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SECTION I

1F Linear Algebra
Define the determinant detA of an n×n real matrix A. Suppose that X is a matrix

with block form

X =

(
A B
0 C

)
,

where A, B and C are matrices of dimensions n×n, n×m and m×m respectively. Show
that detX = (detA)(detC).

2G Groups, Rings and Modules
What does it mean to say that the finite group G acts on the set Ω?

By considering an action of the symmetry group of a regular tetrahedron on a set
of pairs of edges, show there is a surjective homomorphism S4 → S3.

[You may assume that the symmetric group Sn is generated by transpositions.]

3E Analysis II
Let f : R2 → R be a function. What does it mean to say that f is differentiable at

a point (x, y) ∈ R2? Prove directly from this definition, that if f is differentiable at (x, y),
then f is continuous at (x, y).

Let f : R2 → R be the function:

f(x, y) =





x2 + y2 if x and y are rational

0 otherwise.

For which points (x, y) ∈ R2 is f differentiable? Justify your answer.
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4F Metric and Topological Spaces
For each case below, determine whether the given metrics d1 and d2 induce the same

topology on X. Justify your answers.

(i) X = R2, d1((x1, y1), (x2, y2)) = sup{|x1 − x2|, |y1 − y2|}
d2((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|.

(ii) X = C[0, 1], d1(f, g) = sup
t∈[0,1]

|f(t)− g(t)|

d2(f, g) =

∫ 1

0
|f(t)− g(t)| dt.

5C Methods
Using the method of characteristics, obtain a solution to the equation

ux + 2xuy = y

subject to the Cauchy data u(0, y) = 1 + y2 for −1
2 < y < 1

2 .

Sketch the characteristics and specify the greatest region of the plane in which a
unique solution exists.

6B Electromagnetism
Write down the expressions for a general, time-dependent electric field E and

magnetic field B in terms of a vector potential A and scalar potential φ. What is meant
by a gauge transformation of A and φ? Show that E and B are unchanged under a gauge
transformation.

A plane electromagnetic wave has vector and scalar potentials

A(x, t) = A0 e
i(k·x−ωt)

φ(x, t) = φ0 e
i(k·x−ωt) ,

where A0 and φ0 are constants. Show that (A0, φ0) can be modified to (A0+µk, φ0+µω)
by a gauge transformation. What choice of µ leads to the modified A(x, t) satisfying the
Coulomb gauge condition ∇ ·A = 0?
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7A Fluid Dynamics
Starting from Euler’s equation for the motion of an inviscid fluid, derive the vorticity

equation in the form

Dω

Dt
= ω · ∇u .

Deduce that an initially irrotational flow remains irrotational.

Consider a plane flow that at time t = 0 is described by the streamfunction

ψ = x2 + y2 .

Calculate the vorticity everywhere at times t > 0.

8H Statistics
Let the sample x = (x1, . . . , xn) have likelihood function f(x; θ). What does it mean

to say T (x) is a sufficient statistic for θ?

Show that if a certain factorization criterion is satisfied then T is sufficient for θ.

Suppose that T is sufficient for θ and there exist two samples, x and y, for which
T (x) 6= T (y) and f(x; θ)/f(y; θ) does not depend on θ. Let

T1(z) =

{
T (z) z 6= y

T (x) z = y.

Show that T1 is also sufficient for θ.

Explain why T is not minimally sufficient for θ.

9H Optimization
Consider the two-player zero-sum game with payoff matrix

A =




2 0 −2
3 4 5
6 0 6


 .

Express the problem of finding the column player’s optimal strategy as a linear program-
ming problem in which x1 + x2 + x3 is to be maximized subject to some constraints.

Solve this problem using the simplex algorithm and find the optimal strategy for
the column player.

Find also, from the final tableau you obtain, both the value of the game and the
row player’s optimal strategy.
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SECTION II

10F Linear Algebra
(i) Define the transpose of a matrix. If V and W are finite-dimensional real vector

spaces, define the dual of a linear map T : V → W . How are these two notions related?

Now suppose V and W are finite-dimensional inner product spaces. Use the inner
product on V to define a linear map V → V ∗ and show that it is an isomorphism. Define
the adjoint of a linear map T : V → W . How are the adjoint of T and its dual related?
If A is a matrix representing T , under what conditions is the adjoint of T represented by
the transpose of A?

(ii) Let V = C[0, 1] be the vector space of continuous real-valued functions on [0, 1],
equipped with the inner product

〈f, g〉 =
∫ 1

0
f(t)g(t) dt .

Let T : V → V be the linear map

Tf(t) =

∫ t

0
f(s) ds .

What is the adjoint of T ?

11G Groups, Rings and Modules
State Gauss’s Lemma. State Eisenstein’s irreducibility criterion.

(i) By considering a suitable substitution, show that the polynomial 1 + X3 + X6 is
irreducible over Q.

(ii) By working in Z2[X], show that the polynomial 1−X2 +X5 is irreducible over Q.
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12E Analysis II
Let f : Rn → Rm be a mapping. Fix a ∈ Rn and prove that the following two

statements are equivalent:

(i) Given ε > 0 there is δ > 0 such that ‖f(x) − f(a)‖ < ε whenever ‖x − a‖ < δ
(we use the standard norm in Euclidean space).

(ii) f(xn) → f(a) for any sequence xn → a.

We say that f is continuous if (i) (or equivalently (ii)) holds for every a ∈ Rn.

Let E and F be subsets of Rn and Rm respectively. For f : Rn → Rm as above,
determine which of the following statements are always true and which may be false, giving
a proof or a counterexample as appropriate.

(a) If f−1(F ) is closed whenever F is closed, then f is continuous.

(b) If f is continuous, then f−1(F ) is closed whenever F is closed.

(c) If f is continuous, then f(E) is open whenever E is open.

(d) If f is continuous, then f(E) is bounded whenever E is bounded.

(e) If f is continuous and f−1(F ) is bounded whenever F is bounded, then f(E) is
closed whenever E is closed.

13A Complex Analysis or Complex Methods
By a suitable choice of contour show that, for −1 < α < 1 ,

∫ ∞

0

xα

1 + x2
dx =

π

2 cos(απ/2)
.

14G Geometry
Let S be a closed surface, equipped with a triangulation. Define the Euler

characteristic χ(S) of S. How does χ(S) depend on the triangulation?

Let V , E and F denote the number of vertices, edges and faces of the triangulation.
Show that 2E = 3F .

Suppose now the triangulation is tidy, meaning that it has the property that no two
vertices are joined by more than one edge. Deduce that V satisfies

V > 7 +
√

49− 24χ(S)

2
.

Hence compute the minimal number of vertices of a tidy triangulation of the real projective
plane. [Hint: it may be helpful to consider the icosahedron as a triangulation of the sphere
S2.]
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15B Variational Principles
(i) A two-dimensional oscillator has action

S =

∫ t1

t0

{
1

2
ẋ2 +

1

2
ẏ2 − 1

2
ω2x2 − 1

2
ω2y2

}
dt .

Find the equations of motion as the Euler-Lagrange equations associated to S, and use
them to show that

J = ẋy − ẏx

is conserved. Write down the general solution of the equations of motion in terms of sinωt
and cosωt, and evaluate J in terms of the coefficients which arise in the general solution.

(ii) Another kind of oscillator has action

S̃ =

∫ t1

t0

{
1

2
ẋ2 +

1

2
ẏ2 − 1

4
αx4 − 1

2
βx2y2 − 1

4
αy4

}
dt ,

where α and β are real constants. Find the equations of motion and use these to show
that in general J = ẋy − ẏx is not conserved. Find the special value of the ratio β/α for
which J is conserved. Explain what is special about the action S̃ in this case, and state
the interpretation of J .

16C Methods
Consider the linear differential operator L defined by

Ly := −d2y

dx2
+ y

on the interval 0 6 x < ∞. Given the boundary conditions y(0) = 0 and limx→∞ y(x) = 0,
find the Green’s function G(x, ξ) for L with these boundary conditions. Hence, or
otherwise, obtain the solution of

Ly =

{
1, 0 6 x 6 µ

0, µ < x < ∞

subject to the above boundary conditions, where µ is a positive constant. Show that your
piecewise solution is continuous at x = µ and has the value

y(µ) =
1

2
(1 + e−2µ − 2e−µ) .
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17C Quantum Mechanics
Consider a quantum mechanical particle in a one-dimensional potential V (x), for

which V (x) = V (−x). Prove that when the energy eigenvalue E is non-degenerate, the
energy eigenfunction χ(x) has definite parity.

Now assume the particle is in the double potential well

V (x) =





U , 0 6 |x| 6 l1

0 , l1 < |x| 6 l2

∞ , l2 < |x| ,

where 0 < l1 < l2 and 0 < E < U (U being large and positive). Obtain general expressions
for the even parity energy eigenfunctions χ+(x) in terms of trigonometric and hyperbolic
functions. Show that

− tan[k(l2 − l1)] =
k

κ
coth(κl1) ,

where k2 =
2mE

~2
and κ2 =

2m(U − E)

~2
.

18B Electromagnetism
A straight wire has n mobile, charged particles per unit length, each of charge q.

Assuming the charges all move with velocity v along the wire, show that the current is
I = nqv.

Using the Lorentz force law, show that if such a current-carrying wire is placed in
a uniform magnetic field of strength B perpendicular to the wire, then the force on the
wire, per unit length, is BI.

Consider two infinite parallel wires, with separation L, carrying (in the same sense
of direction) positive currents I1 and I2, respectively. Find the force per unit length on
each wire, determining both its magnitude and direction.
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19D Numerical Analysis
Let {Pn}∞n=0 be the sequence of monic polynomials of degree n orthogonal on the

interval [−1, 1] with respect to the weight function w .

Prove that each Pn has n distinct zeros in the interval (−1, 1).

Let P0(x) = 1, P1(x) = x−a1, and let Pn satisfy the following three-term recurrence
relation:

Pn(x) = (x− an)Pn−1(x)− b2nPn−2(x) , n > 2 .

Set

An =




a1 b2 0 · · · 0

b2 a2 b3
. . .

...

0
. . .

. . .
. . . 0

...
. . . bn−1 an−1 bn

0 · · · 0 bn an




.

Prove that Pn(x) = det(xI − An), n > 1, and deduce that all the eigenvalues of An are
distinct and reside in (−1, 1).
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20H Markov Chains
Let (Xn)n>0 be the symmetric random walk on vertices of a connected graph. At

each step this walk jumps from the current vertex to a neighbouring vertex, choosing
uniformly amongst them. Let Ti = inf{n > 1 : Xn = i}. For each i 6= j let
qij = P (Tj < Ti | X0 = i) and mij = E(Tj | X0 = i). Stating any theorems that
you use:

(i) Prove that the invariant distribution π satisfies detailed balance.

(ii) Use reversibility to explain why πiqij = πjqji for all i, j.

Consider a symmetric random walk on the graph shown below.

1

2

3

4

5

6

7

8

9

10

(iii) Find m33.

(iv) The removal of any edge (i, j) leaves two disjoint components, one which includes i
and one which includes j. Prove that mij = 1 + 2eij(i), where eij(i) is the number
of edges in the component that contains i.

(v) Show that mij +mji ∈ {18, 36, 54, 72} for all i 6= j.

END OF PAPER
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