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Paper 2, Section I

3E Analysis II
State and prove the contraction mapping theorem. Let f(x) = e−x. By considering

f(f(x)) and using the contraction mapping theorem, show that there is a unique real num-
ber x such that x = e−x.

Paper 3, Section I

3E Analysis II
What is meant by a norm on Rn? For x ∈ Rn write

‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|,

‖x‖2 =
√

|x1|2 + |x2|2 + · · · + |xn|2.
Prove that ‖ · ‖1 and ‖ · ‖2 are norms. [You may assume the Cauchy-Schwarz inequality.]

Find the smallest constant Cn such that ‖x‖1 6 Cn‖x‖2 for all x ∈ Rn, and also the
smallest constant C ′

n such that ‖x‖2 6 C ′
n‖x‖1 for all x ∈ Rn.

Paper 4, Section I

3E Analysis II
Let (sn)

∞
n=1 be a sequence of continuous functions from R to R and let s : R → R

be another continuous function. What does it mean to say that sn → s uniformly? Give
examples (without proof) of a sequence (sn) of nonzero functions which converges to 0
uniformly, and of a sequence which converges to 0 pointwise but not uniformly. Show that
if sn → s uniformly then ∫ 1

−1
sn(x) dx →

∫ 1

−1
s(x) dx.

Give an example of a continuous function s : R → R with s(x) > 0 for all x, s(x) → 0 as
|x| → ∞ but for which

∫∞
−∞ s(x) dx does not converge. For each positive integer n define

sn(x) to be equal to s(x) if |x| 6 n, and to be s(n)min(1, ||x|−n|−2) for |x| > n. Show that
the functions sn are continuous, tend uniformly to s, and furthermore that

∫∞
−∞ sn(x) dx

exists and is finite for all n.
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Paper 1, Section II

11E Analysis II
Define a function f : R → R by

f(x) =
∞∑

n=1

2−n‖2nx‖,

where ‖t‖ is the distance from t to the nearest integer. Prove that f is continuous. [Results
about uniform convergence may not be used unless they are clearly stated and proved.]

Suppose now that g : R → R is a function which is differentiable at some point x,
and let (un)

∞
n=1, (vn)

∞
n=1 be two sequences of real numbers with un 6 x 6 vn for all n,

un 6= vn and un, vn → x as n → ∞. Prove that

lim
n→∞

g(vn)− g(un)

vn − un

exists.

By considering appropriate sequences of rationals with denominator 2−n, or other-
wise, show that f is nowhere differentiable.

Paper 2, Section II

13E Analysis II
Let U ⊆ Rn be a set. What does it mean to say that U is open? Show that if U is

open and if f : U → {0, 1} is a continuous function then f is also differentiable, and that
its derivative is zero.

Suppose that g : U → R is differentiable and that ‖(Dg)|x‖ 6 M for all x, where
(Dg)|x denotes the derivative of g at x and ‖ · ‖ is the operator norm. Suppose that
a,b ∈ Rn and that the line segment [a,b] = {λa+ (1 − λ)b : λ ∈ [0, 1]} lies wholly in U .
Prove that |g(a)− g(b)| 6 M‖a− b‖.

Let ℓ1, . . . , ℓk be (infinite) lines in R3, and write V = R3 \ (ℓ1∪ · · · ∪ ℓk). If a,b ∈ V ,
show that there is some c ∈ V such that the line segments [a, c] and [c,b] both lie inside
V . [You may assume without proof that R3 may not be written as the union of finitely
many planes.]

Show that if V → {0, 1} is a continuous function then f is constant on V .
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Paper 3, Section II

13E Analysis II
What does it mean for a function f : Rn → Rm of several variables to be

differentiable at a point x? State and prove the chain rule for functions of several variables.
For each of the following two functions from R2 to R, give with proof the set of points at
which it is differentiable:

g1(x, y) =

{
(x2 − y2) sin 1

x2−y2
if x 6= ±y

0 otherwise;

g2(x, y) =

{
(x2 + y2) sin 1

x2+y2
if at least one of x, y is not 0

0 if x = y = 0.

Paper 4, Section II

13E Analysis II
Let (X, d) be a metric space with at least two points. If f : X → R is a function,

write

Lip(f) = sup
x 6=y

|f(x)− f(y)|
d(x, y)

+ sup
z

|f(z)|,

provided that this supremum is finite. Let Lip(X) = {f : Lip(f) is defined}. Show that
Lip(X) is a vector space over R, and that Lip is a norm on it.

Now let X = R. Suppose that (fi)∞i=1 is a sequence of functions with Lip(fi) 6 1 and
with the property that the sequence fi(q) converges as i → ∞ for every rational number
q. Show that the fi converge pointwise to a function f satisfying Lip(f) 6 1.

Suppose now that (fi)
∞
i=1 are any functions with Lip(fi) 6 1. Show that there is

a subsequence fi1 , fi2 , . . . which converges pointwise to a function f with Lip(f) 6 1.
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Paper 4, Section I

4E Complex Analysis
State Rouché’s Theorem. How many complex numbers z are there with |z| 6 1 and

2z = sin z?

Paper 3, Section II

14E Complex Analysis
For each positive real number R write BR = {z ∈ C : |z| 6 R}. If F is holomorphic

on some open set containing BR, we define

J(F,R) =
1

2π

∫ 2π

0
log |F (Reiθ)| dθ.

1. If F1, F2 are both holomorphic on some open set containing BR, show that J(F1F2, R) =
J(F1, R) + J(F2, R).

2. Suppose that F (0) = 1 and that F does not vanish on some open set containing
BR. By showing that there is a holomorphic branch of logarithm of F and then
considering z−1 log F (z), prove that J(F,R) = 0.

3. Suppose that |w| < R. Prove that the function ψW,R(z) = R(z −w)/(R2 −wz) has
modulus 1 on |z| = R and hence that it satisfies J(ψW,R, R) = 0.

Suppose now that F : C → C is holomorphic and not identically zero, and let R be such
that no zeros of F satisfy |z| = R. Briefly explain why there are only finitely many zeros
of F in BR and, assuming these are listed with the correct multiplicity, derive a formula
for J(F,R) in terms of the zeros, R, and F (0).

Suppose that F has a zero at every lattice point (point with integer coordinates)
except for (0, 0). Show that there is a constant c > 0 such that |F (zi)| > ec|zi|

2
for a

sequence z1, z2, . . . of complex numbers tending to infinity.
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Paper 1, Section I

3D Complex Analysis or Complex Methods

Let f(z) = u(x, y) + iv(x, y), where z = x + iy, be an analytic function of z in
a domain D of the complex plane. Derive the Cauchy–Riemann equations relating the
partial derivatives of u and v.

For u = e−x cos y, find v and hence f(z).

Paper 1, Section II

13D Complex Analysis or Complex Methods

Consider the real function f(t) of a real variable t defined by the following contour
integral in the complex s-plane:

f(t) =
1

2πi

∫

Γ

est

(s2 + 1)s1/2
ds,

where the contour Γ is the line s = γ + iy,−∞ < y < ∞, for constant γ > 0. By closing
the contour appropriately, show that

f(t) = sin(t− π/4) +
1

π

∫ ∞

0

e−rtdr

(r2 + 1)r1/2

when t > 0 and is zero when t < 0. You should justify your evaluation of the inversion
integral over all parts of the contour.

By expanding (r2 + 1)−1 r−1/2 as a power series in r, and assuming that you may
integrate the series term by term, show that the two leading terms, as t → ∞, are

f(t) ∼ sin(t− π/4) +
1

(πt)1/2
+ · · · .

[You may assume that
∫∞
0 x−1/2e−xdx = π1/2.]
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Paper 2, Section II

14D Complex Analysis or Complex Methods

Show that both the following transformations from the z-plane to the ζ-plane are
conformal, except at certain critical points which should be identified in both planes, and
in each case find a domain in the z-plane that is mapped onto the upper half ζ-plane:

(i) ζ = z +
b2

z
;

(ii) ζ = cosh
πz

b
,

where b is real and positive.
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Paper 3, Section I

5D Complex Methods

Use the residue calculus to evaluate

(i)

∮

C
ze1/zdz and (ii)

∮

C

zdz

1− 4z2
,

where C is the circle |z| = 1.

Paper 4, Section II

15D Complex Methods

The function u(x, y) satisfies Laplace’s equation in the half-space y > 0, together
with boundary conditions

u(x, y) → 0 as y → ∞ for all x ,

u(x, 0) = u0(x), where xu0(x) → 0 as |x| → ∞.

Using Fourier transforms, show that

u(x, y) =

∫ ∞

−∞
u0(t)v(x− t, y)dt ,

where
v(x, y) =

y

π(x2 + y2)
.

Suppose that u0(x) = (x2 + a2)−1. Using contour integration and the convolution
theorem, or otherwise, show that

u(x, y) =
y + a

a [x2 + (y + a)2]
.

[You may assume the convolution theorem of Fourier transforms, i.e. that if f̃(k), g̃(k)are
the Fourier transforms of two functions f(x), g(x), then f̃(k)g̃(k) is the Fourier transform
of

∫∞
−∞ f(t)g(x−t)dt.]
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Paper 2, Section I

6A Electromagnetism
For a volume V with surface S, state Gauss’s Law relating the flux of E across S

to the total charge within V .

A uniformly charged sphere of radius R has total charge Q.

(a) Find the electric field inside the sphere.

(b) Using the differential relation dF = E dq between the force dF on a small charge
dq in an electric field E, find the force on the top half of the sphere due to its bottom half.
Express your answer in terms ofR andQ.

Paper 4, Section I

7A Electromagnetism
State the relationship between the induced EMF V in a loop and the flux Φ through

it. State the force law for a current-carrying wire in a magnetic field B.

A rectangular loop of wire with mass m, width w, vertical length l, and resistance R
falls out of a magnetic field under the influence of gravity. The magnetic field is B = Bx̂
for z > 0 and B = 0 for z < 0, where B is constant. Suppose the loop lies in the (y, z)
plane, with its top initially at z = z0 < l. Find the equation of motion for the loop
and its terminal velocity, assuming that the loop continues to intersect the plane z = 0.

Paper 1, Section II

16A Electromagnetism
Suppose the region z < 0 is occupied by an earthed ideal conductor.

(a) Derive the boundary conditions on the tangential electric field E that hold on
the surface z = 0.

(b) A point charge q, with mass m, is held above the conductor at (0, 0, d). Show
that the boundary conditions on the electric field are satisfied if we remove the conductor
and instead place a second charge −q at (0, 0,−d).

(c) The original point charge is now released with zero initial velocity. Ignoring grav-
ity, determine how long it will take for the charge to hit the plane.
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Paper 2, Section II

17A Electromagnetism
Starting from Maxwell’s equations in vacuo, show that the cartesian components of

E and B each satisfy

∇2f =
1

c2
∂2f

∂t2
.

Consider now a rectangular waveguide with its axis along z, width a along x and b along
y, with a > b. State and explain the boundary conditions on the fields E and B at the
interior waveguide surfaces.

One particular type of propagating wave has

B(x, y, z, t) = B0(x, y)ẑe
i(kz−ωt).

Show that

Bx =
i

(ω/c)2 − k2

(
k
∂Bz

∂x
− ω

c2
∂Ez

∂y

)
,

and derive an equivalent expression for By.

Assume now that Ez = 0. Write down the equation satisfied by Bz, find separable
solutions, and show that the above implies Neumann boundary conditions on Bz. Find the
“cutoff frequency” below which travelling waves do not propagate. For higher frequencies,
find the wave velocity and the group velocity and explain the significance of your results.

Paper 3, Section II

17A Electromagnetism
Two long thin concentric perfectly conducting cylindrical shells of radii a and b

(a < b) are connected together at one end by a resistor of resistance R, and at the other
by a battery that establishes a potential difference V . Thus, a current I = V/R flows in
opposite directions along each of the cylinders.

(a) Using Ampère’s law, find the magnetic field B in between the cylinders.

(b) Using Gauss’s law and the integral relationship between the potential and the
electric field, or otherwise, show that the charge per unit length on the inner cylinder is

λ =
2πǫ0V

ln(b/a)
,

and also calculate the radial electric field.

(c) Calculate the Poynting vector and by suitable integration verify that the power
delivered by the system is V 2/R.
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Paper 1, Section I

5D Fluid Dynamics

A steady velocity field u = (ur, uθ, uz) is given in cylindrical polar coordinates
(r, θ, z) by

ur = −αr, uθ =
γ

r
(1− e−βr2), uz = 2αz ,

where α, β, γ are positive constants.

Show that this represents a possible flow of an incompressible fluid, and find the
vorticity ω.

Show further that

curl (u ∧ ω) = −ν∇2ω

for a constant ν which should be calculated.

[The divergence and curl operators in cylindrical polars are given by

divu =
1

r

∂

∂r
(rur) +

1

r

∂uθ
∂θ

+
∂uz
∂z

curlu =

(
1

r

∂uz
∂θ

− ∂uθ
∂z

,
∂ur
∂z

− ∂uz
∂r

,
1

r

∂

∂r
(ruθ)−

1

r

∂ur
∂θ

)

and ,when ω = [0, 0, ω(r, z)],

∇2ω =

[
0, 0,

1

r

∂

∂r

(
r
∂ω

∂r

)
+

∂2ω

∂z2

]
. ]

Part IB, 2009 List of Questions [TURN OVER



12

Paper 2, Section I

8D Fluid Dynamics

A fireman’s hose full of water has cross-sectional area A0, apart from a smooth
contraction to the outlet nozzle which has cross-sectional area A1 < A0. The volume flow
rate of water through the hose is Q.

Use Bernoulli’s equation to calculate the pressure in the main part of the tube
(relative to atmospheric pressure). Then use the integral momentum equation in the
direction of the flow to show that the force F that the fireman has to exert on the nozzle
to keep it still is given by

F =
ρQ2

2A0

(
A0

A1
− 1

)2

,

where ρ is the density of water.

Paper 1, Section II

17D Fluid Dynamics

A canal has uniform width and a bottom that is horizontal apart from a localised
slowly-varying hump of height D(x) whose maximum value is Dmax. Far upstream the
water has depth h1 and velocity u1. Show that the depth h(x) of the water satisfies the
following equation:

D(x)

h1
= 1− h

h1
− F

2

(
h21
h2

− 1

)
,

where F = u21/gh1.

Describe qualitatively how h(x) varies as the flow passes over the hump in the three
cases

(i) F < 1 and Dmax < D∗

(ii) F > 1 and Dmax < D∗

(iii) Dmax = D∗,

where D∗ = h1
(
1− 3

2F
1/3 + 1

2F
)
.

Calculate the water depth far downstream in case (iii) when F < 1.
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Paper 3, Section II

18D Fluid Dynamics

Starting from Euler’s equations for an inviscid incompressible fluid of density ρ with
no body force, undergoing irrotational motion, show that the pressure p is given by

p

ρ
+

∂φ

∂t
+

1

2
(∇φ)2 = F (t),

for some function F (t), where φ is the velocity potential.

The fluid occupies an infinite domain and contains a spherical gas bubble of radius
R(t) in which the pressure is pg . The pressure in the fluid at infinity is p∞ .

Show that

R̈ R+
3

2
Ṙ2 =

pg − p∞
ρ

.

The bubble contains a fixed mass M of gas in which

pg = C
(
M/R3

)2

for a constant C. At time t = 0, R = R0, Ṙ = 0 and pg = p∞/2 . Show that

Ṙ2R3 =
p∞
ρ

[
R3

0 −
R6

0

3R3
− 2

3
R3

]
,

and deduce that the bubble radius oscillates between R0 and R0/2
1/3.
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Paper 4, Section II

18D Fluid Dynamics
An inviscid incompressible fluid occupies a rectangular tank with vertical sides at

x = 0, a and y = 0, b and a horizontal bottom at z = −h. The undisturbed free surface is
at z = 0.

(i) Write down the equations and boundary conditions governing small amplitude
free oscillations of the fluid, neglecting surface tension, and show that the frequencies ω
of such oscillations are given by

ω2

g
= k tanh kh, where k2 = π2

(
m2

a2
+

n2

b2

)
(1)

for non-negative integers m,n, which cannot both be zero.

(ii) The free surface is now acted on by a small external pressure

p = ǫρgh sinΩt cos
mπx

a
cos

nπy

b
,

where ǫ ≪ 1. Calculate the corresponding oscillation of the free surface when Ω is not
equal to the quantity ω given by (1).

Why does your solution break down as Ω → ω?
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Paper 1, Section I

2G Geometry
What is an ideal hyperbolic triangle? State a formula for its area.

Compute the area of a hyperbolic disk of hyperbolic radius ρ. Hence, or otherwise,
show that no hyperbolic triangle completely contains a hyperbolic circle of hyperbolic ra-
dius 2.

Paper 3, Section I

2G Geometry
Write down the equations for geodesic curves on a surface. Use these to describe

all the geodesics on a circular cylinder, and draw a picture illustrating your answer.

Paper 2, Section II

12G Geometry
What is meant by stereographic projection from the unit sphere in R3 to the complex

plane? Briefly explain why a spherical triangle cannot map to a Euclidean triangle under
stereographic projection.

Derive an explicit formula for stereographic projection. Hence, or otherwise, prove
that if a Möbius map corresponds via stereographic projection to a rotation of the sphere,
it has two fixed points p and q which satisfy pq̄ = −1. Give, with justification:

(i) a Möbius transformation which fixes a pair of points p, q ∈ C satisfying pq̄ = −1
but which does not arise from a rotation of the sphere;

(ii) an isometry of the sphere (for the spherical metric) which does not correspond to
any Möbius transformation under stereographic projection.
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Paper 3, Section II

12G Geometry
Consider a tessellation of the two-dimensional sphere, that is to say a decomposition

of the sphere into polygons each of which has at least three sides. Let E, V and F denote
the numbers of edges, vertices and faces in the tessellation, respectively. State Euler’s
formula. Prove that 2E > 3F . Deduce that not all the vertices of the tessellation have
valence > 6.

By considering the plane {z = 1} ⊂ R3, or otherwise, deduce the following: if Σ
is a finite set of straight lines in the plane R2 with the property that every intersection
point of two lines is an intersection point of at least three, then all the lines in Σ meet at
a single point.

Paper 4, Section II

12G Geometry
Let U ⊂ R2 be an open set. Let Σ ⊂ R3 be a surface locally given as the graph of

an infinitely-differentiable function f : U → R. Compute the Gaussian curvature of Σ in
terms of f .

Deduce that if Σ̂ ⊂ R3 is a compact surface without boundary, its Gaussian
curvature is not everywhere negative.

Give, with brief justification, a compact surface Σ̂ ⊂ R3 without boundary whose
Gaussian curvature must change sign.
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Paper 2, Section I

2F Groups, Rings and Modules

State Sylow’s theorems. Use them to show that a group of order 56 must have either

a normal subgroup of order 7 or a normal subgroup of order 8.

Paper 3, Section I

1F Groups, Rings and Modules

Let F be a field. Show that the polynomial ring F [X] is a principal ideal domain.

Give, with justification, an example of an ideal in F [X,Y ] which is not principal.

Paper 4, Section I

2F Groups, Rings and Modules

Let M be a module over an integral domain R. An element m ∈ M is said to be

torsion if there exists a nonzero r ∈ R with rm = 0; M is said to be torsion-free if its only

torsion element is 0. Show that there exists a unique submodule N of M such that (a) all

elements of N are torsion and (b) the quotient module M/N is torsion-free.

Paper 1, Section II

10F Groups, Rings and Modules

Prove that a principal ideal domain is a unique factorization domain.

Give, with justification, an example of an element of Z[
√
−3] which does not have a

unique factorization as a product of irreducibles. Show how Z[
√
−3] may be embedded as a

subring of index 2 in a ring R (that is, such that the additive quotient group R/Z[
√
−3] has

order 2) which is a principal ideal domain. [You should explain why R is a principal ideal

domain, but detailed proofs are not required.]
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Paper 2, Section II

11F Groups, Rings and Modules

Define the centre of a group, and prove that a group of prime-power order has a

nontrivial centre. Show also that if the quotient group G/Z(G) is cyclic, where Z(G) is

the centre of G, then it is trivial. Deduce that a non-abelian group of order p3, where p is

prime, has centre of order p.

Let F be the field of p elements, and let G be the group of 3× 3 matrices over F of

the form 


1 a b

0 1 c

0 0 1


 .

Identify the centre ofG.

Paper 3, Section II

11F Groups, Rings and Modules

Let S be a multiplicatively closed subset of a ring R, and let I be an ideal of R

which is maximal among ideals disjoint from S. Show that I is prime.

If R is an integral domain, explain briefly how one may construct a field F together

with an injective ring homomorphism R → F .

Deduce that if R is an arbitrary ring, I an ideal of R, and S a multiplicatively closed

subset disjoint from I, then there exists a ring homomorphism f : R → F , where F is a

field, such that f(x) = 0 for all x ∈ I and f(y) 6= 0 for all y ∈ S.

[You may assume that if T is a multiplicatively closed subset of a ring, and 0 6∈ T ,

then there exists an ideal which is maximal among ideals disjoint from T .]

Paper 4, Section II

11F Groups, Rings and Modules

Let R be a principal ideal domain. Prove that any submodule of a finitely-generated

free module over R is free.

An R-module P is said to be projective if, whenever we have module homomor-

phisms f : M → N and g : P → N with f surjective, there exists a homomorphism

h : P → M with f ◦h = g. Show that any free module (over an arbitrary ring) is projective.

Show also that a finitely-generated projective module over a principal ideal domain is free.
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Paper 1, Section I

1G Linear Algebra

(1) Let V be a finite-dimensional vector space and let T : V → V be a non-zero
endomorphism of V . If ker(T ) = im(T ) show that the dimension of V is an even
integer. Find the minimal polynomial of T . [You may assume the rank-nullity
theorem.]

(2) Let Ai, 1 6 i 6 3, be non-zero subspaces of a vector space V with the property that

V = A1 ⊕A2 = A2 ⊕A3 = A1 ⊕A3.

Show that there is a 2-dimensional subspace W ⊂ V for which all the W ∩ Ai are
one-dimensional.

Paper 2, Section I

1G Linear Algebra
Let V denote the vector space of polynomials f(x, y) in two variables of total degree

at most n. Find the dimension of V .

If S : V → V is defined by

(Sf)(x, y) = x2
∂2f

∂x2
+ y2

∂2f

∂y2
,

find the kernel of S and the image of S. Compute the trace of S for each n with 1 6 n 6 4.

Paper 4, Section I

1G Linear Algebra
Show that every endomorphism of a finite-dimensional vector space satisfies some

polynomial, and define the minimal polynomial of such an endomorphism.

Give a linear transformation of an eight-dimensional complex vector space which has
minimal polynomial x2(x−1)3.
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Paper 1, Section II

9G Linear Algebra
Define the dual of a vector space V . State and prove a formula for its dimension.

Let V be the vector space of real polynomials of degree at most n. If {a0, . . . , an}
are distinct real numbers, prove that there are unique real numbers {λ0, . . . , λn} with

dp

dx
(0) =

n∑

j=0

λjp(aj)

for every p(x) ∈ V .

Paper 2, Section II

10G Linear Algebra
Let V be a finite-dimensional vector space and let T : V → V be an endomorphism

of V . Show that there is a positive integer l such that V = ker(T l) ⊕ im(T l). Hence, or
otherwise, show that if T has zero determinant there is some non-zero endomorphism S
with TS = 0 = ST .

Suppose T1 and T2 are endomorphisms of V for which T 2
i = Ti, i = 1, 2. Show that

T1 is similar to T2 if and only if they have the same rank.

Paper 3, Section II

10G Linear Algebra
For each of the following, provide a proof or counterexample.

(1) If A,B are complex n× n matrices and AB = BA, then A and B have a common
eigenvector.

(2) If A,B are complex n× n matrices and AB = BA, then A and B have a common
eigenvalue.

(3) If A,B are complex n× n matrices and (AB)n = 0 then (BA)n = 0.

(4) If T : V → V is an endomorphism of a finite-dimensional vector space V and λ
is an eigenvalue of T , then the dimension of {v ∈ V | (T − λI)v = 0} equals the
multiplicity of λ as a root of the minimal polynomial of T .

(5) If T : V → V is an endomorphism of a finite-dimensional complex vector space V ,
λ is an eigenvalue of T , and Wi = {v ∈ V | (T − λI)i(v) = 0}, then Wc = Wc+1

where c is the multiplicity of λ as a root of the minimal polynomial of T .
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10G Linear Algebra
What does it mean to say two real symmetric bilinear forms A and B on a vector

space V are congruent ?

State and prove Sylvester’s law of inertia, and deduce that the rank and signature
determine the congruence class of a real symmetric bilinear form. [You may use without
proof a result on diagonalisability of real symmetric matrices, provided it is clearly stated.]

How many congruence classes of symmetric bilinear forms on a real n-dimensional
vector space are there? Such a form ψ defines a family of subsets {x ∈ Rn | ψ(x, x) = t},
for t ∈ R. For how many of the congruence classes are these associated subsets all bounded
subsets of Rn? Is the quadric surface

{3x2 + 6y2 + 5z2 + 4xy + 2xz + 8yz = 1}

a bounded or unbounded subset of R3 ? Justify your answers.
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9H Markov Chains

Let (Xn)n>0 be a simple random walk on the integers: the random variables

ξn ≡ Xn −Xn−1 are independent, with distribution

P (ξ = 1) = p, P (ξ = −1) = q,

where 0 < p < 1, and q = 1−p. Consider the hitting time τ = inf{n : Xn = 0 or Xn = N},
where N > 1 is a given integer. For fixed s ∈ (0, 1) define ξk = E[sτ : Xτ = 0|X0 = k] for

k = 0, . . . , N . Show that the ξk satisfy a second-order difference equation, and hence find

them.
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9H Markov Chains

In chess, a bishop is allowed to move only in straight diagonal lines. Thus if the

bishop stands on the square marked A in the diagram, it is able in one move to reach

any of the squares marked with an asterisk. Suppose that the bishop moves at random

around the chess board, choosing at each move with equal probability from the squares it

can reach, the square chosen being independent of all previous choices. The bishop starts

at the bottom left-hand corner of the board.

If Xn is the position of the bishop at time n, show that (Xn)n>0 is a reversible

Markov chain, whose statespace you should specify. Find the invariant distribution of this

Markov chain.

What is the expected number of moves the bishop will make before first returning

to its starting square?

*

*

*

*

*

*

*

*

*

A
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19H Markov Chains

A gerbil is introduced into a maze at the node labelled 0 in the diagram. It roams at

random through the maze until it reaches the node labelled 1. At each vertex, it chooses to

move to one of the neighbouring nodes with equal probability, independently of all other

choices. Find the mean number of moves required for the gerbil to reach node 1.

Suppose now that the gerbil is intelligent, in that when it reaches a node it will

not immediately return to the node from which it has just come, choosing with equal

probability from all other neighbouring nodes. Express the movement of the gerbil in

terms of a Markov chain whose states and transition probabilities you should specify.

Find the mean number of moves until the intelligent gerbil reaches node 1. Compare with

your answer to the first part, and comment briefly.

1

0
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20H Markov Chains

Suppose that B is a non-empty subset of the statespace I of a Markov chain X with

transition matrix P , and let τ ≡ inf{n > 0 : Xn ∈ B}, with the convention that inf ∅ = ∞.

If hi = P (τ < ∞|X0 = i), show that the equations

gi > (Pg)i ≡
∑

j∈I
pijgj > 0 ∀i,(a)

gi = 1 ∀i ∈ B(b)

are satisfied by g = h.

If g satisfies (a), prove that g also satisfies

(c) gi > (P̃ g)i ∀i,

where

p̃ij =

{
pij (i /∈ B),

δij (i ∈ B).

By interpreting the transition matrix P̃ , prove that h is the minimal solution to the

equations (a), (b).

Now suppose that P is irreducible. Prove that P is recurrent if and only if the only

solutions to (a) are constant functions.
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5B Mathematical Methods
Expand f(x) = x, 0 < x < π, as a half-range sine series.

By integrating the series show that a Fourier cosine series for x2, 0 < x < π, can be
written as

x2 =
a0
2

+

∞∑

n=1

an cosnx ,

where an, n = 1, 2, . . . , should be determined and

a0 = 8

∞∑

n=1

(−1)n−1

n2
.

By evaluating a0 another way show that

∞∑

n=1

(−1)n−1

n2
=

π2

12
.

Paper 4, Section I

5B Mathematical Methods
Describe briefly the method of Lagrange multipliers for finding the stationary points

of a function f(x, y) subject to the constraint g(x, y) = 0.

Show that at a stationary point (a, b)

∣∣∣∣∣∣∣∣∣

∂f

∂x
(a, b)

∂g

∂x
(a, b)

∂f

∂y
(a, b)

∂g

∂y
(a, b)

∣∣∣∣∣∣∣∣∣
= 0 .

Find the maximum distance from the origin to the curve

x2 + y2 + xy − 4 = 0 .
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14B Mathematical Methods
Find a power series solution about x = 0 of the equation

xy′′ + (1− x)y′ + λy = 0,

with y(0) = 1, and show that y is a polynomial if and only if λ is a non-negative integer
n. Let yn be the solution for λ = n. Establish an orthogonality relation between ym and
yn (m 6= n).

Show that ymyn is a polynomial of degree m+ n, and hence that

ymyn =

m+n∑

p=0

apyp

for appropriate choices of the coefficients ap and with am+n 6= 0.

For given n > 0, show that the functions

{ym, ymyn : m = 0, 1, 2, . . . , n − 1}

are linearly independent.

Let f(x) be a polynomial of degree 3. Explain why the expansion

f(x) = a0y0(x) + a1y1(x) + a2y2(x) + a3y1(x)y2(x)

holds for appropriate choices of ap, p = 0, 1, 2, 3. Hence show that

∫ ∞

0
e−xf(x) dx = w1f(α1) + w2f(α2) ,

where

w1 =
y1(α2)

y1(α2)− y1(α1)
, w2 =

−y1(α1)

y1(α2)− y1(α1)
,

and α1, α2 are the zeros of y2. You need not construct the polynomials y1(x), y2(x)
explicitly.

Part IB, 2009 List of Questions [TURN OVER



28

Paper 2, Section II

15B Mathematical Methods
A string of uniform density ρ is stretched under tension along the x-axis and

undergoes small transverse oscillations in the (x, y) plane with amplitude y(x, t). Given
that waves in the string travel at velocity c, write down the equation of motion satisfied
by y(x, t).

The string is now fixed at x = 0 and x = L. Derive the general separable solution
for the amplitude y(x, t).

For t < 0 the string is at rest. At time t = 0 the string is struck by a hammer in the
interval [l−a/2, l+a/2], distance being measured from one end. The effect of the hammer
is to impart a constant velocity v to the string inside the interval and zero velocity outside
it. Calculate the proportion of the total energy given to the string in each mode.

If l = L/3 and a = L/10, find all the modes of the string which are not excited in
the motion.

Part IB, 2009 List of Questions



29

Paper 3, Section I

6A Methods
The Fourier transform f̃(ω) of a suitable function f(t) is defined as f̃(ω) =∫∞

−∞ f(t)e−iωtdt. Consider the function h(t) = eαt for t > 0, and zero otherwise. Show
that

h̃(ω) =
1

iω − α
,

provided ℜ(α) < 0.

The angle θ(t) of a forced, damped pendulum satisfies

θ̈ + 2θ̇ + 5θ = e−4t,

with initial conditions θ(0) = θ̇(0) = 0. Show that the transfer function for this system is

R̃(ω) =
1

4i

[
1

(iω + 1− 2i)
− 1

(iω + 1 + 2i)

]
.
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15A Methods
A function g(r) is chosen to make the integral

∫ b

a
f(r, g, g′)dr

stationary, subject to given values of g(a) and g(b). Find the Euler–Lagrange equation for
g(r).

In a certain three-dimensional electrostatics problem the potential φ depends only
on the radial coordinate r, and the energy functional of φ is

E [φ] = 2π

∫ R2

R1

[
1

2

(
dφ

dr

)2

+
1

2λ2
φ2

]
r2dr ,

where λ is a parameter. Show that the Euler–Lagrange equation associated with
minimizing the energy E is equivalent to

1

r

d2 (rφ)

dr2
− 1

λ2
φ = 0 . (1)

Find the general solution of this equation, and the solution for the region R1 6 r 6 R2

which satisfies φ(R1) = φ1 and φ(R2) = 0.

Consider an annular region in two dimensions, where the potential is a function
of the radial coordinate r only. Write down the equivalent expression for the energy
functional E above, in cylindrical polar coordinates, and derive the equivalent of (1).
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16A Methods
Suppose that y1(x) and y2(x) are linearly independent solutions of

d2y

dx2
+ b(x)

dy

dx
+ c(x)y = 0 ,

with y1(0) = 0 and y2(1) = 0. Show that the Green’s function G(x, ξ) for the interval
0 6 x, ξ 6 1 and with G(0, ξ) = G(1, ξ) = 0 can be written in the form

G(x, ξ) =

{
y1(x)y2(ξ)/W (ξ); 0 < x < ξ,

y2(x)y1(ξ)/W (ξ); ξ < x < 1,

where W (x) = W [y1(x), y2(x)] is the Wronskian of y1(x) and y2(x).

Use this result to find the Green’s function G(x, ξ) that satisfies

d2G

dx2
+ 3

dG

dx
+ 2G = δ(x − ξ) ,

in the interval 0 6 x, ξ 6 1 and with G(0, ξ) = G(1, ξ) = 0. Hence obtain an integral
expression for the solution of

d2y

dx2
+ 3

dy

dx
+ 2y =

{
0; 0 < x < x0,

2; x0 < x < 1,

for the case x < x0.
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4F Metric and Topological Spaces

Explain what is meant by a Hausdorff (topological) space, and prove that every

compact subset of a Hausdorff space is closed.

Let X be an uncountable set, and consider the topology T on X defined by

U ∈ T ⇔ either U = ∅ or X \ U is countable.

Is (X,T ) Hausdorff? Is every compact subset ofX closed? Justify your answers.

Paper 3, Section I

4F Metric and Topological Spaces

Are the following statements true or false? Give brief justifications for your answers.

(i) If X is a connected open subset of Rn for some n, then X is path-connected.

(ii) A cartesian product of two connected spaces is connected.

(iii) IfX is a Hausdorff space and the only connected subsets ofX are singletons {x},
thenX is discrete.

Paper 1, Section II

12F Metric and Topological Spaces

Given a function f : X → Y between metric spaces, we write Γf for the subset

{(x, f(x)) | x ∈ X} of X × Y .

(i) If f is continuous, show that Γf is closed in X × Y .

(ii) If Y is compact and Γf is closed in X × Y , show that f is continuous.

(iii) Give an example of a function f : R → R such that Γf is closed but f is not

continuous.
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14F Metric and Topological Spaces

A nonempty subset A of a topological space X is called irreducible if, whenever we

have open sets U and V such that U ∩ A and V ∩ A are nonempty, then we also have

U ∩ V ∩A 6= ∅. Show that the closure of an irreducible set is irreducible, and deduce that

the closure of any singleton set {x} is irreducible.

X is said to be a sober topological space if, for any irreducible closed A ⊆ X, there

is a unique x ∈ X such that A = {x}. Show that any Hausdorff space is sober, but that

an infinite set with the cofinite topology is not sober.

Given an arbitrary topological space (X,T ), let X̂ denote the set of all irreducible

closed subsets of X, and for each U ∈ T let

Û = {A ∈ X̂ | U ∩A 6= ∅} .

Show that the sets {Û | U ∈ T } form a topology T̂ on X̂ , and that the mapping U 7→ Û is

a bijection from T to T̂ . Deduce that (X̂, T̂ ) is sober. [Hint: consider the complement of an

irreducible closed subset of X̂ .]
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6C Numerical Analysis

The real non-singular matrix A ∈ Rm×m is written in the form A = AD +AU +AL,

where the matrices AD, AU , AL ∈ Rm×m are diagonal and non-singular, strictly upper-

triangular and strictly lower-triangular respectively.

Given b ∈ Rm, the Jacobi iteration for solving Ax = b is

ADxn = −(AU +AL)xn−1 + b, n = 1, 2...

where the nth iterate is xn ∈ Rm. Show that the iteration converges to the solution x of

Ax = b, independent of the starting choice x0, if and only if the spectral radius ρ(H) of

the matrix H = −A−1
D (AU +AL) is less than 1.

Hence find the range of values of the real number µ for which the iteration will

converge when

A =




1 0 −µ

−µ 3 −µ

−4µ 0 4


 .
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8C Numerical Analysis

Suppose that w(x) > 0 for all x ∈ (a, b). The weights b1, ..., bn and nodes x1, ..., xn are

chosen so that the Gaussian quadrature formula

∫ b

a
w(x)f(x)dx ∼

n∑

k=1

bkf(xk)

is exact for every polynomial of degree 2n−1. Show that the bi, i = 1, ..., n are all positive.

When w(x) = 1 + x2, a = −1 and b = 1, the first three underlying orthogonal

polynomials are p0(x) = 1, p1(x) = x, and p2(x) = x2 − 2/5. Find x1, x2 and b1, b2 when

n = 2.
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18C Numerical Analysis

The real orthogonal matrix Ω[p,q] ∈ Rm×m with 1 6 p < q 6 m is a Givens rotation

with rotation angle θ. Write down the form of Ω[p,q].

Show that for any matrix A ∈ Rm×m it is possible to choose θ such that the matrix

Ω[p,q]A satisfies (Ω[p,q]A)q,j = 0 for any j, where 1 6 j 6 m.

Let

A =




1 3 2

1 4 4√
2 7/

√
2 4

√
2


 .

By applying a sequence of Givens rotations of the form Ω[1,3]Ω[1,2], chosen to reduce the

elements in the first column below the main diagonal to zero, find a factorisation of the

matrix A ∈ R3×3 of the form A = QR, where Q ∈ R3×3 is an orthogonal matrix and

R ∈ R3×3 is an upper-triangular matrix for which the leading non-zero element in each

row is positive.
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19C Numerical Analysis

Starting from Taylor’s theorem with integral form of the remainder, prove the Peano

kernel theorem: the error of an approximant L(f) applied to f(x) ∈ Ck+1[a, b] can be

written in the form

L(f) =
1

k!

∫ b

a
K(θ)f (k+1)(θ)dθ.

You should specify the form of K(θ). Here it is assumed that L(f) is identically zero when

f(x) is a polynomial of degree k. State any other necessary conditions.

Setting a = 0 and b = 2, find K(θ) and show that it is negative for 0 < θ < 2 when

L(f) =

∫ 2

0
f(x)dx− 1

3
(f(0) + 4f(1) + f(2)) for f(x) ∈ C4[0, 2].

Hence determine the minimum value of ρ for which

|L(f)| 6 ρ‖f (4)||∞,

holds for all f(x) ∈ C4[0, 2].
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8H Optimization

Find an optimal solution to the linear programming problem

max 3x1 + 2x2 + 2x3

in x > 0 subject to
7x1 + 3x2 + 5x3 6 44,

x1 + 2x2 + x3 6 10,

x1 + x2 + x3 > 8.
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9H Optimization

The diagram shows a network of sewage treatment plants, shown as circles, con-

nected by pipes. Some pipes (indicated by a line with an arrowhead at one end only)

allow sewage to flow in one direction only, others (indicated by a line with an arrowhead

at both ends) allow sewage to flow in either direction. The capacities of the pipes are

shown. The system serves three towns, shown in the diagram as squares.

Each sewage treatment plant can treat a limited amount of sewage, indicated by

the number in the circle, and this may not be exceeded for fear of environmental damage.

Treated sewage is pumped into the sea, but at any treatment plant incoming untreated

sewage may be immediately pumped to another plant for treatment there.

Find the maximum amount of sewage which can be handled by the system, and how

this is assigned to each of the three towns.

14

12

6

9

11

11

1214

10 6

20

20

7 7

8
16

The Sea
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20H Optimization

Four factories supply stuff to four shops. The production capacities of the factories

are 7, 12, 8 and 9 units per week, and the requirements of the shops are 8 units per week

each. If the costs of transporting a unit of stuff from factory i to shop j is the (i, j)th

element in the matrix




6 10 3 5

4 8 6 12

3 4 9 2

5 7 2 6




find a minimal-cost allocation of the outputs of the factories to the shops.

Suppose that the cost of producing one unit of stuff varies across the factories, being

3, 2, 4, 5 respectively. Explain how you would modify the original problem to minimise

the total cost of production and of transportation, and find an optimal solution for the

modified problem.
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20H Optimization

In a pure exchange economy, there are J agents, and d goods. Agent j initially holds

an endowment xj ∈ Rd of the d different goods, j = 1, . . . , J . Agent j has preferences

given by a concave utility function Uj : Rd → R which is strictly increasing in each of its

arguments, and is twice continuously differentiable. Thus agent j prefers y ∈ Rd to x ∈ Rd

if and only if Uj(y) > Uj(x).

The agents meet and engage in mutually beneficial trades. Thus if agent i holding

zi meets agent j holding zj , then the amounts z′i held by agent i and z′j held by agent j

after trading must satisfy Ui(z
′
i) > Ui(zi), Uj(z

′
j) > Uj(zj), and z′i + z′j = zi + zj . Meeting

and trading continues until, finally, agent j holds yj ∈ Rd, where

∑

j

xj =
∑

j

yj,

and there are no further mutually beneficial trades available to any pair of agents. Prove

that there must exist a vector v ∈ Rd and positive scalars λ1, . . . , λJ such that

∇Uj(yj) = λjv

for all j. Show that for some positive a1, . . . , aJ the final allocations yj are what would be

achieved by a social planner, whose objective is to obtain

max
∑

j

ajUj(yj) subject to
∑

j

yj =
∑

j

xj .
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7B Quantum Mechanics
The motion of a particle in one dimension is described by the time-independent

hermitian Hamiltonian operator H whose normalized eigenstates ψn(x), n = 0, 1, 2, . . . ,
satisfy the Schrödinger equation

Hψn = Enψn ,

with E0 < E1 < E2 < · · · < En < · · · . Show that

∫ ∞

−∞
ψ∗
mψn dx = δmn .

The particle is in a state represented by the wavefunction Ψ(x, t) which, at time
t = 0, is given by

Ψ(x, 0) =

∞∑

n=0

(
1√
2

)n+1

ψn(x) .

Write down an expression for Ψ(x, t) and show that it is normalized to unity.

Derive an expression for the expectation value of the energy for this state and show
that it is independent of time.

Calculate the probability that the particle has energy Em for a given integer m > 0,
and show that this also is time-independent.

Paper 4, Section I

6B Quantum Mechanics
The wavefunction of a Gaussian wavepacket for a particle of mass m moving in one

dimension is

ψ(x, t) =
1

π1/4

√
1

1 + i~t/m
exp

(
− x2

2(1 + i~t/m)

)
.

Show that ψ(x, t) satisfies the appropriate time-dependent Schrödinger equation.

Show that ψ(x, t) is normalized to unity and calculate the uncertainty in measure-
ment of the particle position, ∆x =

√
〈x2〉 − 〈x〉2.

Is ψ(x, t) a stationary state? Give a reason for your answer.
[
You may assume that

∫∞
−∞ e−λx2

dx =
√

π
λ .
]
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15B Quantum Mechanics
A particle of mass m moves in one dimension in a potential V (x) which satisfies

V (x) = V (−x). Show that the eigenstates of the Hamiltonian H can be chosen so that
they are also eigenstates of the parity operator P . For eigenstates with odd parity ψodd(x),
show that ψodd(0) = 0.

A potential V (x) is given by

V (x) =

{
κδ(x) |x| < a
∞ |x| > a .

State the boundary conditions satisfied by ψ(x) at |x| = a, and show also that

~2

2m
lim
ǫ→0

[
dψ

dx

∣∣∣∣
ǫ

− dψ

dx

∣∣∣∣
−ǫ

]
= κψ(0) .

Let the energy eigenstates of even parity be given by

ψeven(x) =





A cos λx + B sinλx −a < x < 0
A cos λx − B sinλx 0 < x < a
0 otherwise .

Verify that ψeven(x) satisfies

Pψeven(x) = ψeven(x) .

By demanding that ψeven(x) satisfy the relevant boundary conditions show that

tanλa = −~2

m

λ

κ
.

For κ > 0 show that the energy eigenvalues Eeven
n , n = 0, 1, 2, . . ., withEeven

n < Eeven
n+1 ,

satisfy

ηn = Eeven
n − 1

2m

[
(2n + 1)~π

2a

]2
> 0.

Show also that
lim
n→∞

ηn = 0,

and give a physical explanation of this result.

Show that the energy eigenstates with odd parity and their energy eigenvalues do
not depend on κ.
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16B Quantum Mechanics
Write down the expressions for the probability density ρ and the associated current

density j for a particle with wavefunction ψ(x, t) moving in one dimension. If ψ(x, t) obeys
the time-dependent Schrödinger equation show that ρ and j satisfy

∂j

∂x
+
∂ρ

∂t
= 0 .

Give an interpretation of ψ(x, t) in the case that

ψ(x, t) = (eikx +Re−ikx)e−iEt/~ ,

and show that E =
~2k2

2m
and

∂ρ

∂t
= 0.

A particle of mass m and energy E > 0 moving in one dimension is incident from
the left on a potential V (x) given by

V (x) =

{
−V0 0 < x < a

0 x < 0, x > a ,

where V0 is a positive constant. What conditions must be imposed on the wavefunction
at x = 0 and x = a? Show that when 3E = V0 the probability of transmission is

[
1 +

9

16
sin2

a
√
8mE

~

]−1

.

For what values of a does this agree with the classical result?

Part IB, 2009 List of Questions



45

Paper 3, Section II

16B Quantum Mechanics
If A,B, and C are operators establish the identity

[AB,C] = A[B,C] + [A,C]B .

A particle moves in a two-dimensional harmonic oscillator potential with Hamil-
tonian

H = 1
2(p

2
x + p2y) +

1
2(x

2 + y2) .

The angular momentum operator is defined by

L = xpy − ypx .

Show that L is hermitian and hence that its eigenvalues are real. Establish the commut-
ation relation [L,H] = 0. Why does this ensure that eigenstates of H can also be chosen
to be eigenstates of L?

Let φ0(x, y) = e−(x2+y2)/2~, and show that φ0, φx = xφ0 and φy = yφ0 are all
eigenstates of H, and find their respective eigenvalues. Show that

Lφ0 = 0, Lφx = i~φy, Lφy = −i~φx ,

and hence, by taking suitable linear combinations of φx and φy, find two states, ψ1 and
ψ2, satisfying

Lψj = λjψj , Hψj = Ejψj j = 1, 2 .

Show that ψ1 and ψ2 are orthogonal, and find λ1, λ2, E1 and E2.

The particle has charge e, and an electric field of strength E is applied in the x-
direction so that the Hamiltonian is now H ′, where

H ′ = H − eEx .

Show that [L,H ′] = −i~eEy. Why does this mean that L andH ′ cannot have simultaneous
eigenstates?

By making the change of coordinates x′ = x− eE , y′ = y, show that ψ1(x
′, y′) and

ψ2(x
′, y′) are eigenstates of H ′ and write down the corresponding energy eigenvalues.

Find a modified angular momentum operator L′ for which ψ1(x
′, y′) and ψ2(x

′, y′)
are also eigenstates.
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Paper 1, Section I

4C Special Relativity

Write down the components of the position four-vector xµ. Hence find the compo-

nents of the four-momentum pµ = MUµ of a particle of mass M, where Uµ = dxµ/dτ,

with τ being the proper time.

The particle, viewed in a frame in which it is initially at rest, disintegrates leaving

a particle of mass m moving with constant velocity together with other remnants which

have a total three-momentum p and energy E. Show that

m =

√(
M − E

c2

)2

− |p|2
c2

.

Paper 2, Section I

7C Special Relativity

Show that the two-dimensional Lorentz transformation relating (ct′, x′) in frame S′

to (ct, x) in frame S, where S′ moves relative to S with speed v, can be written in the

form

x′ = x coshφ− ct sinhφ

ct′ = −x sinhφ+ ct cosh φ,

where the hyperbolic angle φ associated with the transformation is given by tanhφ = v/c.

Deduce that

x′ + ct′ = e−φ(x+ ct)

x′ − ct′ = eφ(x− ct).

Hence show that if the frame S′′ moves with speed v′ relative to S′ and tanhφ′ = v′/c,
then the hyperbolic angle associated with the Lorentz transformation connecting S′′ and
S is given by

φ′′ = φ′ + φ.

Hence find an expression for the speed of S′′ as seen from S.
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Paper 4, Section II

17C Special Relativity

A star moves with speed v in the x-direction in a reference frame S. When viewed

in its rest frame S′ it emits a photon of frequency ν ′ which propagates along a line making

an angle θ′ with the x′-axis. Write down the components of the four-momentum of the

photon in S′. As seen in S, the photon moves along a line that makes an angle θ with the

x-axis and has frequency ν. Using a Lorentz transformation, write down the relationship

between the components of the four-momentum of the photon in S′ to those in S and

show that

cos θ =
cos θ′ + v/c

1 + v cos θ′/c
.

As viewed in S′, the star emits two photons with frequency ν ′ in opposite directions

with θ′ = π/2 and θ′ = −π/2, respectively. Show that an observer in S records them as

having a combined momentum p directed along the x-axis, where

p =
Ev

c2
√

1− v2/c2

and where E is the combined energy of the photons as seen in S′. How is this momentum

loss from the star consistent with its maintaining a constant speed as viewed in S?
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Paper 1, Section I

7H Statistics

What does it mean to say that an estimator θ̂ of a parameter θ is unbiased?

An n-vector Y of observations is believed to be explained by the model

Y = Xβ + ε,

where X is a known n × p matrix, β is an unknown p-vector of parameters, p < n, and

ε is an n-vector of independent N(0, σ2) random variables. Find the maximum-likelihood

estimator β̂ of β, and show that it is unbiased.

Paper 3, Section I

8H Statistics

In a demographic study, researchers gather data on the gender of children in families

with more than two children. For each of the four possible outcomes GG, GB, BG, BB

of the first two children in the family, they find 50 families which started with that pair,

and record the gender of the third child of the family. This produces the following table

of counts:
First two children Third child B Third child G

GG 16 34

GB 28 22

BG 25 25

BB 31 19

In view of this, is the hypothesis that the gender of the third child is independent of the

genders of the first two children rejected at the 5% level?

[Hint: the 95% point of a χ2
3 distribution is 7.8147, and the 95% point of a χ2

4 distribution

is 9.4877.]
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Paper 1, Section II

18H Statistics

What is the critical region C of a test of the null hypothesis H0 : θ ∈ Θ0 against

the alternative H1 : θ ∈ Θ1? What is the size of a test with critical region C? What is

the power function of a test with critical region C?

State and prove the Neyman–Pearson Lemma.

If X1, . . . ,Xn are independent with common Exp(λ) distribution, and 0 < λ0 < λ1,

find the form of the most powerful size-α test of H0 : λ = λ0 against H1 : λ = λ1. Find

the power function as explicitly as you can, and prove that it is increasing in λ. Deduce

that the test you have constructed is a size-α test of H0 : λ 6 λ0 against H1 : λ = λ1.

Paper 2, Section II

19H Statistics

What does it mean to say that the random d-vector X has a multivariate normal

distribution with mean µ and covariance matrix Σ?

Suppose that X ∼ Nd(0, σ
2Id), and that for each j = 1, . . . , J , Aj is a dj×d matrix.

Suppose further that

AjA
T
i = 0

for j 6= i. Prove that the random vectors Yj ≡ AjX are independent, and that

Y ≡ (Y T
1 , . . . , Y T

J )T has a multivariate normal distribution.

[ Hint: Random vectors are independent if their joint MGF is the product of their individual

MGFs.]

If Z1, . . . , Zn is an independent sample from a univariate N(µ, σ2) distribution,

prove that the sample variance SZZ ≡ (n−1)−1
∑n

i=1(Zi− Z̄)2 and the sample mean Z̄ ≡
n−1

∑n
i=1 Zi are independent.

Paper 4, Section II

19H Statistics

What is a sufficient statistic? State the factorization criterion for a statistic to be

sufficient.

Suppose that X1, . . . ,Xn are independent random variables uniformly distributed

over [a, b], where the parameters a < b are not known, and n > 2. Find a sufficient statistic

for the parameter θ ≡ (a, b) based on the sample X1, . . . ,Xn. Based on your sufficient

statistic, derive an unbiased estimator of θ.
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