive the equations

− ~2

2ms

(
∇− i

qs
~

A
)2
ψ +

(
α+ β|ψ|2

)
ψ = 0 (∗)

and
∇×B ≡ ∇

(
∇ ·A

)
−∇2A = µ0 j , (†)

where

j = − iqs~
2ms

(
ψ∗∇ψ − ψ∇ψ∗

)
− q2s
ms

|ψ|2A

=
qs

2ms
[ψ∗ (−i~∇− qsA)ψ + ψ (i~∇− qsA)ψ∗] .

Suppose that we write the wavefunction as

ψ =
√
ns e

iθ ,

where ns is the (real positive) supercarrier density and θ is a real phase function. Given
that (

∇− iqs
~

A
)
ψ = 0 ,

show that ns is constant and that ~∇θ = qsA. Given also that T < Tc, deduce that (∗)
allows such solutions for a certain choice of ns, which should be determined. Verify that
your results imply j = 0. Show also that B = 0 and hence that (†) is solved.

Let S be a surface within the superconductor with closed boundary C. Show that
the magnetic flux through S is

Φ ≡
∫
S
B · dS =

~
qs

[
θ
]
C .

Discuss, briefly, flux quantization.
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36C General Relativity

State clearly, but do not prove, Birkhoff’s Theorem about spherically symmetric
spacetimes. Let (r, θ, φ) be standard spherical polar coordinates and define F (r) =
1− 2M/r, where M is a constant. Consider the metric

ds2 =
dr2

F (r)
+ r2(dθ2 + sin2 θ dφ2)− F (r) dt2.

Explain carefully why this is appropriate for the region outside a spherically symmetric
star that is collapsing to form a black hole.

By considering radially infalling timelike geodesics xa = (r(τ), 0, 0, t(τ)), where τ
is proper time along the curve, show that a freely falling observer will reach the event
horizon after a finite proper time. Show also that a distant observer would see the horizon
crossing only after an infinite time.

37E Fluid Dynamics II

Consider flow of an incompressible fluid of uniform density ρ and dynamic viscosity
µ. Show that the rate of viscous dissipation per unit volume is given by

Φ = 2µeijeij ,

where eij is the strain rate.

Determine expressions for eij and Φ when the flow is irrotational with velocity
potential φ. Hence determine the rate of viscous dissipation, averaged over a wave
period 2π/ω, for an irrotational two-dimensional surface wave of wavenumber k and small
amplitude a� k−1 in a fluid of very small viscosity µ� ρω/k2 and great depth H � 1/k.

[You may use without derivation that in deep water a linearised wave with surface
displacement η = a cos (kx− wt) has velocity potential φ = −(ωa/k)e−kz sin (kx− ωt).]

Calculate the depth-integrated time-averaged kinetic energy per wavelength. As-
suming that the average potential energy is equal to the average kinetic energy, show that
the total wave energy decreases to leading order like e−γt, where

γ = 4µk2/ρ .
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38E Waves

Starting from the equations of conservation of mass and momentum for an inviscid
compressible fluid, show that for small perturbations about a state of rest and uniform
density the velocity is irrotational and the velocity potential satisfies the wave equation.
Identify the sound speed c0.

Define the acoustic energy density and acoustic energy flux, and derive the equation
for conservation of acoustic energy.

Show that in any (not necessarily harmonic) acoustic plane wave of wavenumber
k the kinetic and potential energy densities are equal and that the acoustic energy is
transported with velocity c0k̂.

Calculate the kinetic and potential energy densities for a spherically symmetric
outgoing wave. Are they equal?

39A Numerical Analysis

An n×n skew-symmetric matrix A is converted into an upper-Hessenberg form B,
say, by Householder reflections.

(a) Describe each step of the procedure and observe that B is tridiagonal. Your
algorithm should take advantage of the special form of A to reduce the number of
computations.

(b) Compare the cost (counting only products and looking only at the leading
term) of converting a skew-symmetric and a symmetric matrix to an upper-Hessenberg
form using Householder reflections.

END OF PAPER
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