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Paper 3, Section I

2E Analysis II
Let C[0, 1] be the set of continuous real-valued functions on [0, 1] with the uniform

norm. Suppose T : C[0, 1] → C[0, 1] is defined by

T (f)(x) =

∫ x

0
f(t3) dt ,

for all x ∈ [0, 1] and f ∈ C[0, 1]. Is T a contraction mapping? Does T have a unique fixed
point? Justify your answers.

Paper 4, Section I

3E Analysis II
Let f : Rn × Rm → R be a bilinear function. Show that f is differentiable at any

point in Rn × Rm and find its derivative.

Paper 2, Section I

3E Analysis II
Let f : R2 → R be a function. What does it mean to say that f is differentiable at

a point (x, y) ∈ R2? Prove directly from this definition, that if f is differentiable at (x, y),
then f is continuous at (x, y).

Let f : R2 → R be the function:

f(x, y) =





x2 + y2 if x and y are rational

0 otherwise.

For which points (x, y) ∈ R2 is f differentiable? Justify your answer.
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Paper 1, Section II

11E Analysis II
State the inverse function theorem for a function F : Rn → Rn. Suppose F is a

differentiable bijection with F−1 also differentiable. Show that the derivative of F at any
point in Rn is a linear isomorphism.

Let f : R2 → R be a function such that the partial derivatives ∂f
∂x ,

∂f
∂y exist and are

continuous. Assume there is a point (a, b) ∈ R2 for which f(a, b) = 0 and ∂f
∂x(a, b) 6= 0.

Prove that there exist open sets U ⊂ R2 and W ⊂ R containing (a, b) and b, respectively,
such that for every y ∈ W there exists a unique x such that (x, y) ∈ U and f(x, y) = 0.
Moreover, if we define g : W → R by g(y) = x, prove that g is differentiable with
continuous derivative. Find the derivative of g at b in terms of ∂f

∂x (a, b) and
∂f
∂y (a, b).

Paper 4, Section II

12E Analysis II
State and prove the Bolzano-Weierstrass theorem in Rn. [You may assume the

Bolzano-Weierstrass theorem in R.]

Let X ⊂ Rn be a subset and let f : X → X be a mapping such that
d(f(x), f(y)) = d(x, y) for all x, y ∈ X, where d is the Euclidean distance in Rn. Prove
that if X is closed and bounded, then f is a bijection. Is this result still true if we drop
the boundedness assumption on X? Justify your answer.

Paper 3, Section II

12E Analysis II
Let fn be a sequence of continuous functions on the interval [0, 1] such that

fn(x) → f(x) for each x. For the three statements:

(a) fn → f uniformly on [0, 1];

(b) f is a continuous function;

(c)
∫ 1
0 fn(x) dx →

∫ 1
0 f(x) dx as n → ∞;

say which of the six possible implications (a) ⇒ (b), (a) ⇒ (c), (b) ⇒ (a), (b) ⇒ (c),
(c) ⇒ (a), (c) ⇒ (b) are true and which false, giving in each case a proof or counter-
example.
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Paper 2, Section II

12E Analysis II
Let f : Rn → Rm be a mapping. Fix a ∈ Rn and prove that the following two

statements are equivalent:

(i) Given ε > 0 there is δ > 0 such that ‖f(x) − f(a)‖ < ε whenever ‖x − a‖ < δ
(we use the standard norm in Euclidean space).

(ii) f(xn) → f(a) for any sequence xn → a.

We say that f is continuous if (i) (or equivalently (ii)) holds for every a ∈ Rn.

Let E and F be subsets of Rn and Rm respectively. For f : Rn → Rm as above,
determine which of the following statements are always true and which may be false, giving
a proof or a counterexample as appropriate.

(a) If f−1(F ) is closed whenever F is closed, then f is continuous.

(b) If f is continuous, then f−1(F ) is closed whenever F is closed.

(c) If f is continuous, then f(E) is open whenever E is open.

(d) If f is continuous, then f(E) is bounded whenever E is bounded.

(e) If f is continuous and f−1(F ) is bounded whenever F is bounded, then f(E) is
closed whenever E is closed.
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Paper 4, Section I

4E Complex Analysis
Let h : C → C be a holomorphic function with h(i) 6= h(−i). Does there exist a

holomorphic function f defined in |z| < 1 for which f ′(z) =
h(z)

1 + z2
? Does there exist a

holomorphic function f defined in |z| > 1 for which f ′(z) =
h(z)

1 + z2
? Justify your answers.

Paper 3, Section II

13E Complex Analysis
Let D(a,R) denote the disc |z − a| < R and let f : D(a,R) → C be a holomorphic

function. Using Cauchy’s integral formula show that for every r ∈ (0, R)

f(a) =

∫ 1

0
f(a+ re2πit) dt .

Deduce that if for every z ∈ D(a,R), |f(z)| 6 |f(a)|, then f is constant.

Let f : D(0, 1) → D(0, 1) be holomorphic with f(0) = 0. Show that |f(z)| 6 |z| for
all z ∈ D(0, 1). Moreover, show that if |f(w)| = |w| for some w 6= 0, then there exists λ
with |λ| = 1 such that f(z) = λz for all z ∈ D(0, 1).
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Paper 1, Section I

2A Complex Analysis or Complex Methods
Find a conformal transformation ζ = ζ(z) that maps the domain D, 0 < arg z < 3π

2 ,
on to the strip 0 < Im(ζ) < 1.

Hence find a bounded harmonic function φ on D subject to the boundary conditions
φ = 0, A on arg z = 0, 3π2 , respectively, where A is a real constant.

Paper 2, Section II

13A Complex Analysis or Complex Methods
By a suitable choice of contour show that, for −1 < α < 1 ,

∫ ∞

0

xα

1 + x2
dx =

π

2 cos(απ/2)
.
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Paper 1, Section II

13A Complex Analysis or Complex Methods
Using Cauchy’s integral theorem, write down the value of a holomorphic function

f(z) where |z| < 1 in terms of a contour integral around the unit circle, ζ = eiθ.

By considering the point 1/z, or otherwise, show that

f(z) =
1

2π

∫ 2π

0
f(ζ)

1− |z|2
|ζ − z|2 dθ .

By setting z = reiα, show that for any harmonic function u(r, α),

u(r, α) =
1

2π

∫ 2π

0
u(1, θ)

1− r2

1− 2r cos(α− θ) + r2
dθ

if r < 1.

Assuming that the function v(r, α), which is the conjugate harmonic function to
u(r, α), can be written as

v(r, α) = v(0) +
1

π

∫ 2π

0
u(1, θ)

r sin(α− θ)

1− 2r cos(α− θ) + r2
dθ ,

deduce that

f(z) = iv(0) +
1

2π

∫ 2π

0
u(1, θ)

ζ + z

ζ − z
dθ .

[You may use the fact that on the unit circle, ζ = 1/ζ , and hence

ζ

ζ − 1/z
= − z

ζ − z
. ]
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Paper 3, Section I

4A Complex Methods
State the formula for the Laplace transform of a function f(t), defined for t > 0.

Let f(t) be periodic with period T (i.e. f(t + T ) = f(t)). If g(t) is defined to be
equal to f(t) in [0, T ] and zero elsewhere and its Laplace transform is G(s), show that the
Laplace transform of f(t) is given by

F (s) =
G(s)

1− e−sT
.

Hence, or otherwise, find the inverse Laplace transform of

F (s) =
1

s

1− e−sT/2

1− e−sT
.

Paper 4, Section II

14A Complex Methods
State the convolution theorem for Fourier transforms.

The function φ(x, y) satisfies

∇2φ = 0

on the half-plane y > 0, subject to the boundary conditions

φ → 0 as y → ∞ for all x,

φ(x, 0) =

{
1 , |x| 6 1

0 , |x| > 1 .

Using Fourier transforms, show that

φ(x, y) =
y

π

∫ 1

−1

1

y2 + (x− t)2
dt ,

and hence that

φ(x, y) =
1

π

[
tan−1

(
1− x

y

)
+ tan−1

(
1 + x

y

)]
.
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Paper 2, Section I

6B Electromagnetism
Write down the expressions for a general, time-dependent electric field E and

magnetic field B in terms of a vector potential A and scalar potential φ. What is meant
by a gauge transformation of A and φ? Show that E and B are unchanged under a gauge
transformation.

A plane electromagnetic wave has vector and scalar potentials

A(x, t) = A0 e
i(k·x−ωt)

φ(x, t) = φ0 e
i(k·x−ωt) ,

where A0 and φ0 are constants. Show that (A0, φ0) can be modified to (A0+µk, φ0+µω)
by a gauge transformation. What choice of µ leads to the modified A(x, t) satisfying the
Coulomb gauge condition ∇ ·A = 0?

Paper 4, Section I

7B Electromagnetism
Define the notions of magnetic flux, electromotive force and resistance, in the context

of a single closed loop of wire. Use the Maxwell equation

∇×E = −∂B

∂t

to derive Faraday’s law of induction for the loop, assuming the loop is at rest.

Suppose now that the magnetic field is B = (0, 0, B tanh t) where B is a constant,
and that the loop of wire, with resistance R, is a circle of radius a lying in the (x, y) plane.
Calculate the current in the wire as a function of time.

Explain briefly why, even in a time-independent magnetic field, an electromotive
force may be produced in a loop of wire that moves through the field, and state the law
of induction in this situation.
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Paper 1, Section II

16B Electromagnetism
A sphere of radius a carries an electric charge Q uniformly distributed over its

surface. Calculate the electric field outside and inside the sphere. Also calculate the
electrostatic potential outside and inside the sphere, assuming it vanishes at infinity. State
the integral formula for the energy U of the electric field and use it to evaluate U as a
function of Q.

Relate
dU

dQ
to the potential on the surface of the sphere and explain briefly the

physical interpretation of the relation.
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Paper 3, Section II

17B Electromagnetism
Using the Maxwell equations

∇ · E =
ρ

ǫ0
, ∇×E = −∂B

∂t
,

∇ ·B = 0 , ∇×B− ǫ0µ0
∂E

∂t
= µ0j ,

show that in vacuum, E satisfies the wave equation

1

c2
∂2E

∂t2
−∇2E = 0 , (∗)

where c2 = (ǫ0µ0)
−1, as well as ∇ ·E = 0. Also show that at a planar boundary between

two media, Et (the tangential component of E) is continuous. Deduce that if one medium
is of negligible resistance, Et = 0.

Consider an empty cubic box with walls of negligible resistance on the planes x = 0,
x = a, y = 0, y = a, z = 0, z = a, where a > 0. Show that an electric field in the interior
of the form

Ex = f(x) sin
(mπy

a

)
sin

(nπz
a

)
e−iωt

Ey = g(y) sin

(
lπx

a

)
sin

(nπz
a

)
e−iωt

Ez = h(z) sin

(
lπx

a

)
sin

(mπy

a

)
e−iωt ,

with l, m and n positive integers, satisfies the boundary conditions on all six walls. Now
suppose that

f(x) = f0 cos

(
lπx

a

)
, g(y) = g0 cos

(mπy

a

)
, h(z) = h0 cos

(nπz
a

)
,

where f0, g0 and h0 are constants. Show that the wave equation (∗) is satisfied, and
determine the frequency ω. Find the further constraint on f0, g0 and h0?
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Paper 2, Section II

18B Electromagnetism
A straight wire has n mobile, charged particles per unit length, each of charge q.

Assuming the charges all move with velocity v along the wire, show that the current is
I = nqv.

Using the Lorentz force law, show that if such a current-carrying wire is placed in
a uniform magnetic field of strength B perpendicular to the wire, then the force on the
wire, per unit length, is BI.

Consider two infinite parallel wires, with separation L, carrying (in the same sense
of direction) positive currents I1 and I2, respectively. Find the force per unit length on
each wire, determining both its magnitude and direction.
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Paper 1, Section I

5A Fluid Dynamics
Viscous fluid, with viscosity µ and density ρ flows along a straight circular pipe of

radius R. The average velocity of the flow is U . Define a Reynolds number for the flow.

The flow is driven by a constant pressure gradient −G > 0 along the pipe and the
velocity is parallel to the axis of the pipe with magnitude u(r) that satisfies

µ

r

d

dr

(
r
du

dr

)
= −G,

where r is the radial distance from the axis.

State the boundary conditions on u and find the velocity as a function of r assuming
that it is finite on the axis r = 0. Hence, show that the shear stress τ at the pipe wall is
independent of the viscosity. Why is this the case?

Paper 2, Section I

7A Fluid Dynamics
Starting from Euler’s equation for the motion of an inviscid fluid, derive the vorticity

equation in the form

Dω

Dt
= ω · ∇u .

Deduce that an initially irrotational flow remains irrotational.

Consider a plane flow that at time t = 0 is described by the streamfunction

ψ = x2 + y2 .

Calculate the vorticity everywhere at times t > 0.
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Paper 1, Section II

17A Fluid Dynamics
Consider inviscid, incompressible fluid flow confined to the (x, y) plane. The fluid

has density ρ, and gravity can be neglected. Using the conservation of volume flux,
determine the velocity potential φ(r) of a point source of strength m, in terms of the
distance r from the source.

Two point sources each of strength m are located at x+ = (0, a) and x− = (0,−a).
Find the velocity potential of the flow.

Show that the flow in the region y > 0 is equivalent to the flow due to a source at
x+ and a fixed boundary at y = 0.

Find the pressure on the boundary y = 0 and hence determine the force on the
boundary.

[Hint: you may find the substitution x = a tan θ useful for the calculation of the
pressure.]
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Paper 4, Section II

18A Fluid Dynamics
The equations governing the flow of a shallow layer of inviscid liquid of uniform

depth H rotating with angular velocity 1
2f about the vertical z-axis are

∂u

∂t
− fv = −g

∂η

∂x
,

∂v

∂t
+ fu = −g

∂η

∂y
,

∂η

∂t
+H

(
∂u

∂x
+

∂v

∂y

)
= 0 ,

where u, v are the x- and y-components of velocity, respectively, and η is the elevation of
the free surface. Show that these equations imply that

∂q

∂t
= 0 , where q = ω − fη

H
and ω =

∂v

∂x
− ∂u

∂y
.

Consider an initial state where there is flow in the y-direction given by

u = η = 0, −∞ < x < ∞

v =





g
2f e

2x, x < 0

− g
2f e

−2x, x > 0 .

Find the initial potential vorticity.

Show that when this initial state adjusts, there is a final steady state independent
of y in which η satisfies

∂2η

∂x2
− η

a2
=

{
e2x, x < 0

e−2x, x > 0 ,

where a2 = gH/f2.

In the case a = 1, find the final free surface elevation that is finite at large |x| and
which is continuous and has continuous slope at x = 0, and show that it is negative for
all x.
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Paper 3, Section II

18A Fluid Dynamics
A rigid circular cylinder of radius a executes small amplitude oscillations with

velocity U(t) in a direction perpendicular to its axis, while immersed in an inviscid fluid
of density ρ contained within a larger concentric fixed cylinder of radius b. Gravity is
negligible. Neglecting terms quadratic in the amplitude, determine the boundary condition
on the velocity on the inner cylinder, and calculate the velocity potential of the induced
flow.

With the same approximations show that the difference in pressures on the surfaces
of the two cylinders has magnitude

ρ
dU

dt

a(b− a)

b+ a
cos θ,

where θ is the azimuthal angle measured from the direction of U .
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Paper 1, Section I

3G Geometry
Describe a collection of charts which cover a circular cylinder of radius R. Compute

the first fundamental form, and deduce that the cylinder is locally isometric to the plane.

Paper 3, Section I

5G Geometry
State a formula for the area of a hyperbolic triangle.

Hence, or otherwise, prove that if l1 and l2 are disjoint geodesics in the hyperbolic
plane, there is at most one geodesic which is perpendicular to both l1 and l2.

Paper 2, Section II

14G Geometry
Let S be a closed surface, equipped with a triangulation. Define the Euler

characteristic χ(S) of S. How does χ(S) depend on the triangulation?

Let V , E and F denote the number of vertices, edges and faces of the triangulation.
Show that 2E = 3F .

Suppose now the triangulation is tidy, meaning that it has the property that no two
vertices are joined by more than one edge. Deduce that V satisfies

V > 7 +
√

49− 24χ(S)

2
.

Hence compute the minimal number of vertices of a tidy triangulation of the real projective
plane. [Hint: it may be helpful to consider the icosahedron as a triangulation of the sphere
S2.]
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Paper 3, Section II

14G Geometry
Define the first and second fundamental forms of a smooth surface Σ ⊂ R3, and

explain their geometrical significance.

Write down the geodesic equations for a smooth curve γ : [0, 1] → Σ. Prove that γ
is a geodesic if and only if the derivative of the tangent vector to γ is always orthogonal
to Σ.

A plane Π ⊂ R3 cuts Σ in a smooth curve C ⊂ Σ, in such a way that reflection in
the plane Π is an isometry of Σ (in particular, preserves Σ). Prove that C is a geodesic.

Paper 4, Section II

15G Geometry
Let Σ ⊂ R3 be a smooth closed surface. Define the principal curvatures κmax and

κmin at a point p ∈ Σ. Prove that the Gauss curvature at p is the product of the two
principal curvatures.

A point p ∈ Σ is called a parabolic point if at least one of the two principal curvatures
vanishes. Suppose Π ⊂ R3 is a plane and Σ is tangent to Π along a smooth closed curve
C = Π ∩ Σ ⊂ Σ. Show that C is composed of parabolic points.

Can both principal curvatures vanish at a point of C? Briefly justify your answer.
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Paper 3, Section I

1G Groups, Rings and Modules
What is a Euclidean domain?

Giving careful statements of any general results you use, show that in the ring
Z[
√
−3], 2 is irreducible but not prime.

Paper 2, Section I

2G Groups, Rings and Modules
What does it mean to say that the finite group G acts on the set Ω?

By considering an action of the symmetry group of a regular tetrahedron on a set
of pairs of edges, show there is a surjective homomorphism S4 → S3.

[You may assume that the symmetric group Sn is generated by transpositions.]

Paper 4, Section I

2G Groups, Rings and Modules
An idempotent element of a ring R is an element e satisfying e2 = e. A nilpotent

element is an element e satisfying eN = 0 for some N > 0.

Let r ∈ R be non-zero. In the ring R[X], can the polynomial 1 + rX be (i) an
idempotent, (ii) a nilpotent? Can 1 + rX satisfy the equation (1 + rX)3 = (1 + rX)?
Justify your answers.

Paper 1, Section II

10G Groups, Rings and Modules
Let G be a finite group. What is a Sylow p-subgroup of G ?

Assuming that a Sylow p-subgroup H exists, and that the number of conjugates of
H is congruent to 1 mod p, prove that all Sylow p-subgroups are conjugate. If np denotes
the number of Sylow p-subgroups, deduce that

np ≡ 1 mod p and np

 |G| .

If furthermore G is simple prove that either G = H or

|G|
 np !

Deduce that a group of order 1, 000, 000 cannot be simple.
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Paper 2, Section II

11G Groups, Rings and Modules
State Gauss’s Lemma. State Eisenstein’s irreducibility criterion.

(i) By considering a suitable substitution, show that the polynomial 1 + X3 + X6 is
irreducible over Q.

(ii) By working in Z2[X], show that the polynomial 1−X2 +X5 is irreducible over Q.

Paper 3, Section II

11G Groups, Rings and Modules
For each of the following assertions, provide either a proof or a counterexample as

appropriate:

(i) The ring Z2[X]/〈X2 +X + 1〉 is a field.

(ii) The ring Z3[X]/〈X2 +X + 1〉 is a field.

(iii) If F is a finite field, the ring F [X] contains irreducible polynomials of arbitrarily
large degree.

(iv) If R is the ring C[0, 1] of continuous real-valued functions on the interval [0, 1], and
the non-zero elements f, g ∈ R satisfy f | g and g | f , then there is some unit u ∈ R
with f = u · g.
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Paper 4, Section II

11G Groups, Rings and Modules
Let R be a commutative ring with unit 1. Prove that an R-module is finitely

generated if and only if it is a quotient of a free module Rn, for some n > 0.

Let M be a finitely generated R-module. Suppose now I is an ideal of R, and φ is
an R-homomorphism from M to M with the property that

φ(M) ⊂ I ·M = {m ∈ M |m = rm′ with r ∈ I , m′ ∈ M} .

Prove that φ satisfies an equation

φn + an−1φ
n−1 + · · ·+ a1φ+ a0 = 0

where each aj ∈ I. [You may assume that if T is a matrix over R, then adj(T )T =
detT (id), with id the identity matrix.]

Deduce that if M satisfies I ·M = M , then there is some a ∈ R satisfying

a− 1 ∈ I and aM = 0 .

Give an example of a finitely generated Z-module M and a proper ideal I of Z satisfying
the hypothesis I ·M = M , and for your example, give an explicit such element a.
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Paper 4, Section I

1F Linear Algebra
Let V be a complex vector space with basis {e1, . . . , en}. Define T : V → V by

T (ei) = ei − ei+1 for i < n and T (en) = en − e1. Show that T is diagonalizable and find
its eigenvalues. [You may use any theorems you wish, as long as you state them clearly.]

Paper 2, Section I

1F Linear Algebra
Define the determinant detA of an n×n real matrix A. Suppose that X is a matrix

with block form

X =

(
A B
0 C

)
,

where A, B and C are matrices of dimensions n×n, n×m and m×m respectively. Show
that detX = (detA)(detC).

Paper 1, Section I

1F Linear Algebra
Define the notions of basis and dimension of a vector space. Prove that two finite-

dimensional real vector spaces with the same dimension are isomorphic.

In each case below, determine whether the set S is a basis of the real vector space
V :

(i) V = C is the complex numbers; S = {1, i}.

(ii) V = R[x] is the vector space of all polynomials in x with real coefficients;
S = {1, (x − 1), (x− 1)(x − 2), (x − 1)(x− 2)(x − 3), . . .}.

(iii) V = {f : [0, 1] → R}; S = {χp | p ∈ [0, 1]}, where

χp(x) =

{
1 x = p

0 x 6= p .
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Paper 1, Section II

9F Linear Algebra
Define what it means for two n × n matrices to be similar to each other. Show

that if two n × n matrices are similar, then the linear transformations they define have
isomorphic kernels and images.

If A and B are n× n real matrices, we define [A,B] = AB −BA. Let

KA = {X ∈ Mn×n(R) | [A,X] = 0}
LA = {[A,X] |X ∈ Mn×n(R)} .

Show that KA and LA are linear subspaces of Mn×n(R). If A and B are similar, show
that KA

∼= KB and LA
∼= LB .

Suppose that A is diagonalizable and has characteristic polynomial

(x− λ1)
m1(x− λ2)

m2 ,

where λ1 6= λ2. What are dimKA and dimLA?

Paper 4, Section II

10F Linear Algebra
Let V be a finite-dimensional real vector space of dimension n. A bilinear form

B : V × V → R is nondegenerate if for all v 6= 0 in V , there is some w ∈ V with
B(v,w) 6= 0. For v ∈ V , define 〈v〉⊥ = {w ∈ V |B(v,w) = 0}. Assuming B is
nondegenerate, show that V = 〈v〉 ⊕ 〈v〉⊥ whenever B(v,v) 6= 0.

Suppose that B is a nondegenerate, symmetric bilinear form on V . Prove that
there is a basis {v1, . . . ,vn} of V with B(vi,vj) = 0 for i 6= j. [If you use the fact that
symmetric matrices are diagonalizable, you must prove it.]

Define the signature of a quadratic form. Explain how to determine the signature
of the quadratic form associated to B from the basis you constructed above.

A linear subspace V ′ ⊂ V is said to be isotropic if B(v,w) = 0 for all v,w ∈ V ′.
Show that if B is nondegenerate, the maximal dimension of an isotropic subspace of V is
(n− |σ|)/2, where σ is the signature of the quadratic form associated to B.
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Paper 3, Section II

10F Linear Algebra
What is meant by the Jordan normal form of an n× n complex matrix?

Find the Jordan normal forms of the following matrices:




1 1 0 0
0 1 0 1
0 0 1 1
0 0 0 1


 ,




−1 −1 1 0
0 −1 0 1
0 0 −1 1
0 0 0 −1


 ,




3 0 0 0
3 3 0 0
9 6 3 0
15 12 9 3


 .

Suppose A is an invertible n×n complex matrix. Explain how to derive the charac-
teristic and minimal polynomials of An from the characteristic and minimal polynomials
of A. Justify your answer. [Hint: write each polynomial as a product of linear factors.]

Paper 2, Section II

10F Linear Algebra
(i) Define the transpose of a matrix. If V and W are finite-dimensional real vector

spaces, define the dual of a linear map T : V → W . How are these two notions related?

Now suppose V and W are finite-dimensional inner product spaces. Use the inner
product on V to define a linear map V → V ∗ and show that it is an isomorphism. Define
the adjoint of a linear map T : V → W . How are the adjoint of T and its dual related?
If A is a matrix representing T , under what conditions is the adjoint of T represented by
the transpose of A?

(ii) Let V = C[0, 1] be the vector space of continuous real-valued functions on [0, 1],
equipped with the inner product

〈f, g〉 =
∫ 1

0
f(t)g(t) dt .

Let T : V → V be the linear map

Tf(t) =

∫ t

0
f(s) ds .

What is the adjoint of T ?
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Paper 3, Section I

9H Markov Chains
A runner owns k pairs of running shoes and runs twice a day. In the morning

she leaves her house by the front door, and in the evening she leaves by the back door.
On starting each run she looks for shoes by the door through which she exits, and runs
barefoot if none are there. At the end of each run she is equally likely to return through
the front or back doors. She removes her shoes (if any) and places them by the door. In
the morning of day 1 all shoes are by the back door so she must run barefoot.

Let p
(n)
00 be the probability that she runs barefoot on the morning of day n + 1.

What conditions are satisfied in this problem which ensure limn→∞ p
(n)
00 exists? Show that

its value is 1/2k.

Find the expected number of days that will pass until the first morning that she
finds all k pairs of shoes at her front door.

Paper 4, Section I

9H Markov Chains
Let (Xn)n>0 be an irreducible Markov chain with p

(n)
ij = P (Xn = j | X0 = i).

Define the meaning of the statements:

(i) state i is transient,

(ii) state i is aperiodic.

Give a criterion for transience that can be expressed in terms of the probabilities

(p
(n)
ii , n = 0, 1, . . . ).

Prove that if a state i is transient then all states are transient.

Prove that if a state i is aperiodic then all states are aperiodic.

Suppose that p
(n)
ii = 0 unless n is divisible by 3. Given any other state j, prove that

p
(n)
jj = 0 unless n is divisible by 3.
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Paper 1, Section II

20H Markov Chains
A Markov chain (Xn)n>0 has as its state space the integers, with

pi,i+1 = p, pi,i−1 = q = 1− p,

and pij = 0 otherwise. Assume p > q.

Let Tj = inf{n > 1 : Xn = j} if this is finite, and Tj = ∞ otherwise. Let V0 be
the total number of hits on 0, and let V0(n) be the total number of hits on 0 within times
0, . . . , n− 1. Let

hi = P (V0 > 0 | X0 = i)

ri(n) = E[V0(n) | X0 = i]

ri = E[V0 | X0 = i].

(i) Quoting an appropriate theorem, find, for every i, the value of hi.

(ii) Show that if (xi, i ∈ Z) is any non-negative solution to the system of equations

x0 = 1 + qx1 + px−1,

xi = qxi−1 + pxi+1, for all i 6= 0,

then xi > ri(n) for all i and n.

(iii) Show that P (V0(T1) > k | X0 = 1) = qk and E[V0(T1) | X0 = 1] = q/p.

(iv) Explain why ri+1 = (q/p)ri for i > 0.

(v) Find ri for all i.
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Paper 2, Section II

20H Markov Chains
Let (Xn)n>0 be the symmetric random walk on vertices of a connected graph. At

each step this walk jumps from the current vertex to a neighbouring vertex, choosing
uniformly amongst them. Let Ti = inf{n > 1 : Xn = i}. For each i 6= j let
qij = P (Tj < Ti | X0 = i) and mij = E(Tj | X0 = i). Stating any theorems that
you use:

(i) Prove that the invariant distribution π satisfies detailed balance.

(ii) Use reversibility to explain why πiqij = πjqji for all i, j.

Consider a symmetric random walk on the graph shown below.

1

2

3

4

5

6

7

8

9

10

(iii) Find m33.

(iv) The removal of any edge (i, j) leaves two disjoint components, one which includes i
and one which includes j. Prove that mij = 1 + 2eij(i), where eij(i) is the number
of edges in the component that contains i.

(v) Show that mij +mji ∈ {18, 36, 54, 72} for all i 6= j.
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Paper 2, Section I

5C Methods
Using the method of characteristics, obtain a solution to the equation

ux + 2xuy = y

subject to the Cauchy data u(0, y) = 1 + y2 for −1
2 < y < 1

2 .

Sketch the characteristics and specify the greatest region of the plane in which a
unique solution exists.

Paper 4, Section I

5D Methods
Show that the general solution of the wave equation

1

c2
∂2y

∂t2
− ∂2y

∂x2
= 0

can be written in the form

y(x, t) = f(x− ct) + g(x+ ct) .

Hence derive the solution y(x, t) subject to the initial conditions

y(x, 0) = 0,
∂y

∂t
(x, 0) = ψ(x) .
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Paper 3, Section I

7D Methods
For the step-function

F (x) =

{
1 , |x| 6 1/2

0 , otherwise,

its convolution with itself is the hat-function

G(x) = [F ∗ F ](x) =

{
1− |x| , |x| 6 1

0 , otherwise.

Find the Fourier transforms of F and G, and hence find the values of the integrals

I1 =

∫ ∞

−∞

sin2 y

y2
dy , I2 =

∫ ∞

−∞

sin4 y

y4
dy .

Paper 1, Section II

14C Methods
Consider the regular Sturm-Liouville (S-L) system

(Ly)(x)− λω(x)y(x) = 0 , a 6 x 6 b ,

where

(Ly)(x) := −[p(x)y′(x)]′ + q(x)y(x)

with ω(x) > 0 and p(x) > 0 for all x in [a, b], and the boundary conditions on y are

{
A1 y(a) +A2 y

′(a) = 0

B1 y(b) +B2 y
′(b) = 0 .

Show that with these boundary conditions, L is self-adjoint. By considering yLy, or
otherwise, show that the eigenvalue λ can be written as

λ =

∫ b
a (py

′2 + qy2) dx− [pyy′]ba∫ b
a ωy2 dx

.

Now suppose that a = 0 and b = ℓ, that p(x) = 1, q(x) > 0 and ω(x) = 1 for all
x ∈ [0, ℓ], and that A1 = 1, A2 = 0, B1 = k ∈ R+ and B2 = 1. Show that the eigenvalues
of this regular S-L system are strictly positive. Assuming further that q(x) = 0, solve
the system explicitly, and with the aid of a graph, show that there exist infinitely many
eigenvalues λ1 < λ2 < · · · < λn < · · · . Describe the behaviour of λn as n → ∞.
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Paper 3, Section II

15D Methods
Consider Legendre’s equation

(1− x2)y′′ − 2xy′ + λy = 0 .

Show that if λ = n(n + 1), with n a non-negative integer, this equation has a solution
y = Pn(x), a polynomial of degree n. Find P0, P1 and P2 explicitly, subject to the
condition Pn(1) = 1.

The general solution of Laplace’s equation ∇2ψ = 0 in spherical polar coordinates,
in the axisymmetric case, has the form

ψ(r, θ) =
∞∑

n=0

(Anr
n +Bnr

−(n+1))Pn(cos θ) .

Hence, find the solution of Laplace’s equation in the region a 6 r 6 b satisfying the
boundary conditions {

ψ(r, θ) = 1 , r = a

ψ(r, θ) = 3 cos2 θ , r = b .

Paper 2, Section II

16C Methods
Consider the linear differential operator L defined by

Ly := −d2y

dx2
+ y

on the interval 0 6 x < ∞. Given the boundary conditions y(0) = 0 and limx→∞ y(x) = 0,
find the Green’s function G(x, ξ) for L with these boundary conditions. Hence, or
otherwise, obtain the solution of

Ly =

{
1, 0 6 x 6 µ

0, µ < x < ∞

subject to the above boundary conditions, where µ is a positive constant. Show that your
piecewise solution is continuous at x = µ and has the value

y(µ) =
1

2
(1 + e−2µ − 2e−µ) .
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Paper 4, Section II

17D Methods
Let D ⊂ R2 be a two-dimensional domain with boundary S = ∂D, and let

G2 = G2(r, r0) =
1

2π
log |r− r0| ,

where r0 is a point in the interior of D. From Green’s second identity,

∫

S

(
φ
∂ψ

∂n
− ψ

∂φ

∂n

)
dℓ =

∫

D
(φ∇2ψ − ψ∇2φ) da ,

derive Green’s third identity

u(r0) =

∫

D
G2∇2u da+

∫

S

(
u
∂G2

∂n
−G2

∂u

∂n

)
dℓ .

[Here ∂
∂n denotes the normal derivative on S.]

Consider the Dirichlet problem on the unit disc D1 = {r ∈ R2 : |r| 6 1}:

∇2u = 0, r ∈ D1 ,
u(r) = f(r), r ∈ S1 = ∂D1 .

Show that, with an appropriate function G(r, r0), the solution can be obtained by the
formula

u(r0) =

∫

S1

f(r)
∂

∂n
G(r , r0) dℓ .

State the boundary conditions on G and explain how G is related to G2.

For r, r0 ∈ R2, prove the identity

∣∣∣∣
r

|r| − r0|r|
∣∣∣∣ =

∣∣∣∣
r0
|r0|

− r|r0|
∣∣∣∣ ,

and deduce that if the point r lies on the unit circle, then

|r− r0| = |r0||r− r∗0| , where r∗0 =
r0
|r0|2

.

Hence, using the method of images, or otherwise, find an expression for the function
G(r , r0). [An expression for ∂

∂nG is not required.]
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Paper 3, Section I

3F Metric and Topological Spaces
Define the notion of a connected component of a space X.

If Aα ⊂ X are connected subsets of X such that
⋂

αAα 6= ∅, show that
⋃

α Aα is
connected.

Prove that any point x ∈ X is contained in a unique connected component.

Let X ⊂ R consist of the points 0, 1, 12 ,
1
3 , . . . ,

1
n , . . . . What are the connected

components of X?

Paper 2, Section I

4F Metric and Topological Spaces
For each case below, determine whether the given metrics d1 and d2 induce the same

topology on X. Justify your answers.

(i) X = R2, d1((x1, y1), (x2, y2)) = sup{|x1 − x2|, |y1 − y2|}
d2((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|.

(ii) X = C[0, 1], d1(f, g) = sup
t∈[0,1]

|f(t)− g(t)|

d2(f, g) =

∫ 1

0
|f(t)− g(t)| dt.

Paper 1, Section II

12F Metric and Topological Spaces
A topological space X is said to be normal if each point of X is a closed subset

of X and for each pair of closed sets C1, C2 ⊂ X with C1 ∩ C2 = ∅ there are open sets
U1, U2 ⊂ X so that Ci ⊂ Ui and U1 ∩U2 = ∅. In this case we say that the Ui separate the
Ci.

Show that a compact Hausdorff space is normal. [Hint: first consider the case where
C2 is a point.]

For C ⊂ X we define an equivalence relation ∼C on X by x ∼C y for all x, y ∈ C,
x ∼C x for x 6∈ C. If C,C1 and C2 are pairwise disjoint closed subsets of a normal space X,
show that C1 and C2 may be separated by open subsets U1 and U2 such that Ui ∩C = ∅.
Deduce that the quotient space X/ ∼C is also normal.
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Paper 4, Section II

13F Metric and Topological Spaces
Suppose A1 and A2 are topological spaces. Define the product topology on A1×A2.

Let πi : A1×A2 → Ai be the projection. Show that a map F : X → A1×A2 is continuous
if and only if π1 ◦ F and π2 ◦ F are continuous.

Prove that if A1 and A2 are connected, then A1 ×A2 is connected.

Let X be the topological space whose underlying set is R, and whose open sets are
of the form (a,∞) for a ∈ R, along with the empty set and the whole space. Describe the
open sets in X × X. Are the maps f, g : X × X → X defined by f(x, y) = x + y and
g(x, y) = xy continuous? Justify your answers.
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Paper 1, Section I

6D Numerical Analysis
Let

A =




1 a a2 a3

a3 1 a a2

a2 a3 1 a

a a2 a3 1



, b =




γ

0

0

0



, γ = 1− a4 6= 0 .

Find the LU factorization of the matrix A and use it to solve the system Ax = b via
forward and backward substitution. [Other methods of solution are not acceptable.]

Paper 4, Section I

8D Numerical Analysis
State the Dahlquist equivalence theorem regarding convergence of a multistep

method.

The multistep method, with a real parameter a,

yn+3 + (2a− 3)(yn+2 − yn+1)− yn = ha (fn+2 − fn+1)

is of order 2 for any a, and also of order 3 for a = 6. Determine all values of a for which
the method is convergent, and find the order of convergence.

Paper 1, Section II

18D Numerical Analysis
For a numerical method for solving y′ = f(t, y), define the linear stability domain,

and state when such a method is A-stable.

Determine all values of the real parameter a for which the Runge-Kutta method

k1 = f
(
tn + (12 − a)h, yn +

(
1
4hk1 + (14 − a)hk2

))
,

k2 = f
(
tn + (12 + a)h, yn +

(
(14 + a)hk1 +

1
4hk2

))
,

yn+1 = yn + 1
2h(k1 + k2)

is A-stable.
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Paper 3, Section II

19D Numerical Analysis
Define the QR factorization of an m×n matrix A and explain how it can be used to

solve the least squares problem of finding the vector x∗ ∈ Rn which minimises ‖Ax∗ − b‖,
where b ∈ Rm, m > n, and the norm is the Euclidean one.

Define a Householder transformation H and show that it is an orthogonal matrix.

Using a Householder transformation, solve the least squares problem for

A =




1 −1 5
0 1 5
0 0 3
0 0 4


 , b =




1
2

−1
2


 ,

giving both x∗ and ‖Ax∗ − b‖.

Paper 2, Section II

19D Numerical Analysis
Let {Pn}∞n=0 be the sequence of monic polynomials of degree n orthogonal on the

interval [−1, 1] with respect to the weight function w .

Prove that each Pn has n distinct zeros in the interval (−1, 1).

Let P0(x) = 1, P1(x) = x−a1, and let Pn satisfy the following three-term recurrence
relation:

Pn(x) = (x− an)Pn−1(x)− b2nPn−2(x) , n > 2 .

Set

An =




a1 b2 0 · · · 0

b2 a2 b3
. . .

...

0
. . .

. . .
. . . 0

...
. . . bn−1 an−1 bn

0 · · · 0 bn an




.

Prove that Pn(x) = det(xI − An), n > 1, and deduce that all the eigenvalues of An are
distinct and reside in (−1, 1).
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8H Optimization
State the Lagrangian sufficiency theorem.

Use Lagrange multipliers to find the optimal values of x1 and x2 in the problem:

maximize x21 + x2 subject to x21 +
1
2x

2
2 6 b1, x1 > b2 and x1, x2 > 0,

for all values of b1, b2 such that b1 − b22 > 0.

Paper 2, Section I

9H Optimization
Consider the two-player zero-sum game with payoff matrix

A =




2 0 −2
3 4 5
6 0 6


 .

Express the problem of finding the column player’s optimal strategy as a linear program-
ming problem in which x1 + x2 + x3 is to be maximized subject to some constraints.

Solve this problem using the simplex algorithm and find the optimal strategy for
the column player.

Find also, from the final tableau you obtain, both the value of the game and the
row player’s optimal strategy.
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Paper 4, Section II

20H Optimization
Describe the Ford-Fulkerson algorithm.

State conditions under which the algorithm is guaranteed to terminate in a finite
number of steps. Explain why it does so, and show that it finds a maximum flow. [You
may assume that the value of a flow never exceeds the value of any cut.]

In a football league of n teams the season is partly finished. Team i has already won
wi matches. Teams i and j are to meet in mij further matches. Thus the total number
of remaining matches is M =

∑
i<j mij . Assume there will be no drawn matches. We

wish to determine whether it is possible for the outcomes of the remaining matches to
occur in such a way that at the end of the season the numbers of wins by the teams are
(x1, . . . , xn).

Invent a network flow problem in which the maximum flow from source to sink
equals M if and only if (x1, . . . , xn) is a feasible vector of final wins.

Illustrate your idea by answering the question of whether or not x = (7, 5, 6, 6) is a
possible profile of total end-of-season wins when n = 4, w = (1, 2, 3, 4), and M = 14 with

(mij) =




− 2 2 2
2 − 1 1
2 1 − 6
2 1 6 −


 .
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21H Optimization
For given positive real numbers (cij : i, j ∈ {1, 2, 3}), consider the linear program

P : minimize
3∑

i=1

3∑

j=1

cijxij ,

subject to
3∑

i=1

xij 6 1 for all j,
3∑

j=1

xij > 1 for all i,

and xij > 0 for all i, j.

(i) Consider the feasible solution x in which x11 = x12 = x22 = x23 = x31 = x33 = 1/2
and xij = 0 otherwise. Write down two basic feasible solutions of P , one of which
you can be sure is at least as good as x. Are either of these basic feasible solutions
of P degenerate?

(ii) Starting from a general definition of a Lagrangian dual problem show that the dual
of P can be written as

D : maximize
λi>0, µi>0

3∑

i=1

(λi − µi) subject to λi − µj 6 cij for all i, j.

What happens to the optimal value of this problem if the constraints λi > 0 and
µi > 0 are removed?

Prove that x11 = x22 = x33 = 1 is an optimal solution to P if and only if there exist
λ1, λ2, λ3 such that

λi − λj 6 cij − cjj, for all i, j.

[You may use any facts that you know from the general theory of linear programming
provided that you state them.]
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6C Quantum Mechanics
In terms of quantum states, what is meant by energy degeneracy?

A particle of mass m is confined within the box 0 < x < a, 0 < y < a and 0 < z < c.
The potential vanishes inside the box and is infinite outside. Find the allowed energies by
considering a stationary state wavefunction of the form

χ(x, y, z) = X(x)Y (y)Z(z) .

Write down the normalised ground state wavefunction. Assuming that c < a <
√
2c, give

the energies of the first three excited states.

Paper 3, Section I

8C Quantum Mechanics
A one-dimensional quantum mechanical particle has normalised bound state energy

eigenfunctions χn(x) and corresponding non-degenerate energy eigenvalues En. At t = 0
the normalised wavefunction ψ(x, t) is given by

ψ(x, 0) =

√
5

6
eik1χ1(x) +

√
1

6
eik2χ2(x)

where k1 and k2 are real constants. Write down the expression for ψ(x, t) at a later time
t and give the probability that a measurement of the particle’s energy will yield a value
of E2.

Show that the expectation value of x at time t is given by

〈x〉 = 5

6
〈x〉11 +

1

6
〈x〉22 +

√
5

3
Re

[
〈x〉12 ei(k2−k1)−i(E2−E1)t/~

]

where 〈x〉ij =
∫∞
−∞ χ∗

i (x)xχj(x) dx.
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15C Quantum Mechanics
Show that if the energy levels are discrete, the general solution of the Schrödinger

equation

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + V (x)ψ

is a linear superposition of stationary states

ψ(x, t) =
∞∑

n=1

anχn(x) exp(−iEnt/~) ,

where χn(x) is a solution of the time-independent Schrödinger equation and an are complex
coefficients. Can this general solution be considered to be a stationary state? Justify your
answer.

A linear operator Ô acts on the orthonormal energy eigenfunctions χn as follows:

Ôχ1 = χ1 + χ2

Ôχ2 = χ1 + χ2

Ôχn = 0, n > 3.

Obtain the eigenvalues of Ô. Hence, find the normalised eigenfunctions of Ô. In an
experiment a measurement is made of Ô at t = 0 yielding an eigenvalue of 2. What is the
probability that a measurement at some later time t will yield an eigenvalue of 2?

Paper 3, Section II

16C Quantum Mechanics
State the condition for a linear operator Ô to be Hermitian.

Given the position and momentum operators x̂i and p̂i = −i~ ∂
∂xi

, define the angular

momentum operators L̂i. Establish the commutation relations

[L̂i, L̂j ] = i~ǫijkL̂k

and use these relations to show that L̂3 is Hermitian assuming L̂1 and L̂2 are.

Consider a wavefunction of the form

χ(x) = x3(x1 + kx2)e
−r

where r = |x| and k is some constant. Show that χ(x) is an eigenstate of the total angular
momentum operator L̂2 for all k, and calculate the corresponding eigenvalue. For what
values of k is χ(x) an eigenstate of L̂3? What are the corresponding eigenvalues?
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17C Quantum Mechanics
Consider a quantum mechanical particle in a one-dimensional potential V (x), for

which V (x) = V (−x). Prove that when the energy eigenvalue E is non-degenerate, the
energy eigenfunction χ(x) has definite parity.

Now assume the particle is in the double potential well

V (x) =





U , 0 6 |x| 6 l1

0 , l1 < |x| 6 l2

∞ , l2 < |x| ,

where 0 < l1 < l2 and 0 < E < U (U being large and positive). Obtain general expressions
for the even parity energy eigenfunctions χ+(x) in terms of trigonometric and hyperbolic
functions. Show that

− tan[k(l2 − l1)] =
k

κ
coth(κl1) ,

where k2 =
2mE

~2
and κ2 =

2m(U − E)

~2
.
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7H Statistics
Describe the generalised likelihood ratio test and the type of statistical question for

which it is useful.

Suppose that X1, . . . ,Xn are independent and identically distributed random vari-
ables with the Gamma(2, λ) distribution, having density function λ2x exp(−λx), x > 0.
Similarly, Y1, . . . , Yn are independent and identically distributed with the Gamma(2, µ)
distribution. It is desired to test the hypothesis H0 : λ = µ against H1 : λ 6= µ. Derive
the generalised likelihood ratio test and express it in terms of R =

∑
i Xi/

∑
i Yi.

Let F
(1−α)
ν1,ν2 denote the value that a random variable having the Fν1,ν2 distribution

exceeds with probability α. Explain how to decide the outcome of a size 0.05 test when

n = 5 by knowing only the value of R and the value F
(1−α)
ν1,ν2 , for some ν1, ν2 and α, which

you should specify.

[You may use the fact that the χ2
k distribution is equivalent to the Gamma(k/2, 1/2)

distribution.]

Paper 2, Section I

8H Statistics
Let the sample x = (x1, . . . , xn) have likelihood function f(x; θ). What does it mean

to say T (x) is a sufficient statistic for θ?

Show that if a certain factorization criterion is satisfied then T is sufficient for θ.

Suppose that T is sufficient for θ and there exist two samples, x and y, for which
T (x) 6= T (y) and f(x; θ)/f(y; θ) does not depend on θ. Let

T1(z) =

{
T (z) z 6= y

T (x) z = y.

Show that T1 is also sufficient for θ.

Explain why T is not minimally sufficient for θ.
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19H Statistics
From each of 3 populations, n data points are sampled and these are believed to

obey
yij = αi + βi(xij − x̄i) + ǫij , j ∈ {1, . . . , n}, i ∈ {1, 2, 3},

where x̄i = (1/n)
∑

j xij , the ǫij are independent and identically distributed as N(0, σ2),

and σ2 is unknown. Let ȳi = (1/n)
∑

j yij.

(i) Find expressions for α̂i and β̂i, the least squares estimates of αi and βi.

(ii) What are the distributions of α̂i and β̂i?

(iii) Show that the residual sum of squares, R1, is given by

R1 =

3∑

i=1




n∑

j=1

(yij − ȳi)
2 − β̂2

i

n∑

j=1

(xij − x̄i)
2


 .

Calculate R1 when n = 9, {α̂i}3i=1 = {1.6, 0.6, 0.8}, {β̂i}3i=1 = {2, 1, 1},




9∑

j=1

(yij − ȳi)
2





3

i=1

= {138, 82, 63},





9∑

j=1

(xij − x̄i)
2





3

i=1

= {30, 60, 40}.

(iv) H0 is the hypothesis that α1 = α2 = α3. Find an expression for the maximum
likelihood estimator of α1 under the assumption that H0 is true. Calculate its value for
the above data.

(v) Explain (stating without proof any relevant theory) the rationale for a statistic
which can be referred to an F distribution to test H0 against the alternative that it is not
true. What should be the degrees of freedom of this F distribution? What would be the
outcome of a size 0.05 test of H0 with the above data?
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Paper 1, Section II

19H Statistics
State and prove the Neyman-Pearson lemma.

A sample of two independent observations, (x1, x2), is taken from a distribution with
density f(x; θ) = θxθ−1, 0 6 x 6 1. It is desired to test H0 : θ = 1 against H1 : θ = 2.
Show that the best test of size α can be expressed using the number c such that

1− c+ c log c = α .

Is this the uniformly most powerful test of size α for testing H0 against H1 : θ > 1?

Suppose that the prior distribution of θ is P (θ = 1) = 4γ/(1 + 4γ), P (θ = 2) =
1/(1+4γ), where 1 > γ > 0. Find the test of H0 against H1 that minimizes the probability
of error.

Let w(θ) denote the power function of this test at θ (> 1). Show that

w(θ) = 1− γθ + γθ log γθ.
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Paper 3, Section II

20H Statistics
Suppose that X is a single observation drawn from the uniform distribution on the

interval
[
θ−10, θ+10

]
, where θ is unknown and might be any real number. Given θ0 6= 20

we wish to test H0 : θ = θ0 against H1 : θ = 20. Let φ(θ0) be the test which accepts H0 if
and only if X ∈ A(θ0), where

A(θ0) =

{[
θ0 − 8,∞

)
, θ0 > 20

(
−∞, θ0 + 8

]
, θ0 < 20 .

Show that this test has size α = 0.10.

Now consider

C1(X) = {θ : X ∈ A(θ)},
C2(X) =

{
θ : X − 9 6 θ 6 X + 9

}
.

Prove that both C1(X) and C2(X) specify 90% confidence intervals for θ. Find the
confidence interval specified by C1(X) when X = 0.

Let Li(X) be the length of the confidence interval specified by Ci(X). Let β(θ0) be
the probability of the Type II error of φ(θ0). Show that

E[L1(X) | θ = 20] = E

[∫ ∞

−∞
1{θ0∈C1(X)}dθ0

∣∣∣ θ = 20

]
=

∫ ∞

−∞
β(θ0) dθ0.

Here 1{B} is an indicator variable for event B. The expectation is over X. [Orders of
integration and expectation can be interchanged.]

Use what you know about constructing best tests to explain which of the two
confidence intervals has the smaller expected length when θ = 20.
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Paper 1, Section I

4B Variational Principles
State how to find the stationary points of a C1 function f(x, y) restricted to the

circle x2 + y2 = 1, using the method of Lagrange multipliers. Explain why, in general, the
method of Lagrange multipliers works, in the case where there is just one constraint.

Find the stationary points of x4 + 2y3 restricted to the circle x2 + y2 = 1.

Paper 3, Section I

6B Variational Principles
For a particle of unit mass moving freely on a unit sphere, the Lagrangian in polar

coordinates is

L =
1

2
θ̇2 +

1

2
sin2 θ φ̇2 .

Find the equations of motion. Show that l = sin2 θ φ̇ is a conserved quantity, and use this
result to simplify the equation of motion for θ. Deduce that

h = θ̇2 +
l2

sin2 θ

is a conserved quantity. What is the interpretation of h?
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Paper 2, Section II

15B Variational Principles
(i) A two-dimensional oscillator has action

S =

∫ t1

t0

{
1

2
ẋ2 +

1

2
ẏ2 − 1

2
ω2x2 − 1

2
ω2y2

}
dt .

Find the equations of motion as the Euler-Lagrange equations associated to S, and use
them to show that

J = ẋy − ẏx

is conserved. Write down the general solution of the equations of motion in terms of sinωt
and cosωt, and evaluate J in terms of the coefficients which arise in the general solution.

(ii) Another kind of oscillator has action

S̃ =

∫ t1

t0

{
1

2
ẋ2 +

1

2
ẏ2 − 1

4
αx4 − 1

2
βx2y2 − 1

4
αy4

}
dt ,

where α and β are real constants. Find the equations of motion and use these to show
that in general J = ẋy − ẏx is not conserved. Find the special value of the ratio β/α for
which J is conserved. Explain what is special about the action S̃ in this case, and state
the interpretation of J .

Paper 4, Section II

16B Variational Principles
Consider a functional

I =

∫ b

a
F (x, y, y′)dx

where F is smooth in all its arguments, y(x) is a C1 function and y′ = dy
dx . Consider the

function y(x) + h(x) where h(x) is a small C1 function which vanishes at a and b. Obtain
formulae for the first and second variations of I about the function y(x). Derive the
Euler-Lagrange equation from the first variation, and state its variational interpretation.

Suppose now that

I =

∫ 1

0
(y′2 − 1)2dx

where y(0) = 0 and y(1) = β. Find the Euler-Lagrange equation and the formula for the
second variation of I. Show that the function y(x) = βx makes I stationary, and that it
is a (local) minimizer if β > 1√

3
.

Show that when β = 0, the function y(x) = 0 is not a minimizer of I.
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