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SECTION I

1G Linear Algebra

Show that every endomorphism of a finite-dimensional vector space satisfies some

polynomial, and define the minimal polynomial of such an endomorphism.

Give a linear transformation of an eight-dimensional complex vector space which has

minimal polynomial x2(x−1)3.

2F Groups, Rings and Modules

Let M be a module over an integral domain R. An element m ∈ M is said to be

torsion if there exists a nonzero r ∈ R with rm = 0; M is said to be torsion-free if its only

torsion element is 0. Show that there exists a unique submodule N of M such that (a) all

elements of N are torsion and (b) the quotient module M/N is torsion-free.

3E Analysis II
Let (sn)∞n=1

be a sequence of continuous functions from R to R and let s : R → R

be another continuous function. What does it mean to say that sn → s uniformly? Give

examples (without proof) of a sequence (sn) of nonzero functions which converges to 0

uniformly, and of a sequence which converges to 0 pointwise but not uniformly. Show that

if sn → s uniformly then ∫
1

−1

sn(x) dx→

∫
1

−1

s(x) dx.

Give an example of a continuous function s : R → R with s(x) > 0 for all x, s(x) → 0 as

|x| → ∞ but for which
∫ ∞

−∞
s(x) dx does not converge. For each positive integer n define

sn(x) to be equal to s(x) if |x| 6 n, and to be s(n)min(1, ||x|−n|−2) for |x| > n. Show that

the functions sn are continuous, tend uniformly to s, and furthermore that
∫ ∞

−∞
sn(x) dx

exists and is finite for all n.

4E Complex Analysis

State Rouché’s Theorem. How many complex numbers z are there with |z| 6 1 and

2z = sin z?
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5B Mathematical Methods

Describe briefly the method of Lagrange multipliers for finding the stationary points

of a function f(x, y) subject to the constraint g(x, y) = 0.

Show that at a stationary point (a, b)

∣∣∣∣∣∣∣∣∣

∂f

∂x
(a, b)

∂g

∂x
(a, b)

∂f

∂y
(a, b)

∂g

∂y
(a, b)

∣∣∣∣∣∣∣∣∣

= 0 .

Find the maximum distance from the origin to the curve

x2 + y2 + xy − 4 = 0 .

6B Quantum Mechanics

The wavefunction of a Gaussian wavepacket for a particle of mass m moving in one
dimension is

ψ(x, t) =
1

π1/4

√
1

1 + i~t/m
exp

(
−

x2

2(1 + i~t/m)

)
.

Show that ψ(x, t) satisfies the appropriate time-dependent Schrödinger equation.

Show that ψ(x, t) is normalized to unity and calculate the uncertainty in measure-
ment of the particle position, ∆x =

√
〈x2〉 − 〈x〉2.

Is ψ(x, t) a stationary state? Give a reason for your answer.
[
You may assume that

∫ ∞

−∞
e−λx2

dx =
√

π
λ .

]

7A Electromagnetism

State the relationship between the induced EMF V in a loop and the flux Φ through

it. State the force law for a current-carrying wire in a magnetic field B.

A rectangular loop of wire with mass m, width w, vertical length l, and resistance R
falls out of a magnetic field under the influence of gravity. The magnetic field is B = Bx̂

for z > 0 and B = 0 for z < 0, where B is constant. Suppose the loop lies in the (y, z)
plane, with its top initially at z = z0 < l. Find the equation of motion for the loop

and its terminal velocity, assuming that the loop continues to intersect the plane z = 0.
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8C Numerical Analysis

Suppose that w(x) > 0 for all x ∈ (a, b). The weights b1, ..., bn and nodes x1, ..., xn are

chosen so that the Gaussian quadrature formula

∫ b

a
w(x)f(x)dx ∼

n∑

k=1

bkf(xk)

is exact for every polynomial of degree 2n−1. Show that the bi, i = 1, ..., n are all positive.

When w(x) = 1 + x2, a = −1 and b = 1, the first three underlying orthogonal

polynomials are p0(x) = 1, p1(x) = x, and p2(x) = x2 − 2/5. Find x1, x2 and b1, b2 when

n = 2.
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9H Markov Chains

In chess, a bishop is allowed to move only in straight diagonal lines. Thus if the

bishop stands on the square marked A in the diagram, it is able in one move to reach

any of the squares marked with an asterisk. Suppose that the bishop moves at random

around the chess board, choosing at each move with equal probability from the squares it

can reach, the square chosen being independent of all previous choices. The bishop starts

at the bottom left-hand corner of the board.

If Xn is the position of the bishop at time n, show that (Xn)n>0 is a reversible

Markov chain, whose statespace you should specify. Find the invariant distribution of this

Markov chain.

What is the expected number of moves the bishop will make before first returning

to its starting square?

*

*

*

*

*

*

*

*

*

A
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SECTION II

10G Linear Algebra

What does it mean to say two real symmetric bilinear forms A and B on a vector
space V are congruent ?

State and prove Sylvester’s law of inertia, and deduce that the rank and signature
determine the congruence class of a real symmetric bilinear form. [You may use without

proof a result on diagonalisability of real symmetric matrices, provided it is clearly stated.]

How many congruence classes of symmetric bilinear forms on a real n-dimensional
vector space are there? Such a form ψ defines a family of subsets {x ∈ R

n | ψ(x, x) = t},
for t ∈ R. For how many of the congruence classes are these associated subsets all bounded
subsets of R

n? Is the quadric surface

{3x2 + 6y2 + 5z2 + 4xy + 2xz + 8yz = 1}

a bounded or unbounded subset of R
3 ? Justify your answers.

11F Groups, Rings and Modules

Let R be a principal ideal domain. Prove that any submodule of a finitely-generated

free module over R is free.

An R-module P is said to be projective if, whenever we have module homomor-

phisms f : M → N and g : P → N with f surjective, there exists a homomorphism

h : P →M with f ◦h = g. Show that any free module (over an arbitrary ring) is projective.

Show also that a finitely-generated projective module over a principal ideal domain is free.

12G Geometry

Let U ⊂ R
2 be an open set. Let Σ ⊂ R

3 be a surface locally given as the graph of

an infinitely-differentiable function f : U → R. Compute the Gaussian curvature of Σ in

terms of f .

Deduce that if Σ̂ ⊂ R
3 is a compact surface without boundary, its Gaussian

curvature is not everywhere negative.

Give, with brief justification, a compact surface Σ̂ ⊂ R
3 without boundary whose

Gaussian curvature must change sign.
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13E Analysis II
Let (X, d) be a metric space with at least two points. If f : X → R is a function,

write

Lip(f) = sup
x 6=y

|f(x) − f(y)|

d(x, y)
+ sup

z
|f(z)|,

provided that this supremum is finite. Let Lip(X) = {f : Lip(f) is defined}. Show that
Lip(X) is a vector space over R, and that Lip is a norm on it.

Now let X = R. Suppose that (fi)
∞
i=1

is a sequence of functions with Lip(fi) 6 1 and
with the property that the sequence fi(q) converges as i → ∞ for every rational number
q. Show that the fi converge pointwise to a function f satisfying Lip(f) 6 1.

Suppose now that (fi)
∞
i=1

are any functions with Lip(fi) 6 1. Show that there is
a subsequence fi1, fi2 , . . . which converges pointwise to a function f with Lip(f) 6 1.

14F Metric and Topological Spaces

A nonempty subset A of a topological space X is called irreducible if, whenever we

have open sets U and V such that U ∩ A and V ∩ A are nonempty, then we also have

U ∩ V ∩A 6= ∅. Show that the closure of an irreducible set is irreducible, and deduce that

the closure of any singleton set {x} is irreducible.

X is said to be a sober topological space if, for any irreducible closed A ⊆ X, there

is a unique x ∈ X such that A = {x}. Show that any Hausdorff space is sober, but that

an infinite set with the cofinite topology is not sober.

Given an arbitrary topological space (X,T ), let X̂ denote the set of all irreducible

closed subsets of X, and for each U ∈ T let

Û = {A ∈ X̂ | U ∩A 6= ∅} .

Show that the sets {Û | U ∈ T } form a topology T̂ on X̂ , and that the mapping U 7→ Û is

a bijection from T to T̂ . Deduce that (X̂, T̂ ) is sober. [Hint: consider the complement of an

irreducible closed subset of X̂ .]

Part IB, Paper 4 [TURN OVER



8

15D Complex Methods

The function u(x, y) satisfies Laplace’s equation in the half-space y > 0, together
with boundary conditions

u(x, y) → 0 as y → ∞ for all x ,

u(x, 0) = u0(x), where xu0(x) → 0 as |x| → ∞.

Using Fourier transforms, show that

u(x, y) =

∫ ∞

−∞

u0(t)v(x− t, y)dt ,

where
v(x, y) =

y

π(x2 + y2)
.

Suppose that u0(x) = (x2 + a2)−1. Using contour integration and the convolution
theorem, or otherwise, show that

u(x, y) =
y + a

a [x2 + (y + a)2]
.

[You may assume the convolution theorem of Fourier transforms, i.e. that if f̃(k), g̃(k)are
the Fourier transforms of two functions f(x), g(x), then f̃(k)g̃(k) is the Fourier transform

of
∫ ∞

−∞
f(t)g(x−t)dt.]
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16A Methods

Suppose that y1(x) and y2(x) are linearly independent solutions of

d2y

dx2
+ b(x)

dy

dx
+ c(x)y = 0 ,

with y1(0) = 0 and y2(1) = 0. Show that the Green’s function G(x, ξ) for the interval

0 6 x, ξ 6 1 and with G(0, ξ) = G(1, ξ) = 0 can be written in the form

G(x, ξ) =

{
y1(x)y2(ξ)/W (ξ); 0 < x < ξ,

y2(x)y1(ξ)/W (ξ); ξ < x < 1,

where W (x) = W [y1(x), y2(x)] is the Wronskian of y1(x) and y2(x).

Use this result to find the Green’s function G(x, ξ) that satisfies

d2G

dx2
+ 3

dG

dx
+ 2G = δ(x − ξ) ,

in the interval 0 6 x, ξ 6 1 and with G(0, ξ) = G(1, ξ) = 0. Hence obtain an integral

expression for the solution of

d2y

dx2
+ 3

dy

dx
+ 2y =

{
0; 0 < x < x0,

2; x0 < x < 1,

for the case x < x0.
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17C Special Relativity

A star moves with speed v in the x-direction in a reference frame S. When viewed

in its rest frame S′ it emits a photon of frequency ν ′ which propagates along a line making

an angle θ′ with the x′-axis. Write down the components of the four-momentum of the

photon in S′. As seen in S, the photon moves along a line that makes an angle θ with the

x-axis and has frequency ν. Using a Lorentz transformation, write down the relationship

between the components of the four-momentum of the photon in S′ to those in S and

show that

cos θ =
cos θ′ + v/c

1 + v cos θ′/c
.

As viewed in S′, the star emits two photons with frequency ν ′ in opposite directions

with θ′ = π/2 and θ′ = −π/2, respectively. Show that an observer in S records them as

having a combined momentum p directed along the x-axis, where

p =
Ev

c2
√

1 − v2/c2

and where E is the combined energy of the photons as seen in S′. How is this momentum

loss from the star consistent with its maintaining a constant speed as viewed in S?

18D Fluid Dynamics

An inviscid incompressible fluid occupies a rectangular tank with vertical sides at

x = 0, a and y = 0, b and a horizontal bottom at z = −h. The undisturbed free surface is

at z = 0.

(i) Write down the equations and boundary conditions governing small amplitude

free oscillations of the fluid, neglecting surface tension, and show that the frequencies ω
of such oscillations are given by

ω2

g
= k tanh kh, where k2 = π2

(
m2

a2
+
n2

b2

)
(1)

for non-negative integers m,n, which cannot both be zero.

(ii) The free surface is now acted on by a small external pressure

p = ǫρgh sin Ωt cos
mπx

a
cos

nπy

b
,

where ǫ ≪ 1. Calculate the corresponding oscillation of the free surface when Ω is not

equal to the quantity ω given by (1).

Why does your solution break down as Ω → ω?
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19H Statistics

What is a sufficient statistic? State the factorization criterion for a statistic to be

sufficient.

Suppose that X1, . . . ,Xn are independent random variables uniformly distributed

over [a, b], where the parameters a < b are not known, and n > 2. Find a sufficient statistic

for the parameter θ ≡ (a, b) based on the sample X1, . . . ,Xn. Based on your sufficient

statistic, derive an unbiased estimator of θ.

20H Optimization

In a pure exchange economy, there are J agents, and d goods. Agent j initially holds

an endowment xj ∈ R
d of the d different goods, j = 1, . . . , J . Agent j has preferences

given by a concave utility function Uj : R
d → R which is strictly increasing in each of its

arguments, and is twice continuously differentiable. Thus agent j prefers y ∈ R
d to x ∈ R

d

if and only if Uj(y) > Uj(x).

The agents meet and engage in mutually beneficial trades. Thus if agent i holding

zi meets agent j holding zj , then the amounts z′i held by agent i and z′j held by agent j

after trading must satisfy Ui(z
′
i) > Ui(zi), Uj(z

′
j) > Uj(zj), and z′i + z′j = zi + zj . Meeting

and trading continues until, finally, agent j holds yj ∈ R
d, where

∑

j

xj =
∑

j

yj,

and there are no further mutually beneficial trades available to any pair of agents. Prove

that there must exist a vector v ∈ R
d and positive scalars λ1, . . . , λJ such that

∇Uj(yj) = λjv

for all j. Show that for some positive a1, . . . , aJ the final allocations yj are what would be

achieved by a social planner, whose objective is to obtain

max
∑

j

ajUj(yj) subject to
∑

j

yj =
∑

j

xj .

END OF PAPER
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