MATHEMATICAL TRIPOS Part IB

Friday, 8 June, 2012 1:30 pm to 4:30 pm

PAPER 4

Before you begin read these instructions carefully.

Each question in Section II carries twice the number of marks of each question in Section I. Candidates may attempt at most **four** questions from Section I and at most **six** questions from Section II.

Complete answers are preferred to fragments.

Write on one side of the paper only and begin each answer on a separate sheet.

Write legibly; otherwise, you place yourself at a grave disadvantage.

At the end of the examination:

Tie up your answers in separate bundles labelled A, B, \ldots, H according to the examiner letter affixed to each question, including in the same bundle questions from Sections I and II with the same examiner letter.

Attach a completed gold cover sheet to each bundle.

You must also complete a green master cover sheet listing all the questions you have attempted.

Every cover sheet <u>must</u> bear your examination number and desk number.

STATIONERY REQUIREMENTS Gold cover sheets Green master cover sheet **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

SECTION I

1F Linear Algebra

Let V be a complex vector space with basis $\{e_1, \ldots, e_n\}$. Define $T: V \to V$ by $T(e_i) = e_i - e_{i+1}$ for i < n and $T(e_n) = e_n - e_1$. Show that T is diagonalizable and find its eigenvalues. [You may use any theorems you wish, as long as you state them clearly.]

2

2G Groups, Rings and Modules

An *idempotent* element of a ring R is an element e satisfying $e^2 = e$. A *nilpotent* element is an element e satisfying $e^N = 0$ for some $N \ge 0$.

Let $r \in R$ be non-zero. In the ring R[X], can the polynomial 1 + rX be (i) an idempotent, (ii) a nilpotent? Can 1 + rX satisfy the equation $(1 + rX)^3 = (1 + rX)$? Justify your answers.

3E Analysis II

Let $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ be a bilinear function. Show that f is differentiable at any point in $\mathbb{R}^n \times \mathbb{R}^m$ and find its derivative.

4E Complex Analysis

Let $h : \mathbb{C} \to \mathbb{C}$ be a holomorphic function with $h(i) \neq h(-i)$. Does there exist a holomorphic function f defined in |z| < 1 for which $f'(z) = \frac{h(z)}{1+z^2}$? Does there exist a holomorphic function f defined in |z| > 1 for which $f'(z) = \frac{h(z)}{1+z^2}$? Justify your answers.

5D Methods

Show that the general solution of the wave equation

$$\frac{1}{c^2}\frac{\partial^2 y}{\partial t^2} - \frac{\partial^2 y}{\partial x^2} = 0$$

can be written in the form

$$y(x,t) = f(x-ct) + g(x+ct).$$

Hence derive the solution y(x,t) subject to the initial conditions

$$y(x,0) = 0,$$
 $\frac{\partial y}{\partial t}(x,0) = \psi(x).$

6C Quantum Mechanics

In terms of quantum states, what is meant by *energy degeneracy*?

A particle of mass m is confined within the box 0 < x < a, 0 < y < a and 0 < z < c. The potential vanishes inside the box and is infinite outside. Find the allowed energies by considering a stationary state wavefunction of the form

$$\chi(x, y, z) = X(x) Y(y) Z(z).$$

Write down the normalised ground state wavefunction. Assuming that $c < a < \sqrt{2}c$, give the energies of the first three excited states.

7B Electromagnetism

Define the notions of magnetic flux, electromotive force and resistance, in the context of a single closed loop of wire. Use the Maxwell equation

$$\mathbf{
abla} imes \mathbf{E} = -rac{\partial \mathbf{B}}{\partial t}$$

to derive Faraday's law of induction for the loop, assuming the loop is at rest.

Suppose now that the magnetic field is $\mathbf{B} = (0, 0, B \tanh t)$ where B is a constant, and that the loop of wire, with resistance R, is a circle of radius a lying in the (x, y) plane. Calculate the current in the wire as a function of time.

Explain briefly why, even in a time-independent magnetic field, an electromotive force may be produced in a loop of wire that moves through the field, and state the law of induction in this situation.

8D Numerical Analysis

State the Dahlquist equivalence theorem regarding convergence of a multistep method.

The multistep method, with a real parameter a,

$$y_{n+3} + (2a-3)(y_{n+2} - y_{n+1}) - y_n = ha \left(f_{n+2} - f_{n+1} \right)$$

is of order 2 for any a, and also of order 3 for a = 6. Determine all values of a for which the method is convergent, and find the order of convergence.

9H Markov Chains

Let $(X_n)_{n\geq 0}$ be an irreducible Markov chain with $p_{ij}^{(n)} = P(X_n = j | X_0 = i)$. Define the meaning of the statements:

4

- (i) state i is transient,
- (ii) state i is aperiodic.

Give a criterion for transience that can be expressed in terms of the probabilities $(p_{ii}^{(n)}, n = 0, 1, \dots).$

Prove that if a state i is transient then all states are transient.

Prove that if a state i is aperiodic then all states are aperiodic.

Suppose that $p_{ii}^{(n)} = 0$ unless n is divisible by 3. Given any other state j, prove that $p_{jj}^{(n)} = 0$ unless n is divisible by 3.

SECTION II

10F Linear Algebra

Let V be a finite-dimensional real vector space of dimension n. A bilinear form $B: V \times V \to \mathbb{R}$ is nondegenerate if for all $\mathbf{v} \neq 0$ in V, there is some $\mathbf{w} \in V$ with $B(\mathbf{v}, \mathbf{w}) \neq 0$. For $\mathbf{v} \in V$, define $\langle \mathbf{v} \rangle^{\perp} = \{\mathbf{w} \in V | B(\mathbf{v}, \mathbf{w}) = 0\}$. Assuming B is nondegenerate, show that $V = \langle \mathbf{v} \rangle \oplus \langle \mathbf{v} \rangle^{\perp}$ whenever $B(\mathbf{v}, \mathbf{v}) \neq 0$.

Suppose that B is a nondegenerate, symmetric bilinear form on V. Prove that there is a basis $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ of V with $B(\mathbf{v}_i, \mathbf{v}_j) = 0$ for $i \neq j$. [If you use the fact that symmetric matrices are diagonalizable, you must prove it.]

Define the signature of a quadratic form. Explain how to determine the signature of the quadratic form associated to B from the basis you constructed above.

A linear subspace $V' \subset V$ is said to be *isotropic* if $B(\mathbf{v}, \mathbf{w}) = 0$ for all $\mathbf{v}, \mathbf{w} \in V'$. Show that if B is nondegenerate, the maximal dimension of an isotropic subspace of V is $(n - |\sigma|)/2$, where σ is the signature of the quadratic form associated to B.

11G Groups, Rings and Modules

Let R be a commutative ring with unit 1. Prove that an R-module is finitely generated if and only if it is a quotient of a free module \mathbb{R}^n , for some n > 0.

Let M be a finitely generated R-module. Suppose now I is an ideal of R, and ϕ is an R-homomorphism from M to M with the property that

$$\phi(M) \subset I \cdot M = \{ m \in M \mid m = rm' \text{ with } r \in I, m' \in M \}.$$

Prove that ϕ satisfies an equation

$$\phi^{n} + a_{n-1}\phi^{n-1} + \dots + a_{1}\phi + a_{0} = 0$$

where each $a_j \in I$. [You may assume that if T is a matrix over R, then $\operatorname{adj}(T)T = \det T$ (id), with id the identity matrix.]

Deduce that if M satisfies $I \cdot M = M$, then there is some $a \in R$ satisfying

$$a-1 \in I$$
 and $aM = 0$.

Give an example of a finitely generated \mathbb{Z} -module M and a proper ideal I of \mathbb{Z} satisfying the hypothesis $I \cdot M = M$, and for your example, give an explicit such element a.

12E Analysis II

State and prove the Bolzano-Weierstrass theorem in \mathbb{R}^n . [You may assume the Bolzano-Weierstrass theorem in \mathbb{R} .]

Let $X \subset \mathbb{R}^n$ be a subset and let $f : X \to X$ be a mapping such that d(f(x), f(y)) = d(x, y) for all $x, y \in X$, where d is the Euclidean distance in \mathbb{R}^n . Prove that if X is closed and bounded, then f is a bijection. Is this result still true if we drop the boundedness assumption on X? Justify your answer.

13F Metric and Topological Spaces

Suppose A_1 and A_2 are topological spaces. Define the product topology on $A_1 \times A_2$. Let $\pi_i : A_1 \times A_2 \to A_i$ be the projection. Show that a map $F : X \to A_1 \times A_2$ is continuous if and only if $\pi_1 \circ F$ and $\pi_2 \circ F$ are continuous.

Prove that if A_1 and A_2 are connected, then $A_1 \times A_2$ is connected.

Let X be the topological space whose underlying set is \mathbb{R} , and whose open sets are of the form (a, ∞) for $a \in \mathbb{R}$, along with the empty set and the whole space. Describe the open sets in $X \times X$. Are the maps $f, g : X \times X \to X$ defined by f(x, y) = x + y and g(x, y) = xy continuous? Justify your answers.

14A Complex Methods

State the convolution theorem for Fourier transforms.

The function $\phi(x, y)$ satisfies

$$\nabla^2 \phi = 0$$

on the half-plane $y \ge 0$, subject to the boundary conditions

$$\phi \to 0$$
 as $y \to \infty$ for all x ,

$$\phi(x,0) = \begin{cases} 1 \,, & |x| \leq 1 \\ 0 \,, & |x| > 1 \,. \end{cases}$$

Using Fourier transforms, show that

$$\phi(x,y) = \frac{y}{\pi} \int_{-1}^{1} \frac{1}{y^2 + (x-t)^2} \, \mathrm{d}t \,,$$

and hence that

$$\phi(x,y) = \frac{1}{\pi} \left[\tan^{-1} \left(\frac{1-x}{y} \right) + \tan^{-1} \left(\frac{1+x}{y} \right) \right] \,.$$

15G Geometry

Let $\Sigma \subset \mathbb{R}^3$ be a smooth closed surface. Define the *principal curvatures* κ_{\max} and κ_{\min} at a point $p \in \Sigma$. Prove that the Gauss curvature at p is the product of the two principal curvatures.

A point $p \in \Sigma$ is called a *parabolic point* if at least one of the two principal curvatures vanishes. Suppose $\Pi \subset \mathbb{R}^3$ is a plane and Σ is tangent to Π along a smooth closed curve $C = \Pi \cap \Sigma \subset \Sigma$. Show that C is composed of parabolic points.

Can both principal curvatures vanish at a point of C? Briefly justify your answer.

16B Variational Principles

Consider a functional

$$I = \int_{a}^{b} F(x, y, y') dx$$

where F is smooth in all its arguments, y(x) is a C^1 function and $y' = \frac{dy}{dx}$. Consider the function y(x) + h(x) where h(x) is a small C^1 function which vanishes at a and b. Obtain formulae for the first and second variations of I about the function y(x). Derive the Euler-Lagrange equation from the first variation, and state its variational interpretation.

Suppose now that

$$I = \int_0^1 (y'^2 - 1)^2 dx$$

where y(0) = 0 and $y(1) = \beta$. Find the Euler-Lagrange equation and the formula for the second variation of *I*. Show that the function $y(x) = \beta x$ makes *I* stationary, and that it is a (local) minimizer if $\beta > \frac{1}{\sqrt{3}}$.

Show that when $\beta = 0$, the function y(x) = 0 is not a minimizer of I.

17D Methods

Let $D \subset \mathbb{R}^2$ be a two-dimensional domain with boundary $S = \partial D$, and let

$$G_2 = G_2(\mathbf{r}, \mathbf{r}_0) = \frac{1}{2\pi} \log |\mathbf{r} - \mathbf{r}_0|,$$

where \mathbf{r}_0 is a point in the interior of D. From Green's second identity,

$$\int_{S} \left(\phi \frac{\partial \psi}{\partial n} - \psi \frac{\partial \phi}{\partial n} \right) \, d\ell = \int_{D} (\phi \nabla^{2} \psi - \psi \nabla^{2} \phi) \, da \,,$$

derive Green's third identity

$$u(\mathbf{r}_0) = \int_D G_2 \nabla^2 u \, da + \int_S \left(u \frac{\partial G_2}{\partial n} - G_2 \frac{\partial u}{\partial n} \right) d\ell \, .$$

[Here $\frac{\partial}{\partial n}$ denotes the normal derivative on S.]

Consider the Dirichlet problem on the unit disc $D_1 = {\mathbf{r} \in \mathbb{R}^2 : |\mathbf{r}| \leq 1}:$

$$\nabla^2 u = 0, \quad \mathbf{r} \in D_1, \\ u(\mathbf{r}) = f(\mathbf{r}), \quad \mathbf{r} \in S_1 = \partial D_1.$$

Show that, with an appropriate function $G(\mathbf{r}, \mathbf{r}_0)$, the solution can be obtained by the formula

$$u(\mathbf{r}_0) = \int_{S_1} f(\mathbf{r}) \frac{\partial}{\partial n} G(\mathbf{r}, \mathbf{r}_0) \, d\ell$$

State the boundary conditions on G and explain how G is related to G_2 .

For $\mathbf{r}, \mathbf{r}_0 \in \mathbb{R}^2$, prove the identity

$$\left| rac{\mathbf{r}}{|\mathbf{r}|} - \mathbf{r}_0 |\mathbf{r}|
ight| = \left| rac{\mathbf{r}_0}{|\mathbf{r}_0|} - \mathbf{r} |\mathbf{r}_0|
ight|,$$

and deduce that if the point \mathbf{r} lies on the unit circle, then

$$|\mathbf{r} - \mathbf{r}_0| = |\mathbf{r}_0||\mathbf{r} - \mathbf{r}_0^*|$$
, where $\mathbf{r}_0^* = \frac{\mathbf{r}_0}{|\mathbf{r}_0|^2}$.

Hence, using the method of images, or otherwise, find an expression for the function $G(\mathbf{r}, \mathbf{r}_0)$. [An expression for $\frac{\partial}{\partial n}G$ is not required.]

8

18A Fluid Dynamics

The equations governing the flow of a shallow layer of inviscid liquid of uniform depth H rotating with angular velocity $\frac{1}{2}f$ about the vertical z-axis are

$$\begin{aligned} \frac{\partial u}{\partial t} - fv &= -g \frac{\partial \eta}{\partial x}, \\ \frac{\partial v}{\partial t} + fu &= -g \frac{\partial \eta}{\partial y}, \\ \frac{\partial \eta}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) &= 0, \end{aligned}$$

where u, v are the x- and y-components of velocity, respectively, and η is the elevation of the free surface. Show that these equations imply that

$$\frac{\partial q}{\partial t} = 0$$
, where $q = \omega - \frac{f\eta}{H}$ and $\omega = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$.

Consider an initial state where there is flow in the y-direction given by

$$u = \eta = 0, \quad -\infty < x < \infty$$
$$v = \begin{cases} \frac{g}{2f} e^{2x}, & x < 0\\ -\frac{g}{2f} e^{-2x}, & x > 0. \end{cases}$$

Find the initial potential vorticity.

Show that when this initial state adjusts, there is a final steady state independent of y in which η satisfies

$$\frac{\partial^2 \eta}{\partial x^2} - \frac{\eta}{a^2} = \begin{cases} e^{2x}, & x < 0\\ e^{-2x}, & x > 0, \end{cases}$$

where $a^2 = gH/f^2$.

In the case a = 1, find the final free surface elevation that is finite at large |x| and which is continuous and has continuous slope at x = 0, and show that it is negative for all x.

10

19H Statistics

From each of 3 populations, n data points are sampled and these are believed to obey

$$y_{ij} = \alpha_i + \beta_i (x_{ij} - \bar{x}_i) + \epsilon_{ij}, \quad j \in \{1, \dots, n\}, \ i \in \{1, 2, 3\},$$

where $\bar{x}_i = (1/n) \sum_j x_{ij}$, the ϵ_{ij} are independent and identically distributed as $N(0, \sigma^2)$, and σ^2 is unknown. Let $\bar{y}_i = (1/n) \sum_j y_{ij}$.

(i) Find expressions for $\hat{\alpha}_i$ and $\hat{\beta}_i$, the least squares estimates of α_i and β_i .

(ii) What are the distributions of $\hat{\alpha}_i$ and $\hat{\beta}_i$?

(iii) Show that the residual sum of squares, R_1 , is given by

$$R_1 = \sum_{i=1}^3 \left[\sum_{j=1}^n (y_{ij} - \bar{y}_i)^2 - \hat{\beta}_i^2 \sum_{j=1}^n (x_{ij} - \bar{x}_i)^2 \right].$$

Calculate R_1 when n = 9, $\{\hat{\alpha}_i\}_{i=1}^3 = \{1.6, 0.6, 0.8\}, \{\hat{\beta}_i\}_{i=1}^3 = \{2, 1, 1\},\$

$$\left\{\sum_{j=1}^{9} (y_{ij} - \bar{y}_i)^2\right\}_{i=1}^3 = \{138, 82, 63\}, \quad \left\{\sum_{j=1}^{9} (x_{ij} - \bar{x}_i)^2\right\}_{i=1}^3 = \{30, 60, 40\}.$$

(iv) H_0 is the hypothesis that $\alpha_1 = \alpha_2 = \alpha_3$. Find an expression for the maximum likelihood estimator of α_1 under the assumption that H_0 is true. Calculate its value for the above data.

(v) Explain (stating without proof any relevant theory) the rationale for a statistic which can be referred to an F distribution to test H_0 against the alternative that it is not true. What should be the degrees of freedom of this F distribution? What would be the outcome of a size 0.05 test of H_0 with the above data?

20H Optimization

Describe the Ford-Fulkerson algorithm.

State conditions under which the algorithm is guaranteed to terminate in a finite number of steps. Explain why it does so, and show that it finds a maximum flow. [You may assume that the value of a flow never exceeds the value of any cut.]

In a football league of n teams the season is partly finished. Team i has already won w_i matches. Teams i and j are to meet in m_{ij} further matches. Thus the total number of remaining matches is $M = \sum_{i < j} m_{ij}$. Assume there will be no drawn matches. We wish to determine whether it is possible for the outcomes of the remaining matches to occur in such a way that at the end of the season the numbers of wins by the teams are (x_1, \ldots, x_n) .

Invent a network flow problem in which the maximum flow from source to sink equals M if and only if (x_1, \ldots, x_n) is a feasible vector of final wins.

Illustrate your idea by answering the question of whether or not x = (7, 5, 6, 6) is a possible profile of total end-of-season wins when n = 4, w = (1, 2, 3, 4), and M = 14 with

$$(m_{ij}) = \begin{pmatrix} - & 2 & 2 & 2\\ 2 & - & 1 & 1\\ 2 & 1 & - & 6\\ 2 & 1 & 6 & - \end{pmatrix}.$$

END OF PAPER