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SECTION I

1G Linear Algebra

(1) Let V be a finite-dimensional vector space and let T : V → V be a non-zero
endomorphism of V . If ker(T ) = im(T ) show that the dimension of V is an even
integer. Find the minimal polynomial of T . [You may assume the rank-nullity

theorem.]

(2) Let Ai, 1 6 i 6 3, be non-zero subspaces of a vector space V with the property that

V = A1 ⊕A2 = A2 ⊕A3 = A1 ⊕A3.

Show that there is a 2-dimensional subspace W ⊂ V for which all the W ∩ Ai are
one-dimensional.

2G Geometry

What is an ideal hyperbolic triangle? State a formula for its area.

Compute the area of a hyperbolic disk of hyperbolic radius ρ. Hence, or otherwise,

show that no hyperbolic triangle completely contains a hyperbolic circle of hyperbolic ra-

dius 2.

3D Complex Analysis or Complex Methods

Let f(z) = u(x, y) + iv(x, y), where z = x + iy, be an analytic function of z in

a domain D of the complex plane. Derive the Cauchy–Riemann equations relating the

partial derivatives of u and v.

For u = e−x cos y, find v and hence f(z).
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4C Special Relativity

Write down the components of the position four-vector xµ. Hence find the compo-

nents of the four-momentum pµ = MUµ of a particle of mass M, where Uµ = dxµ/dτ,

with τ being the proper time.

The particle, viewed in a frame in which it is initially at rest, disintegrates leaving

a particle of mass m moving with constant velocity together with other remnants which

have a total three-momentum p and energy E. Show that

m =

√

(

M − E

c2

)2

− |p|2
c2

.

5D Fluid Dynamics

A steady velocity field u = (ur, uθ, uz) is given in cylindrical polar coordinates

(r, θ, z) by

ur = −αr, uθ =
γ

r
(1 − e−βr2

), uz = 2αz ,

where α, β, γ are positive constants.

Show that this represents a possible flow of an incompressible fluid, and find the

vorticity ω.

Show further that

curl (u ∧ ω) = −ν∇2
ω

for a constant ν which should be calculated.

[The divergence and curl operators in cylindrical polars are given by

divu =
1

r

∂

∂r
(rur) +

1

r

∂uθ

∂θ
+
∂uz

∂z

curlu =

(

1

r

∂uz

∂θ
− ∂uθ

∂z
,
∂ur

∂z
− ∂uz

∂r
,
1

r

∂

∂r
(ruθ) −

1

r

∂ur

∂θ

)

and ,when ω = [0, 0, ω(r, z)],

∇2
ω =

[

0, 0,
1

r

∂

∂r

(

r
∂ω

∂r

)

+
∂2ω

∂z2

]

. ]
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6C Numerical Analysis

The real non-singular matrix A ∈ R
m×m is written in the form A = AD +AU +AL,

where the matrices AD, AU , AL ∈ R
m×m are diagonal and non-singular, strictly upper-

triangular and strictly lower-triangular respectively.

Given b ∈ R
m, the Jacobi iteration for solving Ax = b is

ADxn = −(AU +AL)xn−1 + b, n = 1, 2...

where the nth iterate is xn ∈ R
m. Show that the iteration converges to the solution x of

Ax = b, independent of the starting choice x0, if and only if the spectral radius ρ(H) of

the matrix H = −A−1

D (AU +AL) is less than 1.

Hence find the range of values of the real number µ for which the iteration will

converge when

A =





1 0 −µ
−µ 3 −µ
−4µ 0 4



 .
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7H Statistics

What does it mean to say that an estimator θ̂ of a parameter θ is unbiased?

An n-vector Y of observations is believed to be explained by the model

Y = Xβ + ε,

where X is a known n × p matrix, β is an unknown p-vector of parameters, p < n, and

ε is an n-vector of independent N(0, σ2) random variables. Find the maximum-likelihood

estimator β̂ of β, and show that it is unbiased.

8H Optimization

Find an optimal solution to the linear programming problem

max 3x1 + 2x2 + 2x3

in x > 0 subject to
7x1 + 3x2 + 5x3 6 44,

x1 + 2x2 + x3 6 10,

x1 + x2 + x3 > 8.
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SECTION II

9G Linear Algebra

Define the dual of a vector space V . State and prove a formula for its dimension.

Let V be the vector space of real polynomials of degree at most n. If {a0, . . . , an}
are distinct real numbers, prove that there are unique real numbers {λ0, . . . , λn} with

dp

dx
(0) =

n
∑

j=0

λjp(aj)

for every p(x) ∈ V .

10F Groups, Rings and Modules

Prove that a principal ideal domain is a unique factorization domain.

Give, with justification, an example of an element of Z[
√
−3] which does not have a

unique factorization as a product of irreducibles. Show how Z[
√
−3] may be embedded as a

subring of index 2 in a ring R (that is, such that the additive quotient group R/Z[
√
−3] has

order 2) which is a principal ideal domain. [You should explain why R is a principal ideal

domain, but detailed proofs are not required.]

11E Analysis II
Define a function f : R → R by

f(x) =

∞
∑

n=1

2−n‖2nx‖,

where ‖t‖ is the distance from t to the nearest integer. Prove that f is continuous. [Results

about uniform convergence may not be used unless they are clearly stated and proved.]

Suppose now that g : R → R is a function which is differentiable at some point x,
and let (un)∞n=1, (vn)∞n=1 be two sequences of real numbers with un 6 x 6 vn for all n,

un 6= vn and un, vn → x as n→ ∞. Prove that

lim
n→∞

g(vn) − g(un)

vn − un

exists.

By considering appropriate sequences of rationals with denominator 2−n, or other-

wise, show that f is nowhere differentiable.
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12F Metric and Topological Spaces

Given a function f : X → Y between metric spaces, we write Γf for the subset

{(x, f(x)) | x ∈ X} of X × Y .

(i) If f is continuous, show that Γf is closed in X × Y .

(ii) If Y is compact and Γf is closed in X × Y , show that f is continuous.

(iii) Give an example of a function f : R → R such that Γf is closed but f is not

continuous.

13D Complex Analysis or Complex Methods

Consider the real function f(t) of a real variable t defined by the following contour

integral in the complex s-plane:

f(t) =
1

2πi

∫

Γ

est

(s2 + 1)s1/2
ds,

where the contour Γ is the line s = γ + iy,−∞ < y < ∞, for constant γ > 0. By closing

the contour appropriately, show that

f(t) = sin(t− π/4) +
1

π

∫

∞

0

e−rtdr

(r2 + 1)r1/2

when t > 0 and is zero when t < 0. You should justify your evaluation of the inversion

integral over all parts of the contour.

By expanding (r2 + 1)−1 r−1/2 as a power series in r, and assuming that you may

integrate the series term by term, show that the two leading terms, as t→ ∞, are

f(t) ∼ sin(t− π/4) +
1

(πt)1/2
+ · · · .

[You may assume that
∫

∞

0
x−1/2e−xdx = π1/2.]

Part IB, Paper 1 [TURN OVER



8

14B Mathematical Methods

Find a power series solution about x = 0 of the equation

xy′′ + (1 − x)y′ + λy = 0,

with y(0) = 1, and show that y is a polynomial if and only if λ is a non-negative integer

n. Let yn be the solution for λ = n. Establish an orthogonality relation between ym and

yn (m 6= n).

Show that ymyn is a polynomial of degree m+ n, and hence that

ymyn =

m+n
∑

p=0

apyp

for appropriate choices of the coefficients ap and with am+n 6= 0.

For given n > 0, show that the functions

{ym, ymyn : m = 0, 1, 2, . . . , n − 1}

are linearly independent.

Let f(x) be a polynomial of degree 3. Explain why the expansion

f(x) = a0y0(x) + a1y1(x) + a2y2(x) + a3y1(x)y2(x)

holds for appropriate choices of ap, p = 0, 1, 2, 3. Hence show that

∫

∞

0

e−xf(x) dx = w1f(α1) + w2f(α2) ,

where

w1 =
y1(α2)

y1(α2) − y1(α1)
, w2 =

−y1(α1)

y1(α2) − y1(α1)
,

and α1, α2 are the zeros of y2. You need not construct the polynomials y1(x), y2(x)
explicitly.
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15B Quantum Mechanics

A particle of mass m moves in one dimension in a potential V (x) which satisfies

V (x) = V (−x). Show that the eigenstates of the Hamiltonian H can be chosen so that

they are also eigenstates of the parity operator P . For eigenstates with odd parity ψodd(x),
show that ψodd(0) = 0.

A potential V (x) is given by

V (x) =

{

κδ(x) |x| < a
∞ |x| > a .

State the boundary conditions satisfied by ψ(x) at |x| = a, and show also that

~
2

2m
lim
ǫ→0

[

dψ

dx

∣

∣

∣

∣

ǫ

− dψ

dx

∣

∣

∣

∣

−ǫ

]

= κψ(0) .

Let the energy eigenstates of even parity be given by

ψeven(x) =







A cos λx + B sinλx −a < x < 0

A cos λx − B sinλx 0 < x < a
0 otherwise .

Verify that ψeven(x) satisfies

Pψeven(x) = ψeven(x) .

By demanding that ψeven(x) satisfy the relevant boundary conditions show that

tanλa = −~
2

m

λ

κ
.

For κ > 0 show that the energy eigenvalues Eeven
n , n = 0, 1, 2, . . ., withEeven

n < Eeven
n+1 ,

satisfy

ηn = Eeven
n − 1

2m

[

(2n + 1)~π

2a

]2

> 0.

Show also that

lim
n→∞

ηn = 0,

and give a physical explanation of this result.

Show that the energy eigenstates with odd parity and their energy eigenvalues do

not depend on κ.
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16A Electromagnetism

Suppose the region z < 0 is occupied by an earthed ideal conductor.

(a) Derive the boundary conditions on the tangential electric field E that hold on
the surface z = 0.

(b) A point charge q, with mass m, is held above the conductor at (0, 0, d). Show
that the boundary conditions on the electric field are satisfied if we remove the conductor
and instead place a second charge −q at (0, 0,−d).

(c) The original point charge is now released with zero initial velocity. Ignoring grav-
ity, determine how long it will take for the charge to hit the plane.

17D Fluid Dynamics

A canal has uniform width and a bottom that is horizontal apart from a localised

slowly-varying hump of height D(x) whose maximum value is Dmax. Far upstream the

water has depth h1 and velocity u1. Show that the depth h(x) of the water satisfies the

following equation:

D(x)

h1

= 1 − h

h1

− F

2

(

h2
1

h2
− 1

)

,

where F = u2
1/gh1.

Describe qualitatively how h(x) varies as the flow passes over the hump in the three

cases

(i) F < 1 and Dmax < D∗

(ii) F > 1 and Dmax < D∗

(iii) Dmax = D∗,

where D∗ = h1

(

1 − 3

2
F 1/3 + 1

2
F

)

.

Calculate the water depth far downstream in case (iii) when F < 1.
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18H Statistics

What is the critical region C of a test of the null hypothesis H0 : θ ∈ Θ0 against

the alternative H1 : θ ∈ Θ1? What is the size of a test with critical region C? What is

the power function of a test with critical region C?

State and prove the Neyman–Pearson Lemma.

If X1, . . . ,Xn are independent with common Exp(λ) distribution, and 0 < λ0 < λ1,

find the form of the most powerful size-α test of H0 : λ = λ0 against H1 : λ = λ1. Find

the power function as explicitly as you can, and prove that it is increasing in λ. Deduce

that the test you have constructed is a size-α test of H0 : λ 6 λ0 against H1 : λ = λ1.
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19H Markov Chains

A gerbil is introduced into a maze at the node labelled 0 in the diagram. It roams at

random through the maze until it reaches the node labelled 1. At each vertex, it chooses to

move to one of the neighbouring nodes with equal probability, independently of all other

choices. Find the mean number of moves required for the gerbil to reach node 1.

Suppose now that the gerbil is intelligent, in that when it reaches a node it will

not immediately return to the node from which it has just come, choosing with equal

probability from all other neighbouring nodes. Express the movement of the gerbil in

terms of a Markov chain whose states and transition probabilities you should specify.

Find the mean number of moves until the intelligent gerbil reaches node 1. Compare with

your answer to the first part, and comment briefly.

1

0

END OF PAPER
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