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SECTION I

1G Groups, Rings and Modules
What is a Euclidean domain?

Giving careful statements of any general results you use, show that in the ring
Z[
√
−3], 2 is irreducible but not prime.

2E Analysis II
Let C[0, 1] be the set of continuous real-valued functions on [0, 1] with the uniform

norm. Suppose T : C[0, 1] → C[0, 1] is defined by

T (f)(x) =

∫ x

0
f(t3) dt ,

for all x ∈ [0, 1] and f ∈ C[0, 1]. Is T a contraction mapping? Does T have a unique fixed
point? Justify your answers.

3F Metric and Topological Spaces
Define the notion of a connected component of a space X.

If Aα ⊂ X are connected subsets of X such that
⋂

αAα 6= ∅, show that
⋃

α Aα is
connected.

Prove that any point x ∈ X is contained in a unique connected component.

Let X ⊂ R consist of the points 0, 1, 12 ,
1
3 , . . . ,

1
n , . . . . What are the connected

components of X?

4A Complex Methods
State the formula for the Laplace transform of a function f(t), defined for t > 0.

Let f(t) be periodic with period T (i.e. f(t + T ) = f(t)). If g(t) is defined to be
equal to f(t) in [0, T ] and zero elsewhere and its Laplace transform is G(s), show that the
Laplace transform of f(t) is given by

F (s) =
G(s)

1− e−sT
.

Hence, or otherwise, find the inverse Laplace transform of

F (s) =
1

s

1− e−sT/2

1− e−sT
.
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5G Geometry
State a formula for the area of a hyperbolic triangle.

Hence, or otherwise, prove that if l1 and l2 are disjoint geodesics in the hyperbolic
plane, there is at most one geodesic which is perpendicular to both l1 and l2.

6B Variational Principles
For a particle of unit mass moving freely on a unit sphere, the Lagrangian in polar

coordinates is

L =
1

2
θ̇2 +

1

2
sin2 θ φ̇2 .

Find the equations of motion. Show that l = sin2 θ φ̇ is a conserved quantity, and use this
result to simplify the equation of motion for θ. Deduce that

h = θ̇2 +
l2

sin2 θ

is a conserved quantity. What is the interpretation of h?

7D Methods
For the step-function

F (x) =

{
1 , |x| 6 1/2

0 , otherwise,

its convolution with itself is the hat-function

G(x) = [F ∗ F ](x) =

{
1− |x| , |x| 6 1

0 , otherwise.

Find the Fourier transforms of F and G, and hence find the values of the integrals

I1 =

∫ ∞

−∞

sin2 y

y2
dy , I2 =

∫ ∞

−∞

sin4 y

y4
dy .
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8C Quantum Mechanics
A one-dimensional quantum mechanical particle has normalised bound state energy

eigenfunctions χn(x) and corresponding non-degenerate energy eigenvalues En. At t = 0
the normalised wavefunction ψ(x, t) is given by

ψ(x, 0) =

√
5

6
eik1χ1(x) +

√
1

6
eik2χ2(x)

where k1 and k2 are real constants. Write down the expression for ψ(x, t) at a later time
t and give the probability that a measurement of the particle’s energy will yield a value
of E2.

Show that the expectation value of x at time t is given by

〈x〉 = 5

6
〈x〉11 +

1

6
〈x〉22 +

√
5

3
Re

[
〈x〉12 ei(k2−k1)−i(E2−E1)t/~

]

where 〈x〉ij =
∫∞
−∞ χ∗

i (x)xχj(x) dx.

9H Markov Chains
A runner owns k pairs of running shoes and runs twice a day. In the morning

she leaves her house by the front door, and in the evening she leaves by the back door.
On starting each run she looks for shoes by the door through which she exits, and runs
barefoot if none are there. At the end of each run she is equally likely to return through
the front or back doors. She removes her shoes (if any) and places them by the door. In
the morning of day 1 all shoes are by the back door so she must run barefoot.

Let p
(n)
00 be the probability that she runs barefoot on the morning of day n + 1.

What conditions are satisfied in this problem which ensure limn→∞ p
(n)
00 exists? Show that

its value is 1/2k.

Find the expected number of days that will pass until the first morning that she
finds all k pairs of shoes at her front door.
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SECTION II

10F Linear Algebra
What is meant by the Jordan normal form of an n× n complex matrix?

Find the Jordan normal forms of the following matrices:




1 1 0 0
0 1 0 1
0 0 1 1
0 0 0 1


 ,




−1 −1 1 0
0 −1 0 1
0 0 −1 1
0 0 0 −1


 ,




3 0 0 0
3 3 0 0
9 6 3 0
15 12 9 3


 .

Suppose A is an invertible n×n complex matrix. Explain how to derive the charac-
teristic and minimal polynomials of An from the characteristic and minimal polynomials
of A. Justify your answer. [Hint: write each polynomial as a product of linear factors.]

11G Groups, Rings and Modules
For each of the following assertions, provide either a proof or a counterexample as

appropriate:

(i) The ring Z2[X]/〈X2 +X + 1〉 is a field.

(ii) The ring Z3[X]/〈X2 +X + 1〉 is a field.

(iii) If F is a finite field, the ring F [X] contains irreducible polynomials of arbitrarily
large degree.

(iv) If R is the ring C[0, 1] of continuous real-valued functions on the interval [0, 1], and
the non-zero elements f, g ∈ R satisfy f | g and g | f , then there is some unit u ∈ R
with f = u · g.

12E Analysis II
Let fn be a sequence of continuous functions on the interval [0, 1] such that

fn(x) → f(x) for each x. For the three statements:

(a) fn → f uniformly on [0, 1];

(b) f is a continuous function;

(c)
∫ 1
0 fn(x) dx →

∫ 1
0 f(x) dx as n → ∞;

say which of the six possible implications (a) ⇒ (b), (a) ⇒ (c), (b) ⇒ (a), (b) ⇒ (c),
(c) ⇒ (a), (c) ⇒ (b) are true and which false, giving in each case a proof or counter-
example.
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13E Complex Analysis
Let D(a,R) denote the disc |z − a| < R and let f : D(a,R) → C be a holomorphic

function. Using Cauchy’s integral formula show that for every r ∈ (0, R)

f(a) =

∫ 1

0
f(a+ re2πit) dt .

Deduce that if for every z ∈ D(a,R), |f(z)| 6 |f(a)|, then f is constant.

Let f : D(0, 1) → D(0, 1) be holomorphic with f(0) = 0. Show that |f(z)| 6 |z| for
all z ∈ D(0, 1). Moreover, show that if |f(w)| = |w| for some w 6= 0, then there exists λ
with |λ| = 1 such that f(z) = λz for all z ∈ D(0, 1).

14G Geometry
Define the first and second fundamental forms of a smooth surface Σ ⊂ R3, and

explain their geometrical significance.

Write down the geodesic equations for a smooth curve γ : [0, 1] → Σ. Prove that γ
is a geodesic if and only if the derivative of the tangent vector to γ is always orthogonal
to Σ.

A plane Π ⊂ R3 cuts Σ in a smooth curve C ⊂ Σ, in such a way that reflection in
the plane Π is an isometry of Σ (in particular, preserves Σ). Prove that C is a geodesic.

15D Methods
Consider Legendre’s equation

(1− x2)y′′ − 2xy′ + λy = 0 .

Show that if λ = n(n + 1), with n a non-negative integer, this equation has a solution
y = Pn(x), a polynomial of degree n. Find P0, P1 and P2 explicitly, subject to the
condition Pn(1) = 1.

The general solution of Laplace’s equation ∇2ψ = 0 in spherical polar coordinates,
in the axisymmetric case, has the form

ψ(r, θ) =
∞∑

n=0

(Anr
n +Bnr

−(n+1))Pn(cos θ) .

Hence, find the solution of Laplace’s equation in the region a 6 r 6 b satisfying the
boundary conditions {

ψ(r, θ) = 1 , r = a

ψ(r, θ) = 3 cos2 θ , r = b .

Part IB, Paper 3
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16C Quantum Mechanics
State the condition for a linear operator Ô to be Hermitian.

Given the position and momentum operators x̂i and p̂i = −i~ ∂
∂xi

, define the angular

momentum operators L̂i. Establish the commutation relations

[L̂i, L̂j ] = i~ǫijkL̂k

and use these relations to show that L̂3 is Hermitian assuming L̂1 and L̂2 are.

Consider a wavefunction of the form

χ(x) = x3(x1 + kx2)e
−r

where r = |x| and k is some constant. Show that χ(x) is an eigenstate of the total angular
momentum operator L̂2 for all k, and calculate the corresponding eigenvalue. For what
values of k is χ(x) an eigenstate of L̂3? What are the corresponding eigenvalues?
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17B Electromagnetism
Using the Maxwell equations

∇ · E =
ρ

ǫ0
, ∇×E = −∂B

∂t
,

∇ ·B = 0 , ∇×B− ǫ0µ0
∂E

∂t
= µ0j ,

show that in vacuum, E satisfies the wave equation

1

c2
∂2E

∂t2
−∇2E = 0 , (∗)

where c2 = (ǫ0µ0)
−1, as well as ∇ ·E = 0. Also show that at a planar boundary between

two media, Et (the tangential component of E) is continuous. Deduce that if one medium
is of negligible resistance, Et = 0.

Consider an empty cubic box with walls of negligible resistance on the planes x = 0,
x = a, y = 0, y = a, z = 0, z = a, where a > 0. Show that an electric field in the interior
of the form

Ex = f(x) sin
(mπy

a

)
sin

(nπz
a

)
e−iωt

Ey = g(y) sin

(
lπx

a

)
sin

(nπz
a

)
e−iωt

Ez = h(z) sin

(
lπx

a

)
sin

(mπy

a

)
e−iωt ,

with l, m and n positive integers, satisfies the boundary conditions on all six walls. Now
suppose that

f(x) = f0 cos

(
lπx

a

)
, g(y) = g0 cos

(mπy

a

)
, h(z) = h0 cos

(nπz
a

)
,

where f0, g0 and h0 are constants. Show that the wave equation (∗) is satisfied, and
determine the frequency ω. Find the further constraint on f0, g0 and h0?
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18A Fluid Dynamics
A rigid circular cylinder of radius a executes small amplitude oscillations with

velocity U(t) in a direction perpendicular to its axis, while immersed in an inviscid fluid
of density ρ contained within a larger concentric fixed cylinder of radius b. Gravity is
negligible. Neglecting terms quadratic in the amplitude, determine the boundary condition
on the velocity on the inner cylinder, and calculate the velocity potential of the induced
flow.

With the same approximations show that the difference in pressures on the surfaces
of the two cylinders has magnitude

ρ
dU

dt

a(b− a)

b+ a
cos θ,

where θ is the azimuthal angle measured from the direction of U .

19D Numerical Analysis
Define the QR factorization of an m×n matrix A and explain how it can be used to

solve the least squares problem of finding the vector x∗ ∈ Rn which minimises ‖Ax∗ − b‖,
where b ∈ Rm, m > n, and the norm is the Euclidean one.

Define a Householder transformation H and show that it is an orthogonal matrix.

Using a Householder transformation, solve the least squares problem for

A =




1 −1 5
0 1 5
0 0 3
0 0 4


 , b =




1
2

−1
2


 ,

giving both x∗ and ‖Ax∗ − b‖.

Part IB, Paper 3 [TURN OVER



10

20H Statistics
Suppose that X is a single observation drawn from the uniform distribution on the

interval
[
θ−10, θ+10

]
, where θ is unknown and might be any real number. Given θ0 6= 20

we wish to test H0 : θ = θ0 against H1 : θ = 20. Let φ(θ0) be the test which accepts H0 if
and only if X ∈ A(θ0), where

A(θ0) =

{[
θ0 − 8,∞

)
, θ0 > 20

(
−∞, θ0 + 8

]
, θ0 < 20 .

Show that this test has size α = 0.10.

Now consider

C1(X) = {θ : X ∈ A(θ)},
C2(X) =

{
θ : X − 9 6 θ 6 X + 9

}
.

Prove that both C1(X) and C2(X) specify 90% confidence intervals for θ. Find the
confidence interval specified by C1(X) when X = 0.

Let Li(X) be the length of the confidence interval specified by Ci(X). Let β(θ0) be
the probability of the Type II error of φ(θ0). Show that

E[L1(X) | θ = 20] = E

[∫ ∞

−∞
1{θ0∈C1(X)}dθ0

∣∣∣ θ = 20

]
=

∫ ∞

−∞
β(θ0) dθ0.

Here 1{B} is an indicator variable for event B. The expectation is over X. [Orders of
integration and expectation can be interchanged.]

Use what you know about constructing best tests to explain which of the two
confidence intervals has the smaller expected length when θ = 20.
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21H Optimization
For given positive real numbers (cij : i, j ∈ {1, 2, 3}), consider the linear program

P : minimize
3∑

i=1

3∑

j=1

cijxij ,

subject to
3∑

i=1

xij 6 1 for all j,
3∑

j=1

xij > 1 for all i,

and xij > 0 for all i, j.

(i) Consider the feasible solution x in which x11 = x12 = x22 = x23 = x31 = x33 = 1/2
and xij = 0 otherwise. Write down two basic feasible solutions of P , one of which
you can be sure is at least as good as x. Are either of these basic feasible solutions
of P degenerate?

(ii) Starting from a general definition of a Lagrangian dual problem show that the dual
of P can be written as

D : maximize
λi>0, µi>0

3∑

i=1

(λi − µi) subject to λi − µj 6 cij for all i, j.

What happens to the optimal value of this problem if the constraints λi > 0 and
µi > 0 are removed?

Prove that x11 = x22 = x33 = 1 is an optimal solution to P if and only if there exist
λ1, λ2, λ3 such that

λi − λj 6 cij − cjj, for all i, j.

[You may use any facts that you know from the general theory of linear programming
provided that you state them.]

END OF PAPER
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