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Paper 2, Section I

3E Analysis II
Define differentiability of a function f : Rn → R. Let a > 0 be a constant. For

which points (x, y) ∈ R2 is
f(x, y) = |x|a + |x− y|

differentiable? Justify your answer.

Paper 3, Section I

2E Analysis II
Suppose f is a uniformly continuous mapping from a metric space X to a metric

space Y . Prove that f(xn) is a Cauchy sequence in Y for every Cauchy sequence xn in X.

Let f be a continuous mapping between metric spaces and suppose that f has the
property that f(xn) is a Cauchy sequence whenever xn is a Cauchy sequence. Is it true
that f must be uniformly continuous? Justify your answer.

Paper 4, Section I

3E Analysis II
Let B[0, 1] denote the set of bounded real-valued functions on [0, 1]. A distance d

on B[0, 1] is defined by
d(f, g) = sup

x∈[0,1]
|f(x)− g(x)|.

Given that (B[0, 1], d) is a metric space, show that it is complete. Show that the subset
C[0, 1] ⊂ B[0, 1] of continuous functions is a closed set.
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Paper 1, Section II

11E Analysis II
What is meant by saying that a sequence of functions fn converges uniformly to a

function f?

Let fn be a sequence of differentiable functions on [a, b] with f ′
n continuous and such

that fn(x0) converges for some point x0 ∈ [a, b]. Assume in addition that f ′
n converges

uniformly on [a, b]. Prove that fn converges uniformly to a differentiable function f on
[a, b] and f ′(x) = limn→∞ f ′

n(x) for all x ∈ [a, b]. [You may assume that the uniform limit
of continuous functions is continuous.]

Show that the series

ζ(s) =
∞∑

n=1

1

ns

converges for s > 1 and is uniformly convergent on [1 + ε,∞) for any ε > 0. Show that
ζ(s) is differentiable on (1,∞) and

ζ ′(s) = −
∞∑

n=2

log n

ns
.

[You may use the Weierstrass M -test provided it is clearly stated.]

Paper 2, Section II

12E Analysis II
What is meant by saying that two norms on a real vector space are Lipschitz

equivalent?

Show that any two norms on Rn are Lipschitz equivalent. [You may assume that a
continuous function on a closed bounded set in Rn has closed bounded image.]

Show that ‖f‖1 =
∫ 1
−1 |f(x)| dx defines a norm on the space C[−1, 1] of continuous

real-valued functions on [−1, 1]. Is it Lipschitz equivalent to the uniform norm? Justify
your answer. Prove that the normed space (C[−1, 1], ‖ · ‖1) is not complete.
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Paper 3, Section II

12E Analysis II
Consider a map f : Rn → Rm.

Assume f is differentiable at x and let Dxf denote the derivative of f at x. Show
that

Dxf(v) = lim
t→0

f(x+ tv)− f(x)

t

for any v ∈ Rn.

Assume now that f is such that for some fixed x and for every v ∈ Rn the limit

lim
t→0

f(x+ tv)− f(x)

t

exists. Is it true that f is differentiable at x? Justify your answer.

LetMk denote the set of all k×k real matrices which is identified with Rk2 . Consider
the function f : Mk → Mk given by f(A) = A3. Explain why f is differentiable. Show
that the derivative of f at the matrix A is given by

DAf(H) = HA2 +AHA+A2H

for any matrix H ∈ Mk. State carefully the inverse function theorem and use it to prove
that there exist open sets U and V containing the identity matrix such that given B ∈ V
there exists a unique A ∈ U such that A3 = B.

Paper 4, Section II

12E Analysis II
Define a contraction mapping and state the contraction mapping theorem.

Let (X, d) be a non-empty complete metric space and let φ : X → X be a map.
Set φ1 = φ and φn+1 = φ ◦ φn. Assume that for some integer r > 1, φr is a contraction
mapping. Show that φ has a unique fixed point y and that any x ∈ X has the property
that φn(x) → y as n → ∞.

Let C[0, 1] be the set of continuous real-valued functions on [0, 1] with the uniform
norm. Suppose T : C[0, 1] → C[0, 1] is defined by

T (f)(x) =

∫ x

0
f(t) dt

for all x ∈ [0, 1] and f ∈ C[0, 1]. Show that T is not a contraction mapping but that T 2

is.
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Paper 4, Section I

4E Complex Analysis
Let f(z) be an analytic function in an open subset U of the complex plane. Prove

that f has derivatives of all orders at any point z in U . [You may assume Cauchy’s integral
formula provided it is clearly stated.]

Paper 3, Section II

13E Complex Analysis
Let g : C → C be a continuous function such that

∫

Γ
g(z) dz = 0

for any closed curve Γ which is the boundary of a rectangle in C with sides parallel to the
real and imaginary axes. Prove that g is analytic.

Let f : C → C be continuous. Suppose in addition that f is analytic at every point
z ∈ C with non-zero imaginary part. Show that f is analytic at every point in C.

Let H be the upper half-plane of complex numbers z with positive imaginary part
ℑ(z) > 0. Consider a continuous function F : H ∪ R → C such that F is analytic on H
and F (R) ⊂ R. Define f : C → C by

f(z) =





F (z) if ℑ(z) > 0

F (z) if ℑ(z) 6 0.

Show that f is analytic.
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Paper 1, Section I

2A Complex Analysis or Complex Methods
Derive the Cauchy-Riemann equations satisfied by the real and imaginary parts of

a complex analytic function f(z).

If |f(z)| is constant on |z| < 1, prove that f(z) is constant on |z| < 1.

Paper 1, Section II

13A Complex Analysis or Complex Methods
(i) Let −1 < α < 0 and let

f(z) =
log(z − α)

z
where − π 6 arg(z − α) < π ,

g(z) =
log z

z
where − π 6 arg(z) < π .

Here the logarithms take their principal values. Give a sketch to indicate the positions of
the branch cuts implied by the definitions of f(z) and g(z).

(ii) Let h(z) = f(z)− g(z). Explain why h(z) is analytic in the annulus 1 6 |z| 6 R
for any R > 1. Obtain the first three terms of the Laurent expansion for h(z) around
z = 0 in this annulus and hence evaluate

∮

|z|=2
h(z)dz .
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Paper 2, Section II

13A Complex Analysis or Complex Methods
(i) Let C be an anticlockwise contour defined by a square with vertices at z = x+ iy

where

|x| = |y| =
(
2N +

1

2

)
π,

for large integer N . Let

I =

∮

C

π cot z

(z + πa)4
dz.

Assuming that I → 0 as N → ∞, prove that, if a is not an integer, then

∞∑

n=−∞

1

(n+ a)4
=

π4

3 sin2(πa)

(
3

sin2(πa)
− 2

)
.

(ii) Deduce the value of
∞∑

n=−∞

1

(n+ 1
2)

4 .

(iii) Briefly justify the assumption that I → 0 as N → ∞.

[Hint: For part (iii) it is sufficient to consider, at most, one vertical side of the
square and one horizontal side and to use a symmetry argument for the remaining sides.]

Part IB, 2011 List of Questions [TURN OVER



8

Paper 3, Section I

4D Complex Methods
Write down the function ψ(u, v) that satisfies

∂2ψ

∂u2
+
∂2ψ

∂v2
= 0 , ψ(−1

2 , v) = −1, ψ(12 , v) = 1 .

The circular arcs C1 and C2 in the complex z-plane are defined by

|z + 1| = 1, z 6= 0 and |z − 1| = 1, z 6= 0 ,

respectively. You may assume without proof that the mapping from the complex z-plane
to the complex ζ-plane defined by

ζ =
1

z

takes C1 to the line u = −1
2 and C2 to the line u = 1

2 , where ζ = u + iv, and that the
region D in the z-plane exterior to both the circles |z+1| = 1 and |z− 1| = 1 maps to the
region in the ζ-plane given by −1

2 < u < 1
2 .

Use the above mapping to solve the problem

∇2φ = 0 in D, φ = −1 on C1 and φ = 1 on C2.

Paper 4, Section II

14D Complex Methods
State and prove the convolution theorem for Laplace transforms.

Use Laplace transforms to solve

2f ′(t)−
∫ t

0
(t− τ)2f(τ) dτ = 4tH(t)

with f(0) = 0, where H(t) is the Heaviside function. You may assume that the Laplace
transform, f̂(s), of f(t) exists for Re s sufficiently large.
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Paper 2, Section I

6C Electromagnetism
Maxwell’s equations are

∇ · E =
ρ

ǫ0
, ∇×E = −∂B

∂t
,

∇ ·B = 0 , ∇×B = µ0J+ ǫ0µ0
∂E

∂t
.

Find the equation relating ρ and J that must be satisfied for consistency, and give the
interpretation of this equation.

Now consider the “magnetic limit” where ρ = 0 and the term ǫ0µ0
∂E

∂t
is neglected.

Let A be a vector potential satisfying the gauge condition ∇·A = 0, and assume the scalar
potential vanishes. Find expressions for E and B in terms of A and show that Maxwell’s
equations are all satisfied provided A satisfies the appropriate Poisson equation.

Paper 4, Section I

7C Electromagnetism
A plane electromagnetic wave in a vacuum has electric field

E = (E0 sin k(z − ct), 0, 0) .

What are the wavevector, polarization vector and speed of the wave? Using Maxwell’s
equations, find the magnetic field B. Assuming the scalar potential vanishes, find a
possible vector potential A for this wave, and verify that it gives the correct E and B.

Paper 1, Section II

16D Electromagnetism
Starting from the relevant Maxwell equation, derive Gauss’s law in integral form.

Use Gauss’s law to obtain the potential at a distance r from an infinite straight wire
with charge λ per unit length.

Write down the potential due to two infinite wires parallel to the z-axis, one at
x = y = 0 with charge λ per unit length and the other at x = 0, y = d with charge −λ
per unit length.

Find the potential and the electric field in the limit d → 0 with λd = p where p is
fixed. Sketch the equipotentials and the electric field lines.
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Paper 2, Section II

18C Electromagnetism
(i) Consider an infinitely long solenoid parallel to the z-axis whose cross section is a

simple closed curve of arbitrary shape. A current I, per unit length of the solenoid, flows
around the solenoid parallel to the x− y plane. Show using the relevant Maxwell equation
that the magnetic field B inside the solenoid is uniform, and calculate its magnitude.

(ii) A wire loop in the shape of a regular hexagon of side length a carries a current I.
Use the Biot-Savart law to calculate B at the centre of the loop.

Paper 3, Section II

17C Electromagnetism
Show, using the vacuum Maxwell equations, that for any volume V with surface S,

d

dt

∫

V

(
ǫ0
2
E · E+

1

2µ0
B ·B

)
dV =

∫

S

(
− 1

µ0
E×B

)
· dS .

What is the interpretation of this equation?

A uniform straight wire, with a circular cross section of radius r, has conductivity
σ and carries a current I. Calculate 1

µ0
E × B at the surface of the wire, and hence find

the flux of 1
µ0
E × B into unit length of the wire. Relate your result to the resistance of

the wire, and the rate of energy dissipation.
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Paper 1, Section I

5B Fluid Dynamics
Inviscid fluid is contained in a square vessel with sides of length πL lying between

x = 0, πL, y = 0, πL. The base of the container is at z = −H where H ≫ L and the
horizontal surface is at z = 0 when the fluid is at rest. The variation of pressure of the air
above the fluid may be neglected.

Small amplitude surface waves are excited in the vessel.

(i) Now let H → ∞. Explain why on dimensional grounds the frequencies ω of such
waves are of the form

ω =
(γg
L

) 1
2

for some positive dimensionless constants γ, where g is the gravitational acceleration.

It is given that the velocity potential φ is of the form

φ(x, y, z) ≈ C cos(mx/L) cos(ny/L)eγz/L

where m and n are integers and C is a constant.

(ii) Why do cosines, rather than sines, appear in this expression?

(iii) Give an expression for γ in terms of m and n.

(iv) Give all possible values that γ2 can take between 1 and 10 inclusive. How many
different solutions for φ correspond to each of these values of γ2?

Paper 2, Section I

7D Fluid Dynamics
A body of volume V lies totally submerged in a motionless fluid of uniform density ρ.

Show that the force F on the body is given by

F = −
∫

S
(p− p0)n dS

where p is the pressure in the fluid and p0 is atmospheric pressure. You may use without
proof the generalised divergence theorem in the form

∫

S
φn dS =

∫

V
∇φdV.

Deduce that
F = ρgV ẑ,

where ẑ is the vertically upward unit vector. Interpret this result.
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Paper 1, Section II

17B Fluid Dynamics
A spherical bubble in an incompressible fluid of density ρ has radius a(t). Write

down an expression for the velocity field at a radius R > a.

The pressure far from the bubble is p∞. What is the pressure at radius R?

Find conditions on a and its time derivatives that ensure that the maximum pressure
in the fluid is reached at a radius Rmax where a < Rmax < ∞. Give an expression for this
maximum pressure when the conditions hold.

Give the most general form of a(t) that ensures that the pressure at R = a(t) is p∞
for all time.

Paper 3, Section II

18D Fluid Dynamics
Water of constant density ρ flows steadily through a long cylindrical tube, the wall

of which is elastic. The exterior radius of the tube at a distance z along the tube, r(z), is
determined by the pressure in the tube, p(z), according to

r(z) = r0 + b(p(z) − p0),

where r0 and p0 are the radius and pressure far upstream (z → −∞), and b is a positive
constant.

The interior radius of the tube is r(z)− h(z), where h(z), the thickness of the wall,
is a given slowly varying function of z which is zero at both ends of the pipe. The velocity
of the water in the pipe is u(z) and the water enters the pipe at velocity V .

Show that u(z) satisfies

H = 1− v−
1
2 + 1

4k(1− v2) ,

where H =
h

r0
, v =

u

V
and k =

2bρV 2

r0
. Sketch the graph of H against v.

Let Hm be the maximum value of H in the tube. Show that the flow is only possible
if Hm does not exceed a certain critical value Hc. Find Hc in terms of k.

Show that, under conditions to be determined (which include a condition on the
value of k), the water can leave the pipe with speed less than V .
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Paper 4, Section II

18D Fluid Dynamics
Show that an irrotational incompressible flow can be determined from a velocity

potential φ that satisfies ∇2φ = 0.

Given that the general solution of ∇2φ = 0 in plane polar coordinates is

φ =

∞∑

n=−∞
(an cosnθ + bn sinnθ)r

n + c log r + bθ ,

obtain the corresponding fluid velocity.

A two-dimensional irrotational incompressible fluid flows past the circular disc with
boundary r = a. For large r, the flow is uniform and parallel to the x-axis (x = r cos θ).
Write down the boundary conditions for large r and on r = a, and hence derive the velocity
potential in the form

φ = U

(
r +

a2

r

)
cos θ +

κθ

2π
,

where κ is the circulation.

Show that the acceleration of the fluid at r = a and θ = 0 is

κ

2πa2

(
− κ

2πa
er − 2Ueθ

)
.
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Paper 1, Section I

3F Geometry
Suppose that H ⊆ C is the upper half-plane, H = {x+ iy

∣∣x, y ∈ R, y > 0}. Using

the Riemannian metric ds2 =
dx2 + dy2

y2
, define the length of a curve γ and the area of a

region Ω in H.

Find the area of

Ω = {x+ iy
∣∣ |x| 6 1

2
, x2 + y2 > 1} .

Paper 3, Section I

5F Geometry
Let R(x, θ) denote anti-clockwise rotation of the Euclidean plane R2 through an

angle θ about a point x.

Show that R(x, θ) is a composite of two reflexions.

Assume θ, φ ∈ (0, π). Show that the composite R(y, φ) · R(x, θ) is also a rotation
R(z, ψ). Find z and ψ.

Paper 2, Section II

14F Geometry
Suppose that π : S2 → C∞ is stereographic projection. Show that, via π, every

rotation of S2 corresponds to a Möbius transformation in PSU(2).

Paper 3, Section II

14F Geometry
Suppose that η(u) = (f(u), 0, g(u)) is a unit speed curve in R3. Show that the

corresponding surface of revolution S obtained by rotating this curve about the z-axis has
Gaussian curvature K = −(d2f/du2)/f .
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Paper 4, Section II

15F Geometry
Suppose that P is a point on a Riemannian surface S. Explain the notion of geodesic

polar co-ordinates on S in a neighbourhood of P , and prove that if C is a geodesic circle
centred at P of small positive radius, then the geodesics through P meet C at right angles.
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Paper 2, Section I

2F Groups, Rings and Modules
Show that the quaternion group Q8 = {±1,±i,±j,±k}, with ij = k = −ji,

i2 = j2 = k2 = −1, is not isomorphic to the symmetry group D8 of the square.

Paper 3, Section I

1F Groups, Rings and Modules
Suppose that A is an integral domain containing a field K and that A is finite-

dimensional as a K-vector space. Prove that A is a field.

Paper 4, Section I

2F Groups, Rings and Modules
A ring R satisfies the descending chain condition (DCC) on ideals if, for every

sequence I1 ⊇ I2 ⊇ I3 ⊇ . . . of ideals in R, there exists n with In = In+1 = In+2 = . . . .
Show that Z does not satisfy the DCC on ideals.

Paper 1, Section II

10F Groups, Rings and Modules
(i) Suppose that G is a finite group of order pnr, where p is prime and does not

divide r. Prove the first Sylow theorem, that G has at least one subgroup of order pn, and
state the remaining Sylow theorems without proof.

(ii) Suppose that p, q are distinct primes. Show that there is no simple group of
order pq.

Paper 2, Section II

11F Groups, Rings and Modules
Define the notion of a Euclidean domain and show that Z[i] is Euclidean.

Is 4 + i prime in Z[i]?
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Paper 3, Section II

11F Groups, Rings and Modules
Suppose that A is a matrix over Z. What does it mean to say that A can be brought

to Smith normal form?

Show that the structure theorem for finitely generated modules over Z (which you
should state) follows from the existence of Smith normal forms for matrices over Z.

Bring the matrix

(
−4 −6
2 2

)
to Smith normal form.

Suppose that M is the Z-module with generators e1, e2, subject to the relations

−4e1 + 2e2 = −6e1 + 2e2 = 0 .

Describe M in terms of the structure theorem.

Paper 4, Section II

11F Groups, Rings and Modules
State and prove the Hilbert Basis Theorem.

Is every ring Noetherian? Justify your answer.
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Paper 1, Section I

1G Linear Algebra
(i) State the rank-nullity theorem for a linear map between finite-dimensional vector

spaces.

(ii) Show that a linear transformation f : V → V of a finite-dimensional vector
space V is bijective if it is injective or surjective.

(iii) Let V be the R-vector space R[X] of all polynomials in X with coefficients in
R. Give an example of a linear transformation f : V → V which is surjective but not
bijective.

Paper 2, Section I

1G Linear Algebra
Let V be an n-dimensional R-vector space with an inner product. Let W be an

m-dimensional subspace of V and W⊥ its orthogonal complement, so that every element
v ∈ V can be uniquely written as v = w + w′ for w ∈ W and w′ ∈ W⊥.

The reflection map with respect to W is defined as the linear map

fW : V ∋ w + w′ 7−→ w − w′ ∈ V.

Show that fW is an orthogonal transformation with respect to the inner product, and find
its determinant.

Paper 4, Section I

1G Linear Algebra
(i) Let V be a vector space over a field F , and W1,W2 subspaces of V . Define the

subset W1 +W2 of V , and show that W1 +W2 and W1 ∩W2 are subspaces of V .

(ii) When W1,W2 are finite-dimensional, state a formula for dim(W1+W2) in terms
of dimW1, dimW2 and dim(W1 ∩W2).

(iii) Let V be the R-vector space of all n×n matrices over R. Let S be the subspace
of all symmetric matrices and T the subspace of all upper triangular matrices (the matrices
(aij) such that aij = 0 whenever i > j). Find dimS, dimT, dim(S ∩ T ) and dim(S + T ).
Briefly justify your answer.
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Paper 1, Section II

9G Linear Algebra
Let V,W be finite-dimensional vector spaces over a field F and f : V → W a linear

map.

(i) Show that f is injective if and only if the image of every linearly independent
subset of V is linearly independent in W .

(ii) Define the dual space V ∗ of V and the dual map f∗ : W ∗ → V ∗.

(iii) Show that f is surjective if and only if the image under f∗ of every linearly
independent subset of W ∗ is linearly independent in V ∗.

Paper 2, Section II

10G Linear Algebra
Let n be a positive integer, and let V be a C-vector space of complex-valued functions

on R, generated by the set { cos kx, sin kx; k = 0, 1, . . . , n− 1 }.
(i) Let 〈f, g〉 =

∫ 2π
0 f(x)g(x)dx for f, g ∈ V . Show that this is a positive definite

Hermitian form on V .

(ii) Let ∆(f) =
d2

dx2
f(x). Show that ∆ is a self-adjoint linear transformation of V

with respect to the form defined in (i).

(iii) Find an orthonormal basis of V with respect to the form defined in (i), which
consists of eigenvectors of ∆.

Paper 3, Section II

10G Linear Algebra
(i) Let A be an n × n complex matrix and f(X) a polynomial with complex

coefficients. By considering the Jordan normal form of A or otherwise, show that if the
eigenvalues of A are λ1, . . . , λn then the eigenvalues of f(A) are f(λ1), . . . , f(λn).

(ii) Let B =




a d c b
b a d c
c b a d
d c b a


. Write B as B = f(A) for a polynomial f with

A =




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


, and find the eigenvalues of B.

[Hint: compute the powers of A.]
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Paper 4, Section II

10G Linear Algebra
Let V be an n-dimensional R-vector space and f, g : V → V linear transformations.

Suppose f is invertible and diagonalisable, and f ◦ g = t · (g ◦ f) for some real number
t > 1.

(i) Show that g is nilpotent, i.e. some positive power of g is 0.

(ii) Suppose that there is a non-zero vector v ∈ V with f(v) = v and gn−1(v) 6= 0.
Determine the diagonal form of f .
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Paper 3, Section I

9H Markov Chains
Let (Xn)n>0 be a Markov chain with state space S.

(i) What does it mean to say that (Xn)n>0 has the strong Markov property? Your answer
should include the definition of the term stopping time.

(ii) Show that

P(Xn = i at least k times |X0 = i) =
[
P(Xn = i at least once |X0 = i)

]k

for a state i ∈ S. You may use without proof the fact that (Xn)n>0 has the strong Markov
property.

Paper 4, Section I

9H Markov Chains
Let (Xn)n>0 be a Markov chain on a state space S, and let

pij(n) = P(Xn = j|X0 = i).

(i) What does the term communicating class mean in terms of this chain?

(ii) Show that pii(m+ n) > pij(m)pji(n).

(iii) The period di of a state i is defined to be

di = gcd{n > 1 : pii(n) > 0}.

Show that if i and j are in the same communicating class and pjj(r) > 0, then di divides r.
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Paper 1, Section II

20H Markov Chains
Let P = (pij)i,j∈S be the transition matrix for an irreducible Markov chain on the

finite state space S.

(i) What does it mean to say π is the invariant distribution for the chain?

(ii) What does it mean to say the chain is in detailed balance with respect to π?

(iii) A symmetric random walk on a connected finite graph is the Markov chain whose
state space is the set of vertices of the graph and whose transition probabilities are

pij =

{
1/Di if j is adjacent to i
0 otherwise,

where Di is the number of vertices adjacent to vertex i. Show that the random walk is in
detailed balance with respect to its invariant distribution.

(iv) Let π be the invariant distribution for the transition matrix P , and define an inner
product for vectors x, y ∈ RS by the formula

〈x, y〉 =
∑

i∈S
xiπiyi.

Show that the equation
〈x, Py〉 = 〈Px, y〉

holds for all vectors x, y ∈ RS if and only if the chain is in detailed balance with respect
to π. [Here z ∈ RS means z = (zi)i∈S .]
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Paper 2, Section II

20H Markov Chains
(i) Let (Xn)n>0 be a Markov chain on the finite state space S with transition matrix P .
Fix a subset A ⊆ S, and let

H = inf{n > 0 : Xn ∈ A}.

Fix a function g on S such that 0 < g(i) 6 1 for all i ∈ S, and let

Vi = E

[
H−1∏

n=0

g(Xn)|X0 = i

]

where
∏−1

n=0 an = 1 by convention. Show that

Vi =

{
1 if i ∈ A
g(i)

∑
j∈S PijVj otherwise.

(ii) A flea lives on a polyhedron with N vertices, labelled 1, . . . , N . It hops from vertex to
vertex in the following manner: if one day it is on vertex i > 1, the next day it hops to one
of the vertices labelled 1, . . . , i−1 with equal probability, and it dies upon reaching vertex
1. Let Xn be the position of the flea on day n. What are the transition probabilities for
the Markov chain (Xn)n>0?

(iii) Let H be the number of days the flea is alive, and let

Vi = E(sH |X0 = i)

where s is a real number such that 0 < s 6 1. Show that V1 = 1 and

i

s
Vi+1 = Vi +

i− 1

s
Vi

for i > 1. Conclude that

E(sH |X0 = N) =

N−1∏

i=1

(
1 +

s− 1

i

)
.

[Hint. Use part (i) with A = {1} and a well-chosen function g. ]

(iv) Show that

E(H|X0 = N) =

N−1∑

i=1

1

i
.
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Paper 2, Section I

5A Methods
The Legendre equation is

(1− x2)
d2y

dx2
− 2x

dy

dx
+ n(n+ 1)y = 0

for −1 6 x 6 1 and non-negative integers n.

Write the Legendre equation as an eigenvalue equation for an operator L in Sturm-
Liouville form. Show that L is self-adjoint and find the orthogonality relation between the
eigenfunctions.

Paper 3, Section I

7A Methods
The Fourier transform h̃(k) of the function h(x) is defined by

h̃(k) =

∞∫

−∞

h(x)e−ikxdx.

(i) State the inverse Fourier transform formula expressing h(x) in terms of h̃(k).

(ii) State the convolution theorem for Fourier transforms.

(iii) Find the Fourier transform of the function f(x) = e−|x|. Hence show that the
convolution of the function f(x) = e−|x| with itself is given by the integral expression

2

π

∞∫

−∞

eikx

(1 + k2)2
dk.

Paper 4, Section I

5A Methods
Use the method of characteristics to find a continuous solution u(x, y) of the equation

y
∂u

∂x
+ x

∂u

∂y
= 0,

subject to the condition u(0, y) = y4.

In which region of the plane is the solution uniquely determined?
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Paper 1, Section II

14A Methods
Let f(t) be a real function defined on an interval (−T, T ) with Fourier series

f(t) =
a0
2

+
∞∑

n=1

(
an cos

nπt

T
+ bn sin

nπt

T

)
.

State and prove Parseval’s theorem for f(t) and its Fourier series. Write down the formulae

for a0, an and bn in terms of f(t), cos
nπt

T
and sin

nπt

T
.

Find the Fourier series of the square wave function defined on (−π, π) by

g(t) =

{
0 − π < t 6 0

1 0 < t < π.

Hence evaluate ∞∑

k=0

(−1)k

(2k + 1)
.

Using some of the above results evaluate

∞∑

k=0

1

(2k + 1)2
.

What is the sum of the Fourier series for g(t) at t = 0? Comment on your answer.

Paper 2, Section II

16A Methods
Use a Green’s function to find an integral expression for the solution of the equation

d2θ

dt2
+ 4

dθ

dt
+ 29 θ = f(t)

for t > 0 subject to the initial conditions

θ(0) = 0 and
dθ

dt
(0) = 0.
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Paper 3, Section II

15A Methods
A uniform stretched string of length L, density per unit length µ and tension T = µc2

is fixed at both ends. Its transverse displacement is given by y(x, t) for 0 6 x 6 L . The
motion of the string is resisted by the surrounding medium with a resistive force per unit

length of −2kµ
∂y

∂t
.

(i) Show that the equation of motion of the string is

∂2y

∂t2
+ 2k

∂y

∂t
− c2

∂2y

∂x2
= 0

provided that the transverse motion can be regarded as small.

(ii) Suppose now that k =
πc

L
. Find the displacement of the string for t > 0 given

the initial conditions

y(x, 0) = A sin
(πx
L

)
and

∂y

∂t
(x, 0) = 0.

(iii) Sketch the transverse displacement at x =
L

2
as a function of time for t > 0.
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Paper 4, Section II

17A Methods
Let D be a two dimensional domain with boundary ∂D. Establish Green’s second

identity ∫

D
(φ∇2ψ − ψ∇2φ)dA =

∫

∂D

(
φ
∂ψ

∂n
− ψ

∂φ

∂n

)
ds

where
∂

∂n
denotes the outward normal derivative on ∂D.

State the differential equation and boundary conditions which are satisfied by a
Dirichlet Green’s function G(r, r0) for the Laplace operator on the domain D, where r0 is
a fixed point in the interior of D.

Suppose that ∇2ψ = 0 on D. Show that

ψ(r0) =

∫

∂D
ψ(r)

∂

∂n
G(r, r0)ds.

Consider Laplace’s equation in the upper half plane,

∇2ψ(x, y) = 0, −∞ < x <∞ and y > 0,

with boundary conditions ψ(x, 0) = f(x) where f(x) → 0 as |x| → ∞, and ψ(x, y) → 0 as√
x2 + y2 → ∞. Show that the solution is given by the integral formula

ψ(x0, y0) =
y0
π

∫ ∞

−∞

f(x)

(x− x0)2 + y20
dx.

[ Hint: It might be useful to consider

G(r, r0) =
1

2π
(log |r− r0| − log |r− r̃0|)

for suitable r̃0. You may assume ∇2 log |r− r0| = 2πδ(r − r0). ]
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Paper 2, Section I

4G Metric and Topological Spaces
(i) Let t > 0. For x = (x, y), x′ = (x′, y′) ∈ R2, let

d(x,x′) = |x′ − x|+ t|y′ − y|,

δ(x,x′) =
√
(x′ − x)2 + (y′ − y)2.

(δ is the usual Euclidean metric on R2.) Show that d is a metric on R2 and that the two
metrics d, δ give rise to the same topology on R2.

(ii) Give an example of a topology on R2, different from the one in (i), whose induced
topology (subspace topology) on the x-axis is the usual topology (the one defined by the
metric d(x, x′) = |x′ − x|). Justify your answer.

Paper 3, Section I

3G Metric and Topological Spaces
Let X,Y be topological spaces, and suppose Y is Hausdorff.

(i) Let f, g : X → Y be two continuous maps. Show that the set

E(f, g) := {x ∈ X | f(x) = g(x)} ⊂ X

is a closed subset of X.

(ii) Let W be a dense subset of X. Show that a continuous map f : X → Y is
determined by its restriction f |W to W .

Paper 1, Section II

12G Metric and Topological Spaces
Let X be a metric space with the distance function d : X ×X → R. For a subset Y

of X, its diameter is defined as δ(Y ) := sup{d(y, y′) | y, y′ ∈ Y }.
Show that, if X is compact and {Uλ}λ∈Λ is an open covering of X, then there exists

an ǫ > 0 such that every subset Y ⊂ X with δ(Y ) < ǫ is contained in some Uλ.
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Paper 4, Section II

13G Metric and Topological Spaces
Let X,Y be topological spaces and X × Y their product set. Let pY : X × Y → Y

be the projection map.

(i) Define the product topology on X × Y . Prove that if a subset Z ⊂ X × Y is
open then pY (Z) is open in Y .

(ii) Give an example of X,Y and a closed set Z ⊂ X × Y such that pY (Z) is not
closed.

(iii) When X is compact, show that if a subset Z ⊂ X × Y is closed then pY (Z) is
closed.
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Paper 1, Section I

6B Numerical Analysis
Orthogonal monic polynomials p0, p1, . . . , pn, . . . are defined with respect to the inner

product 〈p, q〉 =
∫ 1
−1 w(x)p(x)q(x) dx, where pn is of degree n. Show that such polynomials

obey a three-term recurrence relation

pn+1(x) = (x− αn)pn(x)− βnpn−1(x)

for appropriate choices of αn and βn.

Now suppose that w(x) is an even function of x. Show that the pn are even or odd
functions of x according to whether n is even or odd.

Paper 4, Section I

8B Numerical Analysis
Consider the multistep method for numerical solution of the differential equation

y′ = f(t,y):

s∑

l=0

ρlyn+l = h

s∑

l=0

σlf(tn+l,yn+l), n = 0, 1, . . . .

What does it mean to say that the method is of order p, and that the method is
convergent?

Show that the method is of order p if

s∑

l=0

ρl = 0,

s∑

l=0

lkρl = k

s∑

l=0

lk−1σl, k = 1, 2, . . . , p,

and give the conditions on ρ(w) =
∑s

l=0 ρlw
l that ensure convergence.

Hence determine for what values of θ and the σi the two-step method

yn+2 − (1− θ)yn+1 − θyn = h[σ0f(tn,yn) + σ1f(tn+1,yn+1) + σ2f(tn+2,yn+2)]

is (a) convergent, and (b) of order 3.
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Paper 1, Section II

18B Numerical Analysis
Consider a function f(x) defined on the domain x ∈ [0, 1]. Find constants α, β, γ so

that for any fixed ξ ∈ [0, 1],

f ′′(ξ) = αf(0) + βf ′(0) + γf(1)

is exactly satisfied for polynomials of degree less than or equal to two.

By using the Peano kernel theorem, or otherwise, show that

f ′(ξ)− f ′(0)− ξ (αf(0)+ βf ′(0) + γf(1)
)
=

∫ ξ

0
(ξ − θ)H1(θ)f

′′′(θ) dθ

+

∫ ξ

0
θH2(θ)f

′′′(θ) dθ +
∫ 1

ξ
ξH2(θ)f

′′′(θ) dθ,

where H1(θ) = 1− (1− θ)2 > 0, H2(θ) = −(1− θ)2 6 0. Thus show that

∣∣f ′(ξ)− f ′(0) − ξ(αf(0) + βf ′(0) + γf(1))
∣∣ 6 1

6
(2ξ − 3ξ2 + 4ξ3 − ξ4)

∣∣∣∣f ′′′∣∣∣∣
∞ .

Paper 2, Section II

19B Numerical Analysis
What is the QR-decomposition of a matrix A? Explain how to construct the

matrices Q and R by the Gram-Schmidt procedure, and show how the decomposition
can be used to solve the matrix equation Ax = b when A is a square matrix.

Why is this procedure not useful for numerical decomposition of large matrices?
Give a brief description of an alternative procedure using Givens rotations.

Find a QR-decomposition for the matrix

A =




3 4 7 13
−6 −8 −8 −12
3 4 7 11
0 2 5 7


 .

Is your decomposition unique? Use the decomposition you have found to solve the equation

Ax =




4
6
2
9


 .
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Paper 3, Section II

19B Numerical Analysis
A Gaussian quadrature formula provides an approximation to the integral

∫ 1

−1
(1− x2)f(x) dx ≈

ν∑

k=1

bkf(ck)

which is exact for all f(x) that are polynomials of degree 6 (2ν − 1).

Write down explicit expressions for the bk in terms of integrals, and explain why it
is necessary that the ck are the zeroes of a (monic) polynomial pν of degree ν that satisfies∫ 1
−1(1− x2)pν(x)q(x) dx = 0 for any polynomial q(x) of degree less than ν.

The first such polynomials are p0 = 1, p1 = x, p2 = x2 − 1/5, p3 = x3 − 3x/7. Show
that the Gaussian quadrature formulae for ν = 2, 3 are

ν = 2 :
2

3

[
f(− 1√

5
) + f( 1√

5
)
]
,

ν = 3 :
14

45

[
f(−

√
3
7
) + f(

√
3
7
)
]
+

32

45
f(0).

Verify the result for ν = 3 by considering f(x) = 1, x2, x4.
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Paper 1, Section I

8H Optimization
Suppose that Ax 6 b and x > 0 and AT y > c and y > 0 where x and c are

n-dimensional column vectors, y and b are m-dimensional column vectors, and A is an
m× n matrix. Here, the vector inequalities are interpreted component-wise.

(i) Show that cTx 6 bT y.

(ii) Find the maximum value of

6x1 + 8x2 + 3x3 subject to 2x1 + 4x2 + x3 6 10,
3x1 + 4x2 + 3x3 6 6,
x1, x2, x3 > 0.

You should state any results from the course used in your solution.

Paper 2, Section I

9H Optimization
Let N = {1, . . . , n} be the set of nodes of a network, where 1 is the source and n is

the sink. Let cij denote the capacity of the arc from node i to node j.

(i) In the context of maximising the flow through this network, define the following terms:
feasible flow, flow value, cut, cut capacity.

(ii) State and prove the max-flow min-cut theorem for network flows.
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Paper 3, Section II

21H Optimization
(i) What does it mean to say a set C ⊆ Rn is convex?

(ii) What does it mean to say z is an extreme point of a convex set C?

Let A be an m× n matrix, where n > m. Let b be an m× 1 vector, and let

C = {x ∈ Rn : Ax = b, x > 0}

where the inequality is interpreted component-wise.

(iii) Show that C is convex.

(iv) Let z = (z1, . . . , zn)
T be a point in C with the property that at least m + 1 indices

i are such that zi > 0. Show that z is not an extreme point of C. [Hint: If r > m, then
any set of r vectors in Rm is linearly dependent.]

(v) Now suppose that every set of m columns of A is linearly independent. Let
z = (z1, . . . , zn)

T be a point in C with the property that at most m indices i are such that
zi > 0. Show that z is an extreme point of C.

Paper 4, Section II

20H Optimization
A company must ship coal from four mines, labelled A,B,C,D, to supply three

factories, labelled a, b, c. The per unit transport cost, the outputs of the mines, and the
requirements of the factories are given below.

A B C D

a 12 3 5 2 34

b 4 11 2 6 21

c 3 9 7 4 23

20 32 15 11

For instance, mine B can produce 32 units of coal, factory a requires 34 units of coal, and
it costs 3 units of money to ship one unit of coal from B to a. What is the minimal cost
of transporting coal from the mines to the factories?

Now suppose increased efficiency allows factory b to reduce its requirement to 20.8
units of coal, and as a consequence, mine B reduces its output to 31.8 units. By how much
does the transport cost decrease?

Part IB, 2011 List of Questions



35

Paper 3, Section I

8C Quantum Mechanics
A particle of mass m and energy E, incident from x = −∞, scatters off a delta

function potential at x = 0. The time independent Schrödinger equation is

− ~2

2m

d2ψ

dx2
+ Uδ(x)ψ = Eψ

where U is a positive constant. Find the reflection and transmission probabilities.

Paper 4, Section I

6C Quantum Mechanics
Consider the 3-dimensional oscillator with Hamiltonian

H = − ~2

2m
∇2 +

mω2

2
(x2 + y2 + 4z2) .

Find the ground state energy and the spacing between energy levels. Find the degeneracies
of the lowest three energy levels.

[You may assume that the energy levels of the 1-dimensional harmonic oscillator
with Hamiltonian

H0 = − ~2

2m

d2

dx2
+

mω2

2
x2

are (n+ 1
2)~ω, n = 0, 1, 2, . . . .]
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Paper 1, Section II

15C Quantum Mechanics
For a quantum mechanical particle moving freely on a circle of length 2π, the

wavefunction ψ(t, x) satisfies the Schrödinger equation

i~
∂ψ

∂t
= − ~2

2m

∂2ψ

∂x2

on the interval 0 6 x 6 2π, and also the periodicity conditions ψ(t, 2π) = ψ(t, 0), and
∂ψ

∂x
(t, 2π) =

∂ψ

∂x
(t, 0). Find the allowed energy levels of the particle, and their degeneracies.

The current is defined as

j =
i~
2m

(
ψ
∂ψ

∂x

∗
− ψ∗ ∂ψ

∂x

)

where ψ is a normalized state. Write down the general normalized state of the particle
when it has energy 2~2/m, and show that in any such state the current j is independent
of x and t. Find a state with this energy for which the current has its maximum positive
value, and find a state with this energy for which the current vanishes.

Paper 2, Section II

17C Quantum Mechanics
The quantum mechanical angular momentum operators are

Li = −i~ ǫijk xj
∂

∂xk
(i = 1, 2, 3).

Show that each of these is hermitian.

The total angular momentum operator is defined as L2 = L2
1 +L2

2 +L2
3. Show that

〈L2〉 > 〈L2
3〉 in any state, and show that the only states where 〈L2〉 = 〈L2

3〉 are those with
no angular dependence. Verify that the eigenvalues of the operators L2 and L2

3 (whose
values you may quote without proof) are consistent with these results.
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Paper 3, Section II

16C Quantum Mechanics
For an electron in a hydrogen atom, the stationary state wavefunctions are of the

form ψ(r, θ, φ) = R(r)Ylm(θ, φ), where in suitable units R obeys the radial equation

d2R

dr2
+

2

r

dR

dr
− l(l + 1)

r2
R+ 2

(
E +

1

r

)
R = 0 .

Explain briefly how the terms in this equation arise.

This radial equation has bound state solutions of energy E = En, where
En = − 1

2n2 (n = 1, 2, 3, . . . ). Show that when l = n − 1, there is a solution of the

form R(r) = rαe−r/n, and determine α. Find the expectation value 〈r〉 in this state.

What is the total degeneracy of the energy level with energy En?
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Paper 1, Section I

7H Statistics
Consider the experiment of tossing a coin n times. Assume that the tosses are

independent and the coin is biased, with unknown probability p of heads and 1−p of tails.
A total of X heads is observed.

(i) What is the maximum likelihood estimator p̂ of p?

Now suppose that a Bayesian statistician has the Beta(M,N) prior distribution
for p.

(ii) What is the posterior distribution for p?

(iii) Assuming the loss function is L(p, a) = (p − a)2, show that the statistician’s point
estimate for p is given by

M +X

M +N + n
.

[The Beta(M,N) distribution has density
Γ(M +N)

Γ(M)Γ(N)
xM−1(1 − x)N−1 for 0 < x < 1 and

mean
M

M +N
.]

Paper 2, Section I

8H Statistics
Let X1, . . . ,Xn be random variables with joint density function f(x1, . . . , xn; θ),

where θ is an unknown parameter. The null hypothesis H0 : θ = θ0 is to be tested against
the alternative hypothesis H1 : θ = θ1.

(i) Define the following terms: critical region, Type I error, Type II error, size, power.

(ii) State and prove the Neyman–Pearson lemma.

Part IB, 2011 List of Questions



39

Paper 1, Section II

19H Statistics
Let X1, . . . ,Xn be independent random variables with probability mass function

f(x; θ), where θ is an unknown parameter.

(i) What does it mean to say that T is a sufficient statistic for θ? State, but do not prove,
the factorisation criterion for sufficiency.

(ii) State and prove the Rao–Blackwell theorem.

Now consider the case where f(x; θ) =
1

x!
(− log θ)xθ for non-negative integer x and

0 < θ < 1.

(iii) Find a one-dimensional sufficient statistic T for θ.

(iv) Show that θ̃ = 1{X1=0} is an unbiased estimator of θ.

(v) Find another unbiased estimator θ̂ which is a function of the sufficient statistic T
and that has smaller variance than θ̃. You may use the following fact without proof:
X1 + · · ·+Xn has the Poisson distribution with parameter −n log θ.
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Paper 3, Section II

20H Statistics
Consider the general linear model

Y = Xβ + ǫ

where X is a known n × p matrix, β is an unknown p × 1 vector of parameters, and ǫ
is an n × 1 vector of independent N(0, σ2) random variables with unknown variance σ2.
Assume the p× p matrix XTX is invertible.

(i) Derive the least squares estimator β̂ of β.

(ii) Derive the distribution of β̂. Is β̂ an unbiased estimator of β?

(iii) Show that 1
σ2 ‖Y −Xβ̂‖2 has the χ2 distribution with k degrees of freedom, where k

is to be determined.

(iv) Let β̃ be an unbiased estimator of β of the form β̃ = CY for some p × n matrix C.
By considering the matrix E[(β̂ − β̃)(β̂ − β)T ] or otherwise, show that β̂ and β̂ − β̃ are
independent.

[You may use standard facts about the multivariate normal distribution as well as results
from linear algebra, including the fact that I −X(XTX)−1XT is a projection matrix of
rank n− p, as long as they are carefully stated.]

Paper 4, Section II

19H Statistics
Consider independent random variablesX1, . . . ,Xn with theN(µX , σ2

X) distribution
and Y1, . . . , Yn with the N(µY , σ

2
Y ) distribution, where the means µX , µY and variances

σ2
X , σ2

Y are unknown. Derive the generalised likelihood ratio test of size α of the null
hypothesis H0 : σ2

X = σ2
Y against the alternative H1 : σ2

X 6= σ2
Y . Express the critical

region in terms of the statistic T =
SXX

SXX + SY Y
and the quantiles of a beta distribution,

where

SXX =
n∑

i=1

X2
i − 1

n

(
n∑

i=1

Xi

)2

and SY Y =
n∑

i=1

Y 2
i − 1

n

(
n∑

i=1

Yi

)2

.

[You may use the following fact: if U ∼ Γ(a, λ) and V ∼ Γ(b, λ) are independent,

then
U

U + V
∼ Beta(a, b).]
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Paper 1, Section I

4D Variational Principles
(i) Write down the Euler-Lagrange equations for the volume integral

∫

V

(∇u ·∇u+ 12u
)
dV ,

where V is the unit ball x2+y2+z2 6 1, and verify that the function u(x, y, z) = x2+y2+z2

gives a stationary value of the integral subject to the condition u = 1 on the boundary.

(ii) Write down the Euler-Lagrange equations for the integral

∫ 1

0

(
ẋ2 + ẏ2 + 4x+ 4y

)
dt ,

where the dot denotes differentiation with respect to t, and verify that the functions
x(t) = t2, y(t) = t2 give a stationary value of the integral subject to the boundary
conditions x(0) = y(0) = 0 and x(1) = y(1) = 1.

Paper 3, Section I

6D Variational Principles
Find, using a Lagrange multiplier, the four stationary points in R3 of the function

x2 + y2 + z2 subject to the constraint x2 + 2y2 − z2 = 1. By considering the situation
geometrically, or otherwise, identify the nature of the constrained stationary points.

How would your answers differ if, instead, the stationary points of the function
x2 + 2y2 − z2 were calculated subject to the constraint x2 + y2 + z2 = 1?
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Paper 2, Section II

15D Variational Principles

(i) Let I[y] =

∫ 1

0

(
(y′)2−y2

)
dx, where y is twice differentiable and y(0) = y(1) = 0.

Write down the associated Euler-Lagrange equation and show that the only solution is
y(x) = 0.

(ii) Let J [y] =

∫ 1

0

(
y′+y tan x)2dx, where y is twice differentiable and y(0) = y(1) =

0. Show that J [y] = 0 only if y(x) = 0.

(iii) Show that I[y] = J [y] and deduce that the extremal value of I[y] is a global
minimum.

(iv) Use the second variation of I[y] to verify that the extremal value of I[y] is a
local minimum.

(v) How would your answers to part (i) differ in the case I[y] =

∫ 2π

0

(
(y′)2 − y2

)
dx,

where y(0) = y(2π) = 0? Show that the solution y(x) = 0 is not a global minimizer in
this case. (You may use without proof the result I[x(2π − x)] = − 8

15 (2π
2 − 5).) Explain

why the arguments of parts (iii) and (iv) cannot be used.

Paper 4, Section II

16D Variational Principles
Derive the Euler-Lagrange equation for the integral

∫ x1

x0

f(y, y′, y′′, x) dx

where the endpoints are fixed, and y(x) and y′(x) take given values at the endpoints.

Show that the only function y(x) with y(0) = 1, y′(0) = 2 and y(x) → 0 as x → ∞
for which the integral ∫ ∞

0

(
y2 + (y′)2 + (y′ + y′′)2

)
dx

is stationary is (3x+ 1)e−x.
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