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SECTION I

1F Linear Algebra
Let V be a complex vector space with basis {e1, . . . , en}. Define T : V → V by

T (ei) = ei − ei+1 for i < n and T (en) = en − e1. Show that T is diagonalizable and find
its eigenvalues. [You may use any theorems you wish, as long as you state them clearly.]

2G Groups, Rings and Modules
An idempotent element of a ring R is an element e satisfying e2 = e. A nilpotent

element is an element e satisfying eN = 0 for some N > 0.

Let r ∈ R be non-zero. In the ring R[X], can the polynomial 1 + rX be (i) an
idempotent, (ii) a nilpotent? Can 1 + rX satisfy the equation (1 + rX)3 = (1 + rX)?
Justify your answers.

3E Analysis II
Let f : Rn × Rm → R be a bilinear function. Show that f is differentiable at any

point in Rn × Rm and find its derivative.

4E Complex Analysis
Let h : C → C be a holomorphic function with h(i) 6= h(−i). Does there exist a

holomorphic function f defined in |z| < 1 for which f ′(z) =
h(z)

1 + z2
? Does there exist a

holomorphic function f defined in |z| > 1 for which f ′(z) =
h(z)

1 + z2
? Justify your answers.

5D Methods
Show that the general solution of the wave equation

1

c2
∂2y

∂t2
− ∂2y

∂x2
= 0

can be written in the form

y(x, t) = f(x− ct) + g(x+ ct) .

Hence derive the solution y(x, t) subject to the initial conditions

y(x, 0) = 0,
∂y

∂t
(x, 0) = ψ(x) .
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6C Quantum Mechanics
In terms of quantum states, what is meant by energy degeneracy?

A particle of mass m is confined within the box 0 < x < a, 0 < y < a and 0 < z < c.
The potential vanishes inside the box and is infinite outside. Find the allowed energies by
considering a stationary state wavefunction of the form

χ(x, y, z) = X(x)Y (y)Z(z) .

Write down the normalised ground state wavefunction. Assuming that c < a <
√
2c, give

the energies of the first three excited states.

7B Electromagnetism
Define the notions of magnetic flux, electromotive force and resistance, in the context

of a single closed loop of wire. Use the Maxwell equation

∇×E = −∂B

∂t

to derive Faraday’s law of induction for the loop, assuming the loop is at rest.

Suppose now that the magnetic field is B = (0, 0, B tanh t) where B is a constant,
and that the loop of wire, with resistance R, is a circle of radius a lying in the (x, y) plane.
Calculate the current in the wire as a function of time.

Explain briefly why, even in a time-independent magnetic field, an electromotive
force may be produced in a loop of wire that moves through the field, and state the law
of induction in this situation.

8D Numerical Analysis
State the Dahlquist equivalence theorem regarding convergence of a multistep

method.

The multistep method, with a real parameter a,

yn+3 + (2a− 3)(yn+2 − yn+1)− yn = ha (fn+2 − fn+1)

is of order 2 for any a, and also of order 3 for a = 6. Determine all values of a for which
the method is convergent, and find the order of convergence.
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9H Markov Chains
Let (Xn)n>0 be an irreducible Markov chain with p

(n)
ij = P (Xn = j | X0 = i).

Define the meaning of the statements:

(i) state i is transient,

(ii) state i is aperiodic.

Give a criterion for transience that can be expressed in terms of the probabilities

(p
(n)
ii , n = 0, 1, . . . ).

Prove that if a state i is transient then all states are transient.

Prove that if a state i is aperiodic then all states are aperiodic.

Suppose that p
(n)
ii = 0 unless n is divisible by 3. Given any other state j, prove that

p
(n)
jj = 0 unless n is divisible by 3.
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SECTION II

10F Linear Algebra
Let V be a finite-dimensional real vector space of dimension n. A bilinear form

B : V × V → R is nondegenerate if for all v 6= 0 in V , there is some w ∈ V with
B(v,w) 6= 0. For v ∈ V , define 〈v〉⊥ = {w ∈ V |B(v,w) = 0}. Assuming B is
nondegenerate, show that V = 〈v〉 ⊕ 〈v〉⊥ whenever B(v,v) 6= 0.

Suppose that B is a nondegenerate, symmetric bilinear form on V . Prove that
there is a basis {v1, . . . ,vn} of V with B(vi,vj) = 0 for i 6= j. [If you use the fact that
symmetric matrices are diagonalizable, you must prove it.]

Define the signature of a quadratic form. Explain how to determine the signature
of the quadratic form associated to B from the basis you constructed above.

A linear subspace V ′ ⊂ V is said to be isotropic if B(v,w) = 0 for all v,w ∈ V ′.
Show that if B is nondegenerate, the maximal dimension of an isotropic subspace of V is
(n− |σ|)/2, where σ is the signature of the quadratic form associated to B.

11G Groups, Rings and Modules
Let R be a commutative ring with unit 1. Prove that an R-module is finitely

generated if and only if it is a quotient of a free module Rn, for some n > 0.

Let M be a finitely generated R-module. Suppose now I is an ideal of R, and φ is
an R-homomorphism from M to M with the property that

φ(M) ⊂ I ·M = {m ∈ M |m = rm′ with r ∈ I , m′ ∈ M} .

Prove that φ satisfies an equation

φn + an−1φ
n−1 + · · ·+ a1φ+ a0 = 0

where each aj ∈ I. [You may assume that if T is a matrix over R, then adj(T )T =
detT (id), with id the identity matrix.]

Deduce that if M satisfies I ·M = M , then there is some a ∈ R satisfying

a− 1 ∈ I and aM = 0 .

Give an example of a finitely generated Z-module M and a proper ideal I of Z satisfying
the hypothesis I ·M = M , and for your example, give an explicit such element a.
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12E Analysis II
State and prove the Bolzano-Weierstrass theorem in Rn. [You may assume the

Bolzano-Weierstrass theorem in R.]

Let X ⊂ Rn be a subset and let f : X → X be a mapping such that
d(f(x), f(y)) = d(x, y) for all x, y ∈ X, where d is the Euclidean distance in Rn. Prove
that if X is closed and bounded, then f is a bijection. Is this result still true if we drop
the boundedness assumption on X? Justify your answer.

13F Metric and Topological Spaces
Suppose A1 and A2 are topological spaces. Define the product topology on A1×A2.

Let πi : A1×A2 → Ai be the projection. Show that a map F : X → A1×A2 is continuous
if and only if π1 ◦ F and π2 ◦ F are continuous.

Prove that if A1 and A2 are connected, then A1 ×A2 is connected.

Let X be the topological space whose underlying set is R, and whose open sets are
of the form (a,∞) for a ∈ R, along with the empty set and the whole space. Describe the
open sets in X × X. Are the maps f, g : X × X → X defined by f(x, y) = x + y and
g(x, y) = xy continuous? Justify your answers.

14A Complex Methods
State the convolution theorem for Fourier transforms.

The function φ(x, y) satisfies

∇2φ = 0

on the half-plane y > 0, subject to the boundary conditions

φ → 0 as y → ∞ for all x,

φ(x, 0) =

{
1 , |x| 6 1

0 , |x| > 1 .

Using Fourier transforms, show that

φ(x, y) =
y

π

∫ 1

−1

1

y2 + (x− t)2
dt ,

and hence that

φ(x, y) =
1

π

[
tan−1

(
1− x

y

)
+ tan−1

(
1 + x

y

)]
.
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15G Geometry
Let Σ ⊂ R3 be a smooth closed surface. Define the principal curvatures κmax and

κmin at a point p ∈ Σ. Prove that the Gauss curvature at p is the product of the two
principal curvatures.

A point p ∈ Σ is called a parabolic point if at least one of the two principal curvatures
vanishes. Suppose Π ⊂ R3 is a plane and Σ is tangent to Π along a smooth closed curve
C = Π ∩ Σ ⊂ Σ. Show that C is composed of parabolic points.

Can both principal curvatures vanish at a point of C? Briefly justify your answer.

16B Variational Principles
Consider a functional

I =

∫ b

a
F (x, y, y′)dx

where F is smooth in all its arguments, y(x) is a C1 function and y′ = dy
dx . Consider the

function y(x) + h(x) where h(x) is a small C1 function which vanishes at a and b. Obtain
formulae for the first and second variations of I about the function y(x). Derive the
Euler-Lagrange equation from the first variation, and state its variational interpretation.

Suppose now that

I =

∫ 1

0
(y′2 − 1)2dx

where y(0) = 0 and y(1) = β. Find the Euler-Lagrange equation and the formula for the
second variation of I. Show that the function y(x) = βx makes I stationary, and that it
is a (local) minimizer if β > 1√

3
.

Show that when β = 0, the function y(x) = 0 is not a minimizer of I.
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17D Methods
Let D ⊂ R2 be a two-dimensional domain with boundary S = ∂D, and let

G2 = G2(r, r0) =
1

2π
log |r− r0| ,

where r0 is a point in the interior of D. From Green’s second identity,

∫

S

(
φ
∂ψ

∂n
− ψ

∂φ

∂n

)
dℓ =

∫

D
(φ∇2ψ − ψ∇2φ) da ,

derive Green’s third identity

u(r0) =

∫

D
G2∇2u da+

∫

S

(
u
∂G2

∂n
−G2

∂u

∂n

)
dℓ .

[Here ∂
∂n denotes the normal derivative on S.]

Consider the Dirichlet problem on the unit disc D1 = {r ∈ R2 : |r| 6 1}:

∇2u = 0, r ∈ D1 ,
u(r) = f(r), r ∈ S1 = ∂D1 .

Show that, with an appropriate function G(r, r0), the solution can be obtained by the
formula

u(r0) =

∫

S1

f(r)
∂

∂n
G(r , r0) dℓ .

State the boundary conditions on G and explain how G is related to G2.

For r, r0 ∈ R2, prove the identity

∣∣∣∣
r

|r| − r0|r|
∣∣∣∣ =

∣∣∣∣
r0
|r0|

− r|r0|
∣∣∣∣ ,

and deduce that if the point r lies on the unit circle, then

|r− r0| = |r0||r− r∗0| , where r∗0 =
r0
|r0|2

.

Hence, using the method of images, or otherwise, find an expression for the function
G(r , r0). [An expression for ∂

∂nG is not required.]
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18A Fluid Dynamics
The equations governing the flow of a shallow layer of inviscid liquid of uniform

depth H rotating with angular velocity 1
2f about the vertical z-axis are

∂u

∂t
− fv = −g

∂η

∂x
,

∂v

∂t
+ fu = −g

∂η

∂y
,

∂η

∂t
+H

(
∂u

∂x
+

∂v

∂y

)
= 0 ,

where u, v are the x- and y-components of velocity, respectively, and η is the elevation of
the free surface. Show that these equations imply that

∂q

∂t
= 0 , where q = ω − fη

H
and ω =

∂v

∂x
− ∂u

∂y
.

Consider an initial state where there is flow in the y-direction given by

u = η = 0, −∞ < x < ∞

v =





g
2f e

2x, x < 0

− g
2f e

−2x, x > 0 .

Find the initial potential vorticity.

Show that when this initial state adjusts, there is a final steady state independent
of y in which η satisfies

∂2η

∂x2
− η

a2
=

{
e2x, x < 0

e−2x, x > 0 ,

where a2 = gH/f2.

In the case a = 1, find the final free surface elevation that is finite at large |x| and
which is continuous and has continuous slope at x = 0, and show that it is negative for
all x.
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19H Statistics
From each of 3 populations, n data points are sampled and these are believed to

obey
yij = αi + βi(xij − x̄i) + ǫij , j ∈ {1, . . . , n}, i ∈ {1, 2, 3},

where x̄i = (1/n)
∑

j xij , the ǫij are independent and identically distributed as N(0, σ2),

and σ2 is unknown. Let ȳi = (1/n)
∑

j yij.

(i) Find expressions for α̂i and β̂i, the least squares estimates of αi and βi.

(ii) What are the distributions of α̂i and β̂i?

(iii) Show that the residual sum of squares, R1, is given by

R1 =

3∑

i=1




n∑

j=1

(yij − ȳi)
2 − β̂2

i

n∑

j=1

(xij − x̄i)
2


 .

Calculate R1 when n = 9, {α̂i}3i=1 = {1.6, 0.6, 0.8}, {β̂i}3i=1 = {2, 1, 1},




9∑

j=1

(yij − ȳi)
2





3

i=1

= {138, 82, 63},





9∑

j=1

(xij − x̄i)
2





3

i=1

= {30, 60, 40}.

(iv) H0 is the hypothesis that α1 = α2 = α3. Find an expression for the maximum
likelihood estimator of α1 under the assumption that H0 is true. Calculate its value for
the above data.

(v) Explain (stating without proof any relevant theory) the rationale for a statistic
which can be referred to an F distribution to test H0 against the alternative that it is not
true. What should be the degrees of freedom of this F distribution? What would be the
outcome of a size 0.05 test of H0 with the above data?
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20H Optimization
Describe the Ford-Fulkerson algorithm.

State conditions under which the algorithm is guaranteed to terminate in a finite
number of steps. Explain why it does so, and show that it finds a maximum flow. [You
may assume that the value of a flow never exceeds the value of any cut.]

In a football league of n teams the season is partly finished. Team i has already won
wi matches. Teams i and j are to meet in mij further matches. Thus the total number
of remaining matches is M =

∑
i<j mij . Assume there will be no drawn matches. We

wish to determine whether it is possible for the outcomes of the remaining matches to
occur in such a way that at the end of the season the numbers of wins by the teams are
(x1, . . . , xn).

Invent a network flow problem in which the maximum flow from source to sink
equals M if and only if (x1, . . . , xn) is a feasible vector of final wins.

Illustrate your idea by answering the question of whether or not x = (7, 5, 6, 6) is a
possible profile of total end-of-season wins when n = 4, w = (1, 2, 3, 4), and M = 14 with

(mij) =




− 2 2 2
2 − 1 1
2 1 − 6
2 1 6 −


 .

END OF PAPER
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