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1D Markov Chains

(i) Explain what is meant by the transition semigroup {Pt} of a Markov chain X in
continuous time. If the state space is finite, show under assumptions to be stated clearly,
that P ′

t = GPt for some matrix G. Show that a distribution π satisfies πG = 0 if and only
if πPt = π for all t > 0, and explain the importance of such π.

(ii) Let X be a continuous-time Markov chain on the state space S = {1, 2} with
generator

G =
(
−β β
γ −γ

)
, where β, γ > 0.

Show that the transition semigroup Pt = exp(tG) is given by

(β + γ)Pt =
(

γ + βh(t) β(1− h(t))
γ(1− h(t)) β + γh(t)

)
,

where h(t) = e−t(β+γ).

For 0 < α < 1, let

H(α) =
(

α 1− α
1− α α

)
.

For a continuous-time chain X, let M be a matrix with (i, j) entry
P (X(1) = j | X(0) = i), for i, j ∈ S. Show that there is a chain X with M = H(α) if and
only if α > 1

2 .
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2A Functional Analysis

(i) Define the notion of a measurable function between measurable spaces. Show that
a continuous function R2 → R is measurable with respect to the Borel σ-fields on R2 and
R.

By using this, or otherwise, show that, when f, g : X → R are measurable with
respect to some σ-field F on X and the Borel σ-field on R, then f + g is also measurable.

(ii) State the Monotone Convergence Theorem for [0,∞]-valued functions. Prove the
Dominated Convergence Theorem.

[You may assume the Monotone Convergence Theorem but any other results about inte-
gration that you use will need to be stated carefully and proved.]

Let X be the real Banach space of continuous real-valued functions on [0, 1] with
the uniform norm. Fix u ∈ X and define

T : X → R ; f 7→
∫ 1

0

f(t)u(t) dt .

Show that T is a bounded, linear map with norm

||T || =
∫ 1

0

|u(t)| dt .

Is it true, for every choice of u, that there is function f ∈ X with ||f || = 1 and
||T (f)|| = ||T ||?

3J Electromagnetism

(i) Develop the theory of electromagnetic waves starting from Maxwell equations in
vacuum. You should relate the wave-speed c to ε0 and µ0 and establish the existence of
plane, plane-polarized waves in which E takes the form

E = (E0 cos(kz − ωt), 0, 0) .

You should give the form of the magnetic field B in this case.

(ii) Starting from Maxwell’s equation, establish Poynting’s theorem.

−j ·E =
∂W

∂t
+∇ · S ,

where W = ε0
2 E2 + 1

2µ0
B2 and S = 1

µ0
E ∧B. Give physical interpretations of W , S and

the theorem.

Compute the averages over space and time of W and S for the plane wave described
in (i) and relate them. Comment on the result.
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4K Dynamics of Differential Equations

(i) Define a hyperbolic fixed point x0 of a flow determined by a differential equation
ẋ = f(x) where x ∈ Rn and f is C1 (i.e. differentiable). State the Hartman-Grobman
Theorem for flow near a hyperbolic fixed point. For nonlinear flows in R2 with a hyperbolic
fixed point x0, does the theorem necessarily allow us to distinguish, on the basis of the
linearized flow near x0 between (a) a stable focus and a stable node; and (b) a saddle and
a stable node? Justify your answers briefly.

(ii) Show that the system:

ẋ = −(µ + 1) + (µ− 3)x− y + 6x2 + 12xy + 5y2 − 2x3 − 6x2y − 5xy2,

ẏ = 2− 2x + (µ− 5)y + 4xy + 6y2 − 2x2y − 6xy2 − 5y3

has a fixed point (x0, 0) on the x-axis. Show that there is a bifurcation at µ = 0 and
determine the stability of the fixed point for µ > 0 and for µ < 0.

Make a linear change of variables of the form u = x − x0 + αy, v = x − x0 + βy,
where α and β are constants to be determined, to bring the system into the form:

u̇ = v + u[µ− (u2 + v2)]

v̇ = −u + v[µ− (u2 + v2)]

and hence determine whether the periodic orbit produced in the bifurcation is stable or
unstable, and whether it exists in µ < 0 or µ > 0.

5C Representation Theory

Let G = SU2, and Vn be the vector space of homogeneous polynomials of degree n
in the variables x and y.

(i) Define the action of G on Vn, and prove that Vn is an irreducible representation of
G.

(ii) Decompose V4 ⊗ V3 into irreducible representations of SU2. Briefly justify your
answer.

(iii) SU2 acts on the vector space M3(C) of complex 3× 3 matrices via

ρ

(
a b
c d

)
·X =

 a b 0
c d 0
0 0 1

 X

 a b 0
c d 0
0 0 1

−1

, X ∈ M3(C).

Decompose this representation into irreducible representations.
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6C Galois Theory

Let Fp be the finite field with p elements (p a prime), and let k be a finite extension
of Fp. Define the Frobenius automorphism σ : k −→ k, verifying that it is an Fp-
automorphism of k.

Suppose f = Xp+1 +Xp +1 ∈ Fp[X] and that K is its splitting field over Fp. Why
are the zeros of f distinct? If α is any zero of f in K, show that σ(α) = − 1

α+1 . Prove
that f has at most two zeros in Fp and that σ3 = id. Deduce that the Galois group of f
over Fp is a cyclic group of order three.

7C Algebraic Topology

Write down the Mayer-Vietoris sequence and describe all the maps involved.

Use the Mayer-Vietoris sequence to compute the homology of the n-sphere Sn for
all n.

8A Hilbert Spaces

Let T be a bounded linear operator on a Hilbert space H. Define what it means
to say that T is (i) compact, and (ii) Fredholm. What is the index, ind(T ), of a Fredholm
operator T?

Let S, T be bounded linear operators on H. Prove that S and T are Fredholm if
and only if both ST and TS are Fredholm. Prove also that if S is invertible and T is
Fredholm then ind(ST ) = ind(TS) = ind(T ).

Let K be a compact linear operator on H. Prove that I + K is Fredholm with
index zero.

9B Riemann Surfaces

Let f : X → Y be a nonconstant holomorphic map between compact connected
Riemann surfaces. Define the valency of f at a point, and the degree of f .

Define the genus of a compact connected Riemann surface X (assuming the
existence of a triangulation).

State the Riemann-Hurwitz theorem. Show that a holomorphic non-constant self-
map of a compact Riemann surface of genus g > 1 is bijective, with holomorphic inverse.
Verify that the Riemann surface in C2 described in the equation w4 = z4−1 is non-singular,
and describe its topological type.

[Note: The description can be in the form of a picture or in words. If you apply Riemann-
Hurwitz, explain first how you compactify the surface.]
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10B Algebraic Curves

Let C be the projective curve (over an algebraically closed field k of characteristic
zero) defined by the affine equation

x5 + y5 = 1 .

Determine the points at infinity of C and show that C is smooth.

Determine the divisors of the rational functions x, y ∈ k(C).

Show that ω = dx/y4 is a regular differential on C.

Compute the divisor of ω. What is the genus of C?

11B Logic, Computation and Set Theory

(i) Write down a set of axioms for the theory of dense linear order with a bottom
element but no top element.

(ii) Prove that this theory has, up to isomorphism, precisely one countable model.

12D Probability and Measure

State and prove Birkhoff’s almost-everywhere ergodic theorem.

[You need not prove convergence in Lp and the maximal ergodic lemma may be assumed
provided that it is clearly stated.]

Let Ω = [0, 1), F = B([0, 1)) be the Borel σ-field and let P be Lebesgue measure
on (Ω,F). Give an example of an ergodic measure-preserving map θ : Ω → Ω (you need
not prove it is ergodic).

Let f(x) = x for x ∈ [0, 1). Find (at least for all x outside a set of measure zero)

lim
n→∞

1
n

n∑
i=1

(f ◦ θi−1)(x).

Briefly justify your answer.
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13D Applied Probability

Consider an M/G/1 queue with arrival rate λ and traffic intensity less
than 1. Prove that the moment-generating function of a typical busy period, MB(θ),
satisfies

MB(θ) = MS(θ − λ + λ MB(θ)),

where MS(θ) is the moment-generating function of a typical service time.

If service times are exponentially distributed with parameter µ > λ, show that

MB(θ) =
λ + µ− θ − {(λ + µ− θ)2 − 4λµ }1/2

2λ

for all sufficiently small but positive values of θ.

14D Optimization and Control

A file of X Mb is to be transmitted over a communications link. At each time t the
sender can choose a transmission rate, u(t), within the range [0, 1] Mb per second. The
charge for transmitting at rate u(t) at time t is u(t)p(t). The function p is fully known at
time 0. If it takes a total time T to transmit the file then there is a delay cost of γT 2,
γ > 0. Thus u and T are to be chosen to minimize∫ T

0

u(t)p(t)dt + γT 2 ,

where u(t) ∈ [0, 1], dx(t)/dt = −u(t), x(0) = X and x(T ) = 0. Quoting and applying
appropriate results of Pontryagin’s maximum principle show that a property of the optimal
policy is that there exists p∗ such that u(t) = 1 if p(t) < p∗ and u(t) = 0 if p(t) > p∗.

Show that the optimal p∗ and T are related by p∗ = p(T ) + 2γT .

Suppose p(t) = t + 1/t and X = 1. For what value of γ is it optimal to transmit at
a constant rate 1 between times 1/2 and 3/2?
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15E Principles of Statistics

(i) Explain what is meant by a uniformly most powerful unbiased test of a null
hypothesis against an alternative.

Let Y1, . . . , Yn be independent, identically distributed N(µ, σ2) random variables,
with σ2 known. Explain how to construct a uniformly most powerful unbiased size α test
of the null hypothesis that µ = 0 against the alternative that µ 6= 0.

(ii) Outline briefly the Bayesian approach to hypothesis testing based on Bayes factors.

Let the distribution of Y1, . . . , Yn be as in (i) above, and suppose we wish to test,
as in (i), µ = 0 against the alternative µ 6= 0. Suppose we assume a N(0, τ2) prior for µ
under the alternative. Find the form of the Bayes factor B, and show that, for fixed n, B
→∞ as τ →∞.

16D Stochastic Financial Models

(i) Suppose that Z is a random variable having the normal distribution with EZ = β
and Var Z = τ2.

For positive constants a, c show that

E
(
aeZ − c

)
+

= ae(β+τ2/2)Φ
(

log(a/c) + β

τ
+ τ

)
− cΦ

(
log(a/c) + β

τ

)
,

where Φ is the standard normal distribution function.

In the context of the Black-Scholes model, derive the formula for the price at time
0 of a European call option on the stock at strike price c and maturity time t0 when the
interest rate is ρ and the volatility of the stock is σ.

(ii) Let p denote the price of the call option in the Black-Scholes model specified in
(i). Show that ∂p

∂ρ > 0 and sketch carefully the dependence of p on the volatility σ (when
the other parameters in the model are held fixed).

Now suppose that it is observed that the interest rate lies in the range 0 < ρ < ρ0

and when it changes it is linked to the volatility by the formula σ = ln (ρ0/ρ). Consider a
call option at strike price c = S0, where S0 is the stock price at time 0. There is a small
increase ∆ρ in the interest rate; will the price of the option increase or decrease (assuming
that the stock price is unaffected)? Justify your answer carefully.

[You may assume that the function φ (x) /Φ (x) is decreasing in x, −∞ < x < ∞, and
increases to +∞ as x → −∞, where Φ is the standard-normal distribution function and
φ = Φ′.]
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17K Dynamical Systems

If A =
(

0 1
1 1

)
show that An+2 = An+1 + An for all n > 0. Show that A5 has

trace 11 and deduce that the subshift map defined by A has just two cycles of exact period
5. What are they?

18A Partial Differential Equations

Write down a formula for the solution u = u(t, x), for t > 0 and x ∈ Rn, of the
initial value problem for the heat equation:

∂u

∂t
−∆u = 0 u(0, x) = f(x),

for f a bounded continuous function f : Rn → R. State (without proof) a theorem which
ensures that this formula is the unique solution in some class of functions (which should
be explicitly described).

By writing u = etv, or otherwise, solve the initial value problem

∂v

∂t
+ v −∆v = 0, v(0, x) = g(x), (†)

for g a bounded continuous function g : Rn → R and give a class of functions in which
your solution is the unique one.

Hence, or otherwise, prove that for all t > 0:

sup
x∈Rn

v(t, x) 6 sup
x∈Rn

g(x)

and deduce that the solutions v1(t, x) and v2(t, x) of (†) corresponding to initial values
g1(x) and g2(x) satisfy, for t > 0,

sup
x∈Rn

|v1(t, x)− v2(t, x)| 6 sup
x∈Rn

|g1(x)− g2(x)|.
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19L Methods of Mathematical Physics

Consider the integral ∫ ∞

0

tze−at

1 + t
dt ,

where tz is the principal branch and a is a positive constant. State the region of the
complex z–plane in which the integral defines a holomorphic function.

Show how the analytic continuation of this function can be obtained by means of
an alternative integral representation using the Hankel contour.

Hence show that the analytic continuation is holomorphic except for simple poles
at z = −1, −2, . . . , and that the residue at z = −n is

(−1)n−1
n−1∑
r=0

ar

r!
.

20K Numerical Analysis

(i) The diffusion equation
∂u

∂t
=

∂2u

∂x2

is discretized by the finite-difference method

un+1
m − 1

2
(µ− α)(un+1

m−1 − 2un+1
m + un+1

m+1) = un
m +

1
2
(µ + α)(un

m−1 − 2un
m + un

m+1),

where un
m ≈ u(m∆x, n∆t), µ = ∆t/(∆x)2 and α is a constant. Derive the order of

magnitude (as a power of ∆x) of the local error for different choices of α.

(ii) Investigate the stability of the above finite-difference method for different values
of α by the Fourier technique.
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21F Foundations of Quantum Mechanics

(i) Write the Hamiltonian for the harmonic oscillator,

H =
p2

2m
+

1
2
mω2x2,

in terms of creation and annihilation operators, defined by

a† =
(mω

2~

) 1
2

(
x− i

p

mω

)
, a =

(mω

2~

) 1
2

(
x + i

p

mω

)
.

Obtain an expression for [a†, a] by using the usual commutation relation between p and
x. Deduce the quantized energy levels for this system.

(ii) Define the number operator, N , in terms of creation and annihilation operators,
a† and a. The normalized eigenvector of N with eigenvalue n is |n〉. Show that n ≥ 0.

Determine a|n〉 and a†|n〉 in the basis defined by {|n〉}.

Show that

a†mam|n〉 =


n!

(n−m)! |n〉, m ≤ n ,

0 , m > n .

Verify the relation

|0〉〈0| =
∑
m=0

1
m!

(−1)ma†mam ,

by considering the action of both sides of the equation on an arbitrary basis vector.
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22F Statistical Physics

A system consists of N weakly interacting non-relativistic fermions, each of mass
m, in a three-dimensional volume, V . Derive the Fermi-Dirac distribution

n(ε) = KV g
ε1/2

exp((ε− µ)/kT ) + 1
,

where n(ε)dε is the number of particles with energy in (ε, ε + dε) and K = 2π(2m)3/2/h3.
Explain the physical significance of g.

Explain how the constant µ is determined by the number of particles N and write
down expressions for N and the internal energy E in terms of n(ε).

Show that, in the limit κ ≡ e−µ/kT � 1,

N =
V

Aκ

(
1− 1

2
√

2κ
+ O

(
1
κ2

) )
,

where A = h3/g(2πmkT )3/2.

Show also that in this limit

E =
3
2
NkT

(
1 +

1
4
√

2κ
+ O

(
1
κ2

) )
.

Deduce that the condition κ � 1 implies that AN/V � 1. Discuss briefly whether
or not this latter condition is satisfied in a white dwarf star and in a dilute electron gas
at room temperature.[

Note that
∫∞
0

du e−u2a = 1
2

√
π
a

]
.

23J Applications of Quantum Mechanics

Write down the commutation relations satisfied by the cartesian components of the
total angular momentum operator J.

In quantum mechanics an operator V is said to be a vector operator if, under
rotations, its components transform in the same way as those of the coordinate operator
r. Show from first principles that this implies that its cartesian components satisfy the
commutation relations

[Jj , Vk] = iεjklVl .

Hence calculate the total angular momentum of the nonvanishing states Vj |0〉, where |0〉
is the vacuum state.

Paper 3



13

24H Fluid Dynamics II

A planar flow of an inviscid, incompressible fluid is everywhere in the x-direction
and has velocity profile

u =

{
U y > 0,

0 y < 0.

By examining linear perturbations to the vortex sheet at y = 0 that have the form eikx−iωt,
show that

ω =
1
2
kU(1± i)

and deduce the temporal stability of the sheet to disturbances of wave number k.

Use this result to determine also the spatial growth rate and propagation speed of
disturbances of frequency ω introduced at a fixed spatial position.

25L Waves in Fluid and Solid Media

Consider the equation

φtt + α2φxxxx + β2φ = 0, (∗)

where α and β are real constants. Find the dispersion relation for waves of frequency ω
and wavenumber k. Find the phase velocity c(k) and the group velocity cg(k) and sketch
graphs of these functions.

Multiplying equation (∗) by φt, obtain an equation of the form

∂A

∂t
+

∂B

∂x
= 0

where A and B are expressions involving φ and its derivatives. Give a physical interpre-
tation of this equation.

Evaluate the time-averaged energy 〈E〉 and energy flux 〈I〉 of a monochromatic
wave φ = cos(kx− wt), and show that

〈I〉 = cg〈E〉.
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