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1/I/1E Linear Algebra

Let A be an n×n matrix over C. What does it mean to say that λ is an eigenvalue
of A? Show that A has at least one eigenvalue. For each of the following statements,
provide a proof or a counterexample as appropriate.

(i) If A is Hermitian, all eigenvalues of A are real.

(ii) If all eigenvalues of A are real, A is Hermitian.

(iii) If all entries of A are real and positive, all eigenvalues of A have positive real
part.

(iv) If A and B have the same trace and determinant then they have the same
eigenvalues.

1/II/9E Linear Algebra

Let A be an m× n matrix of real numbers. Define the row rank and column rank
of A and show that they are equal.

Show that if a matrix A′ is obtained from A by elementary row and column
operations then rank(A′) = rank(A).

Let P,Q and R be n× n matrices. Show that the 2n× 2n matrices
(
PQ 0
Q QR

)
and

(
0 PQR
Q 0

)
have the same rank.

Hence, or otherwise, prove that

rank(PQ) + rank(QR) 6 rank(Q) + rank(PQR).

2/I/1E Linear Algebra

Suppose that V and W are finite-dimensional vector spaces over R. What does it
mean to say that ψ : V →W is a linear map? State the rank-nullity formula. Using it, or
otherwise, prove that a linear map ψ : V → V is surjective if, and only if, it is injective.

Suppose that ψ : V → V is a linear map which has a right inverse, that is to say
there is a linear map φ : V → V such that ψφ = idV , the identity map. Show that
φψ = idV .

Suppose that A and B are two n × n matrices over R such that AB = I. Prove
that BA = I.
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2/II/10E Linear Algebra

Define the determinant det(A) of an n × n square matrix A over the complex
numbers. If A and B are two such matrices, show that det(AB) = det(A) det(B).

Write pM (λ) = det(M − λI) for the characteristic polynomial of a matrix M . Let
A,B,C be n × n matrices and suppose that C is nonsingular. Show that pBC = pCB .
Taking C = A+ tI for appropriate values of t, or otherwise, deduce that pBA = pAB .

Show that if pA = pB then tr(A) = tr(B). Which of the following statements is
true for all n× n matrices A,B,C? Justify your answers.

(i) pABC = pACB ;

(ii) pABC = pBCA.

3/II/10E Linear Algebra

Let k = R or C. What is meant by a quadratic form q : kn → k? Show that
there is a basis {v1, . . . , vn} for kn such that, writing x = x1v1 + . . . + xnvn, we have
q(x) = a1x

2
1 + . . .+ anx

2
n for some scalars a1, . . . , an ∈ {−1, 0, 1}.

Suppose that k = R. Define the rank and signature of q and compute these
quantities for the form q : R3 → R given by q(x) = −3x2

1 + x2
2 + 2x1x2 − 2x1x3 + 2x2x3.

Suppose now that k = C and that q1, . . . , qd : Cn → C are quadratic forms. If
n > 2d, show that there is some nonzero x ∈ Cn such that q1(x) = . . . = qd(x) = 0.

4/I/1E Linear Algebra

Describe (without proof) what it means to put an n×n matrix of complex numbers
into Jordan normal form. Explain (without proof) the sense in which the Jordan normal
form is unique.

Put the following matrix in Jordan normal form:

−7 3 −5
7 −1 5
17 −6 12

 .
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4/II/10E Linear Algebra

What is meant by a Hermitian matrix? Show that if A is Hermitian then all its
eigenvalues are real and that there is an orthonormal basis for Cn consisting of eigenvectors
of A.

A Hermitian matrix is said to be positive definite if 〈Ax, x〉 > 0 for all x 6= 0.
We write A > 0 in this case. Show that A is positive definite if, and only if, all of its
eigenvalues are positive. Show that if A > 0 then A has a unique positive definite square
root

√
A.

Let A,B be two positive definite Hermitian matrices with A − B > 0. Writing
C =

√
A and X =

√
A−
√
B, show that CX +XC > 0. By considering eigenvalues of X,

or otherwise, show that X > 0.
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1/II/10G Groups, Rings and Modules

(i) Show that A4 is not simple.

(ii) Show that the group Rot(D) of rotational symmetries of a regular dodecahedron
is a simple group of order 60.

(iii) Show that Rot(D) is isomorphic to A5.

2/I/2G Groups, Rings and Modules

What does it means to say that a complex number α is algebraic over Q? Define
the minimal polynomial of α.

Suppose that α satisfies a nonconstant polynomial f ∈ Z[X] which is irreducible
over Z. Show that there is an isomorphism Z[X]/(f) ∼= Z[α].

[You may assume standard results about unique factorisation, including Gauss’s
lemma.]

2/II/11G Groups, Rings and Modules

Let F be a field. Prove that every ideal of the ring F [X1, . . . , Xn] is finitely
generated.

Consider the set

R =
{
p(X,Y ) =

∑
cijX

iY j ∈ F [X,Y ]
∣∣∣ c0j = cj0 = 0 whenever j > 0

}
.

Show that R is a subring of F [X,Y ] which is not Noetherian.

3/I/1G Groups, Rings and Modules

Let G be the abelian group generated by elements a, b, c, d subject to the relations

4a− 2b+ 2c+ 12d = 0, −2b+ 2c = 0, 2b+ 2c = 0, 8a+ 4c+ 24d = 0 .

Express G as a product of cyclic groups, and find the number of elements of G of order 2.
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3/II/11G Groups, Rings and Modules

What is a Euclidean domain? Show that a Euclidean domain is a principal ideal
domain.

Show that Z[
√
−7] is not a Euclidean domain (for any choice of norm), but that

the ring

Z
[1 +

√
−7

2

]
is Euclidean for the norm function N(z) = zz̄.

4/I/2G Groups, Rings and Modules

Let n ≥ 2 be an integer. Show that the polynomial (Xn− 1)/(X − 1) is irreducible
over Z if and only if n is prime.

[You may use Eisenstein’s criterion without proof.]

4/II/11G Groups, Rings and Modules

Let R be a ring and M an R-module. What does it mean to say that M is a free
R-module? Show that M is free if there exists a submodule N ⊆ M such that both N
and M/N are free.

Let M and M ′ be R-modules, and N ⊆ M , N ′ ⊆ M ′ submodules. Suppose that
N ∼= N ′ and M/N ∼= M ′/N ′. Determine (by proof or counterexample) which of the
following statements holds:

(1) If N is free then M ∼= M ′.

(2) If M/N is free then M ∼= M ′.
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1/I/2G Geometry

Show that any element of SO(3,R) is a rotation, and that it can be written as the
product of two reflections.

2/II/12G Geometry

Show that the area of a spherical triangle with angles α, β, γ is α + β + γ − π.
Hence derive the formula for the area of a convex spherical n-gon.

Deduce Euler’s formula F − E + V = 2 for a decomposition of a sphere into F
convex polygons with a total of E edges and V vertices.

A sphere is decomposed into convex polygons, comprising m quadrilaterals, n
pentagons and p hexagons, in such a way that at each vertex precisely three edges meet.
Show that there are at most 7 possibilities for the pair (m,n), and that at least 3 of these
do occur.

3/I/2G Geometry

A smooth surface in R3 has parametrization

σ(u, v) =
(
u− u3

3
+ uv2, v − v3

3
+ u2v, u2 − v2

)
.

Show that a unit normal vector at the point σ(u, v) is(
−2u

1 + u2 + v2
,

2v
1 + u2 + v2

,
1− u2 − v2

1 + u2 + v2

)

and that the curvature is
−4

(1 + u2 + v2)4
.
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3/II/12G Geometry

Let D be the unit disc model of the hyperbolic plane, with metric

4 |dζ|2

(1− |ζ|2)2
.

(i) Show that the group of Möbius transformations mapping D to itself is the group
of transformations

ζ 7→ ω
ζ − λ
λ̄ζ − 1

,

where |λ| < 1 and |ω| = 1.

(ii) Assuming that the transformations in (i) are isometries of D, show that any
hyperbolic circle in D is a Euclidean circle.

(iii) Let P and Q be points on the unit circle with ∠POQ = 2α. Show that the
hyperbolic distance from O to the hyperbolic line PQ is given by

2 tanh−1

(
1− sinα

cosα

)
.

(iv) Deduce that if a > 2 tanh−1(2−
√

3) then no hyperbolic open disc of radius a
is contained in a hyperbolic triangle.

4/II/12G Geometry

Let γ: [a, b] → S be a curve on a smoothly embedded surface S ⊂ R3. Define the
energy of γ. Show that if γ is a stationary point for the energy for proper variations of γ,
then γ satisfies the geodesic equations

d

dt
(Eγ̇1 + F γ̇2) =

1
2

(Euγ̇2
1 + 2Fuγ̇1γ̇2 +Guγ̇

2
2)

d

dt
(F γ̇1 +Gγ̇2) =

1
2

(Evγ̇2
1 + 2Fvγ̇1γ̇2 +Gvγ̇

2
2)

where γ = (γ1, γ2) in terms of a smooth parametrization (u, v) for S, with first fundamental
form E du2 + 2F du dv +Gdv2.

Now suppose that for every c, d the curves u = c, v = d are geodesics.

(i) Show that (F/
√
G)v = (

√
G)u and (F/

√
E)u = (

√
E)v.

(ii) Suppose moreover that the angle between the curves u = c, v = d is independent
of c and d. Show that Ev = 0 = Gu.
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1/II/11F Analysis II

State and prove the Contraction Mapping Theorem.

Let (X, d) be a nonempty complete metric space and f : X → X a mapping such
that, for some k > 0, the kth iterate fk of f (that is, f composed with itself k times) is a
contraction mapping. Show that f has a unique fixed point.

Now let X be the space of all continuous real-valued functions on [0, 1], equipped
with the uniform norm ‖h‖∞ = sup {|h(t)| : t ∈ [0, 1]}, and let φ : R × [0, 1] → R be a
continuous function satisfying the Lipschitz condition

|φ(x, t)− φ(y, t)| 6 M |x− y|

for all t ∈ [0, 1] and all x, y ∈ R, where M is a constant. Let F : X → X be defined by

F (h)(t) = g(t) +
∫ t

0

φ(h(s), s) ds ,

where g is a fixed continuous function on [0, 1]. Show by induction on n that

|Fn(h)(t)− Fn(k)(t)| 6 Mntn

n!
‖h− k‖∞

for all h, k ∈ X and all t ∈ [0, 1]. Deduce that the integral equation

f(t) = g(t) +
∫ t

0

φ(f(s), s) ds

has a unique continuous solution f on [0, 1].

2/I/3F Analysis II

Explain what is meant by the statement that a sequence (fn) of functions defined
on an interval [a, b] converges uniformly to a function f . If (fn) converges uniformly to f ,
and each fn is continuous on [a, b], prove that f is continuous on [a, b].

Now suppose additionally that (xn) is a sequence of points of [a, b] converging to a
limit x. Prove that fn(xn)→ f(x).
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2/II/13F Analysis II

Let (un(x) : n = 0, 1, 2, . . .) be a sequence of real-valued functions defined on a
subset E of R. Suppose that for all n and all x ∈ E we have |un(x)| 6 Mn, where∑∞
n=0Mn converges. Prove that

∑∞
n=0 un(x) converges uniformly on E.

Now let E = R \ Z, and consider the series
∑∞
n=0 un(x), where u0(x) = 1/x2 and

un(x) = 1/(x− n)2 + 1/(x+ n)2

for n > 0. Show that the series converges uniformly on ER = {x ∈ E : |x| < R} for any
real number R. Deduce that f(x) =

∑∞
n=0 un(x) is a continuous function on E. Does the

series converge uniformly on E? Justify your answer.

3/I/3F Analysis II

Explain what it means for a function f(x, y) of two variables to be differentiable
at a point (x0, y0). If f is differentiable at (x0, y0), show that for any α the function gα
defined by

gα(t) = f(x0 + t cos α, y0 + t sin α)

is differentiable at t = 0, and find its derivative in terms of the partial derivatives of f at
(x0, y0).

Consider the function f defined by

f(x, y) = (x2y + xy2)/(x2 + y2) ((x, y) 6= (0, 0))
= 0 ((x, y) = (0, 0)).

Is f differentiable at (0, 0)? Justify your answer.

3/II/13F Analysis II

Let f : R2 → R be a function, and (x0, y0) a point of R2. Prove that if the partial
derivatives of f exist in some open disc around (x0, y0) and are continuous at (x0, y0),
then f is differentiable at (x0, y0).

Now let X denote the vector space of all (n× n) real matrices, and let f : X → R
be the function assigning to each matrix its determinant. Show that f is differentiable
at the identity matrix I, and that Df |I is the linear map H 7→ tr H. Deduce
that f is differentiable at any invertible matrix A, and that Df |A is the linear map
H 7→ detA tr (A−1H).

Show also that if K is a matrix with ‖K‖ < 1, then (I +K) is invertible. Deduce
that f is twice differentiable at I, and find D2f |I as a bilinear map X ×X → R.

[You may assume that the norm ‖ − ‖ on X is complete, and that it satisfies the
inequality ‖AB‖ 6 ‖A‖.‖B‖ for any two matrices A and B.]
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4/I/3F Analysis II

Let X be the vector space of all continuous real-valued functions on the unit interval
[0, 1]. Show that the functions

‖f‖1 =
∫ 1

0

|f(t)| dt and ‖f‖∞ = sup{|f(t)| : 0 6 t 6 1}

both define norms on X.

Consider the sequence (fn) defined by fn(t) = ntn(1 − t). Does (fn) converge in
the norm ‖ − ‖1? Does it converge in the norm ‖ − ‖∞? Justify your answers.

4/II/13F Analysis II

Explain what it means for two norms on a real vector space to be Lipschitz
equivalent. Show that if two norms are Lipschitz equivalent, then one is complete if
and only if the other is.

Let ‖ − ‖ be an arbitrary norm on the finite-dimensional space Rn, and let ‖ − ‖2
denote the standard (Euclidean) norm. Show that for every x ∈ Rn with ‖x‖2 = 1, we
have

‖x‖ 6 ‖e1‖+ ‖e2‖+ · · ·+ ‖en‖

where (e1, e2, . . . , en) is the standard basis for Rn, and deduce that the function ‖ − ‖ is
continuous with respect to ‖ − ‖2. Hence show that there exists a constant m > 0 such
that ‖x‖ > m for all x with ‖x‖2 = 1, and deduce that ‖ − ‖ and ‖ − ‖2 are Lipschitz
equivalent.

[You may assume the Bolzano–Weierstrass Theorem.]
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1/II/12F Metric and Topological Spaces

Write down the definition of a topology on a set X.

For each of the following families T of subsets of Z, determine whether T is a
topology on Z. In the cases where the answer is ‘yes’, determine also whether (Z, T ) is a
Hausdorff space and whether it is compact.

(a) T = {U ⊆ Z : either U is finite or 0 ∈ U} .

(b) T = {U ⊆ Z : either Z \ U is finite or 0 6∈ U} .

(c) T = {U ⊆ Z : there exists k > 0 such that, for all n, n ∈ U ⇔ n+ k ∈ U} .

(d) T = {U ⊆ Z : for all n ∈ U , there exists k > 0 such that {n+km : m ∈ Z} ⊆ U} .

2/I/4F Metric and Topological Spaces

Stating carefully any results on compactness which you use, show that if X is a
compact space, Y is a Hausdorff space and f : X → Y is bijective and continuous, then f
is a homeomorphism.

Hence or otherwise show that the unit circle S = {(x, y) ∈ R2 : x2 + y2 = 1} is
homeomorphic to the quotient space [0, 1]/ ∼, where ∼ is the equivalence relation defined
by

x ∼ y ⇔ either x = y or {x, y} = {0, 1} .

3/I/4F Metric and Topological Spaces

Explain what it means for a topological space to be connected.

Are the following subspaces of the unit square [0, 1]× [0, 1] connected? Justify your
answers.

(a) {(x, y) : x 6= 0, y 6= 0, and x/y ∈ Q} .

(b) {(x, y) : (x = 0) or (x 6= 0 and y ∈ Q)} .
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4/II/14F Metric and Topological Spaces

Explain what is meant by a base for a topology. Illustrate your definition by
describing bases for the topology induced by a metric on a set, and for the product
topology on the cartesian product of two topological spaces.

A topological space (X, T ) is said to be separable if there is a countable subset
C ⊆ X which is dense, i.e. such that C ∩ U 6= ∅ for every nonempty U ∈ T . Show that a
product of two separable spaces is separable. Show also that a metric space is separable
if and only if its topology has a countable base, and deduce that every subspace of a
separable metric space is separable.

Now let X = R with the topology T having as a base the set of all half-open
intervals

[a, b) = {x ∈ R : a 6 x < b}

with a < b. Show that X is separable, but that the subspace Y = {(x,−x) : x ∈ R} of
X ×X is not separable.

[You may assume standard results on countability.]
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1/I/3C Complex Analysis or Complex Methods

Given that f(z) is an analytic function, show that the mapping w = f(z)

(a) preserves angles between smooth curves intersecting at z if f ′(z) 6= 0;

(b) has Jacobian given by |f ′(z)|2.

1/II/13C Complex Analysis or Complex Methods

By a suitable choice of contour show the following:

(a) ∫ ∞
0

x1/n

1 + x2
dx =

π

2 cos(π/2n)
,

where n > 1,

(b) ∫ ∞
0

x1/2 log x
1 + x2

dx =
π2

2
√

2
.

2/II/14C Complex Analysis or Complex Methods

Let f(z) = 1/(ez − 1). Find the first three terms in the Laurent expansion for f(z)
valid for 0 < |z| < 2π.

Now let n be a positive integer, and define

f1(z) =
1
z

+
n∑
r=1

2z
z2 + 4π2r2

,

f2(z) = f(z)− f1(z) .

Show that the singularities of f2 in {z : |z| < 2(n + 1)π } are all removable. By
expanding f1 as a Laurent series valid for |z| > 2nπ, and f2 as a Taylor series valid
for |z| < 2(n + 1)π, find the coefficients of zj for −1 ≤ j ≤ 1 in the Laurent series for f
valid for 2nπ < |z| < 2(n+ 1)π.

By estimating an appropriate integral around the contour |z| = (2n + 1)π, show
that

∞∑
r=1

1
r2

=
π2

6
.
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3/II/14E Complex Analysis

State and prove Rouché’s theorem, and use it to count the number of zeros of
3z9 + 8z6 + z5 + 2z3 + 1 inside the annulus {z : 1 < |z| < 2}.

Let (pn)∞n=1 be a sequence of polynomials of degree at most d with the property
that pn(z) converges uniformly on compact subsets of C as n → ∞. Prove that there is
a polynomial p of degree at most d such that pn → p uniformly on compact subsets of C.
[If you use any results about uniform convergence of analytic functions, you should prove
them.]

Suppose that p has d distinct roots z1, . . . , zd. Using Rouché’s theorem, or
otherwise, show that for each i there is a sequence (zi,n)∞n=1 such that pn(zi,n) = 0 and
zi,n → zi as n→∞.

4/I/4E Complex Analysis

Suppose that f and g are two functions which are analytic on the whole complex
plane C. Suppose that there is a sequence of distinct points z1, z2, . . . with |zi| 6 1 such
that f(zi) = g(zi). Show that f(z) = g(z) for all z ∈ C. [You may assume any results on
Taylor expansions you need, provided they are clearly stated.]

What happens if the assumption that |zi| 6 1 is dropped?

Part IB 2008



16

3/I/5C Complex Methods

Using the contour integration formula for the inversion of Laplace transforms find
the inverse Laplace transforms of the following functions:

(a)
s

s2 + a2
(a real and non–zero), (b)

1√
s
.

[You may use the fact that
∫∞
−∞ e−bx

2
dx =

√
π/b.]

4/II/15C Complex Methods

Let H be the domain C − {x + iy : x ≤ 0, y = 0} (i.e., C cut along the negative
x-axis). Show, by a suitable choice of branch, that the mapping

z 7→ w = −i log z

maps H onto the strip S = {z = x+ iy,−π < x < π}.

How would a different choice of branch change the result?

Let G be the domain {z ∈ C : |z| < 1, |z + i| >
√

2 }. Find an analytic
transformation that maps G to S, where S is the strip defined above.
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1/II/14D Methods

Write down the Euler–Lagrange equation for the variational problem for y(x) that
extremizes the integral I defined as

I =
∫ x2

x1

f(x, y, y′)dx,

with boundary conditions y(x1) = y1, y(x2) = y2, where y1 and y2 are positive constants
such that y2 > y1, with x2 > x1. Find a first integral of the equation when f is independent
of y, i.e. f = f(x, y′).

A light ray moves in the (x, y) plane from (x1, y1) to (x2, y2) with speed c(x) taking
a time T. Show that the equation of the path that makes T an extremum satisfies

dy

dx
=

c(x)√
k2 − c2(x)

,

where k is a constant and write down an integral relating k, x1, x2, y1 and y2.

When c(x) = ax where a is a constant and k = ax2, show that the path is given by

(y2 − y)2 = x2
2 − x2.

2/I/5D Methods

Describe briefly the method of Lagrange multipliers for finding the stationary values
of a function f(x, y) subject to a constraint g(x, y) = 0.

Use the method to find the largest possible volume of a circular cylinder that has
surface area A (including both ends).

Part IB 2008



18

2/II/15D Methods

(a) Legendre’s equation may be written in the form

d

dx

(
(1− x2)

dy

dx

)
+ λy = 0.

Show that there is a series solution for y of the form

y =
∞∑
k=0

akx
k,

where the ak satisfy the recurrence relation

ak+2

ak
= − (λ− k(k + 1))

(k + 1)(k + 2)
.

Hence deduce that there are solutions for y(x) = Pn(x) that are polynomials of degree
n, provided that λ = n(n + 1). Given that a0 is then chosen so that Pn(1) = 1, find the
explicit form for P2(x).

(b) Laplace’s equation for Φ(r, θ) in spherical polar coordinates (r, θ, φ) may be
written in the axisymmetric case as

∂2Φ
∂r2

+
2
r

∂Φ
∂r

+
1
r2

∂

∂x

(
(1− x2)

∂Φ
∂x

)
= 0,

where x = cos θ.

Write down without proof the general form of the solution obtained by the method
of separation of variables. Use it to find the form of Φ exterior to the sphere r = a that
satisfies the boundary conditions, Φ(a, x) = 1 + x2, and limr→∞ Φ(r, x) = 0.

Part IB 2008



19

3/I/6D Methods

Let L be the operator

Ly =
d2y

dx2
− k2y

on functions y(x) satisfying limx→−∞ y(x) = 0 and limx→∞ y(x) = 0.

Given that the Green’s function G(x; ξ) for L satisfies

LG = δ(x− ξ),

show that a solution of
Ly = S(x),

for a given function S(x), is given by

y(x) =
∫ ∞
−∞

G(x; ξ)S(ξ)dξ.

Indicate why this solution is unique.

Show further that the Green’s function is given by

G(x; ξ) = − 1
2|k|

exp(−|k||x− ξ|).
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3/II/15D Methods

Let λ1 < λ2 < . . . λn . . . and y1(x), y2(x), . . . yn(x) . . . be the eigenvalues and
corresponding eigenfunctions for the Sturm–Liouville system

Lyn = λnw(x)yn,

where

Ly ≡ d

dx

(
−p(x)

dy

dx

)
+ q(x)y,

with p(x) > 0 and w(x) > 0. The boundary conditions on y are that y(0) = y(1) = 0.

Show that two distinct eigenfunctions are orthogonal in the sense that∫ 1

0

wynym dx = δnm

∫ 1

0

wy2
n dx.

Show also that if y has the form

y =
∞∑
n=1

anyn,

with an being independent of x, then∫ 1

0
yLy dx∫ 1

0
wy2 dx

≥ λ1.

Assuming that the eigenfunctions are complete, deduce that a solution of the diffusion
equation,

∂y

∂t
= − 1

w
Ly,

that satisfies the boundary conditions given above is such that

1
2
d

dt

(∫ 1

0

wy2 dx

)
≤ −λ1

∫ 1

0

wy2 dx.

4/I/5A Methods

Find the half-range Fourier cosine series for f(x) = x2, 0 < x < 1. Hence show
that

∞∑
n=1

1
n2

=
π2

6
.
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4/II/16A Methods

Assume F (x) satisfies ∫ ∞
−∞
|F (x)|dx <∞ ,

and that the series

g(τ) =
∞∑

n=−∞
F (2nπ + τ)

converges uniformly in [0 6 τ 6 2π].

If F̃ is the Fourier transform of F , prove that

g(τ) =
1

2π

∞∑
n=−∞

F̃ (n)einτ .

[Hint: prove that g is periodic and express its Fourier expansion coefficients in terms of
F̃ ].

In the case that F (x) = e−|x|, evaluate the sum

∞∑
n=−∞

1
1 + n2

.
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1/II/15A Quantum Mechanics

The radial wavefunction g(r) for the hydrogen atom satisfies the equation

− ~2

2mr2
d

dr

(
r2
dg(r)
dr

)
− e2g(r)

4πε0r
+ ~2 `(`+ 1)

2mr2
g(r) = Eg(r) . (∗)

With reference to the general form for the time-independent Schrödinger equation,
explain the origin of each term. What are the allowed values of `?

The lowest-energy bound-state solution of (∗), for given `, has the form rαe−βr.
Find α and β and the corresponding energy E in terms of `.

A hydrogen atom makes a transition between two such states corresponding to `+1
and `. What is the frequency of the emitted photon?

2/II/16A Quantum Mechanics

Give the physical interpretation of the expression

〈A〉ψ =
∫
ψ(x)∗Âψ(x)dx

for an observable A, where Â is a Hermitian operator and ψ is normalised. By considering
the norm of the state (A+ iλB)ψ for two observables A and B, and real values of λ, show
that

〈A2〉ψ〈B2〉ψ >
1
4
|〈[A,B]〉ψ|2 .

Deduce the uncertainty relation

∆A∆B >
1
2
|〈[A,B]〉ψ| ,

where ∆A is the uncertainty of A.

A particle of mass m moves in one dimension under the influence of potential
1
2mω

2x2. By considering the commutator [x, p], show that the expectation value of the
Hamiltonian satisfies

〈H〉ψ >
1
2

~ω .
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3/I/7A Quantum Mechanics

Write down a formula for the orbital angular momentum operator L̂. Show that
its components satisfy

[Li, Lj ] = i~ εijk Lk .

If L3ψ = 0, show that (L1 ± iL2)ψ are also eigenvectors of L3, and find their eigenvalues.

3/II/16A Quantum Mechanics

What is the probability current for a particle of mass m, wavefunction ψ, moving
in one dimension?

A particle of energy E is incident from x < 0 on a barrier given by

V (x) =

 0 x 6 0
V1 0 < x < a
V0 x > a

where V1 > V0 > 0. What are the conditions satisfied by ψ at x = 0 and x = a? Write
down the form taken by the wavefunction in the regions x 6 0 and x > a distinguishing
between the cases E > V0 and E < V0. For both cases, use your expressions for ψ to
calculate the probability currents in these two regions.

Define the reflection and transmission coefficients, R and T . Using current
conservation, show that the expressions you have derived satisfy R + T = 1. Show that
T = 0 if 0 < E < V0.

4/I/6A Quantum Mechanics

What is meant by a stationary state? What form does the wavefunction take in
such a state? A particle has wavefunction ψ(x, t), such that

ψ(x, 0) =

√
1
2

(χ1(x) + χ2(x)) ,

where χ1 and χ2 are normalised eigenstates of the Hamiltonian with energies E1 and E2.
Write down ψ(x, t) at time t. Show that the expectation value of A at time t is

〈A〉ψ =
1
2

∫ ∞
−∞

(
χ∗1Âχ1 + χ∗2Âχ2

)
dx+Re

(
ei(E1−E2)t/~

∫ ∞
−∞

χ∗1Âχ2 dx

)
.
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1/II/16B Electromagnetism

Suppose that the current density J(r) is constant in time but the charge density
ρ(r, t) is not.

(i) Show that ρ is a linear function of time:

ρ(r, t) = ρ(r, 0) + ρ̇(r, 0)t,

where ρ̇(r, 0) is the time derivative of ρ at time t = 0.

(ii) The magnetic induction due to a current density J(r) can be written as

B(r) =
µ0

4π

∫
J(r′)× (r− r′)
|r− r′|3

dV ′ .

Show that this can also be written as

B(r) =
µ0

4π
∇×

∫
J(r′)
|r− r′|

dV ′. (1)

(iii) Assuming that J vanishes at infinity, show that the curl of the magnetic field
in (1) can be written as

∇×B(r) = µ0J(r) +
µ0

4π
∇
∫
∇′ · J(r′)
|r− r′|

dV ′ . (2)

[You may find useful the identities ∇× (∇×A) = ∇(∇ ·A)−∇2A and also
∇2 (1/|r− r′|) = −4πδ(r− r′).]

(iv) Show that the second term on the right hand side of (2) can be expressed in
terms of the time derivative of the electric field in such a way that B itself obeys Ampère’s
law with Maxwell’s displacement current term, i.e. ∇×B = µ0J + µ0ε0∂E/∂t.

2/I/6B Electromagnetism

Given the electric potential of a dipole

φ(r, θ) =
p cos θ
4πε0r2

,

where p is the magnitude of the dipole moment, calculate the corresponding electric field
and show that it can be written as

E(r) =
1

4πε0
1
r3

[3 (p · êr) êr − p] ,

where êr is the unit vector in the radial direction.
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2/II/17B Electromagnetism

Two perfectly conducting rails are placed on the xy-plane, one coincident with the
x-axis, starting at (0, 0), the other parallel to the first rail a distance ` apart, starting at
(0, `). A resistor R is connected across the rails between (0, 0) and (0, `), and a uniform
magnetic field B = Bêz, where êz is the unit vector along the z-axis and B > 0, fills
the entire region of space. A metal bar of negligible resistance and mass m slides without
friction on the two rails, lying perpendicular to both of them in such a way that it closes
the circuit formed by the rails and the resistor. The bar moves with speed v to the right
such that the area of the loop becomes larger with time.

(i) Calculate the current in the resistor and indicate its direction of flow in a diagram
of the system.

(ii) Show that the magnetic force on the bar is

F = −B
2`2v

R
êx .

(iii) Assume that the bar starts moving with initial speed v0 at time t = 0, and is
then left to slide freely. Using your result from part (ii) and Newton’s laws show that its
velocity at the time t is

v(t) = v0e
−(B2`2/mR)t.

(iv) By calculating the total energy delivered to the resistor, verify that energy is
conserved.
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3/II/17B Electromagnetism

(i) From Maxwell’s equations in vacuum,

∇ ·E = 0 ∇×E = −∂B
∂t

∇ ·B = 0 ∇×B = µ0ε0
∂E
∂t

,

obtain the wave equation for the electric field E. [You may find the following identity
useful: ∇× (∇×A) = ∇(∇ ·A)−∇2A.]

(ii) If the electric and magnetic fields of a monochromatic plane wave in vacuum
are

E(z, t) = E0ei(kz−ωt) and B(z, t) = B0ei(kz−ωt) ,

show that the corresponding electromagnetic waves are transverse (that is, both fields
have no component in the direction of propagation).

(iii) Use Faraday’s law for these fields to show that

B0 =
k

ω
(êz ×E0).

(iv) Explain with symmetry arguments how these results generalise to

E(r, t) = E0ei(k·r−ωt)n̂ and B(r, t) =
1
c
E0ei(k·r−ωt)(k̂× n̂) ,

where n̂ is the polarisation vector, i.e., the unit vector perpendicular to the direction of
motion and along the direction of the electric field, and k̂ is the unit vector in the direction
of propagation of the wave.

(v) Using Maxwell’s equations in vacuum prove that:∮
A

(1/µ0)(E×B) · dA = − ∂

∂t

∫
V

(
ε0E

2

2
+
B2

2µ0

)
dV , (1)

where V is the closed volume and A is the bounding surface. Comment on the differing
time dependencies of the left-hand-side of (1) for the case of (a) linearly-polarized and (b)
circularly-polarized monochromatic plane waves.
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4/I/7B Electromagnetism

The energy stored in a static electric field E is

U =
1
2

∫
ρφ dV ,

where φ is the associated electric potential, E = −∇φ, and ρ is the volume charge density.

(i) Assuming that the energy is calculated over all space and that E vanishes at
infinity, show that the energy can be written as

U =
ε0
2

∫
|E|2dV .

(ii) Find the electric field produced by a spherical shell with total charge Q and
radius R, assuming it to vanish inside the shell. Find the energy stored in the electric
field.
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1/I/4C Special Relativity

In an inertial frame S a photon of energy E is observed to travel at an angle θ
relative to the x-axis. The inertial frame S′ moves relative to S at velocity v in the x-
direction and the x′-axis of S′ is taken parallel to the x-axis of S. Observed in S′, the
photon has energy E′ and travels at an angle θ′ relative to the x′-axis. Show that

E′ =
E(1− β cos θ)√

1− β2
, cos θ′ =

cos θ − β
1− β cos θ

,

where β = v/c.

2/I/7C Special Relativity

A photon of energy E collides with a particle of rest mass m, which is at rest. The
final state consists of a photon and a particle of rest mass M , M > m. Show that the
minimum value of E for which it is possible for this reaction to take place is

Emin =
M2 −m2

2m
c2 .
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4/II/17C Special Relativity

Write down the formulae for the one-dimensional Lorentz transformation (x, t) →
(x′, t′) for frames moving with relative velocity v along the x-direction. Derive the
relativistic formula for the addition of velocities v and u.

A train, of proper length L, travels past a station at velocity v > 0. The origin of
the inertial frame S, with coordinates (x, t), in which the train is stationary, is located at
the mid-point of the train. The origin of the inertial frame S′, with coordinates (x′, t′), in
which the station is stationary, is located at the mid-point of the platform. Coordinates
are chosen such that when the origins coincide then t = t′ = 0.

Observers A and B, stationary in S, are located, respectively, at the front and rear
of the train. Observer C, stationary in S′, is located at the origin of S′. At t′ = 0, C sends
two signals, which both travel at speed u, where v < u ≤ c, one directed towards A and
the other towards B, who receive the signals at respective times tA and tB . C observes
these events to occur, respectively, at times t′A and t′B . At t′ = 0, C also observes that the
two ends of the platform coincide with the positions of A and B.

(a) Draw two space-time diagrams, one for S and the other for S′, showing the
trajectories of the observers and the events that take place.

(b) What is the length of the platform in terms of L? Briefly illustrate your answer
by reference to the space-time diagrams.

(c) Calculate the time differences tB − tA and t′B − t′A.

(d) Setting u = c, use this example to discuss briefly the fact that two events
observed to be simultaneous in one frame need not be observed to be simultaneous in
another.
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1/I/5B Fluid Dynamics

Verify that the two-dimensional flow given in Cartesian coordinates by

u = (ey sinhx,−ey coshx)

satisfies ∇ · u = 0. Find the stream function ψ(x, y). Sketch the streamlines.
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1/II/17B Fluid Dynamics

Two incompressible fluids flow in infinite horizontal streams, the plane of contact
being z = 0, with z positive upwards. The flow is given by

U(r) =
{
U2êx, z > 0;
U1êx, z < 0,

where êx is the unit vector in the positive x direction. The upper fluid has density ρ2 and
pressure p0−gρ2z, the lower has density ρ1 and pressure p0−gρ1z, where p0 is a constant
and g is the acceleration due to gravity.

(i) Consider a perturbation to the flat surface z = 0 of the form

z ≡ ζ(x, y, t) = ζ0e
i(kx+`y)+st .

State the kinematic boundary conditions on the velocity potentials φi that hold on
the interface in the two domains, and show by linearising in ζ that they reduce to

∂φi
∂z

=
∂ζ

∂t
+ Ui

∂ζ

∂x
(z = 0, i = 1, 2) .

(ii) State the dynamic boundary condition on the perturbed interface, and show by
linearising in ζ that it reduces to

ρ1

(
U1
∂φ1

∂x
+
∂φ1

∂t
+ gζ

)
= ρ2

(
U2
∂φ2

∂x
+
∂φ2

∂t
+ gζ

)
(z = 0) .

(iii) Use the velocity potentials

φ1 = U1x+A1e
qzei(kx+`y)+st , φ2 = U2x+A2e

−qzei(kx+`y)+st,

where q =
√
k2 + `2,and the conditions in (i) and (ii) to perform a stability analysis. Show

that the relation between s, k and ` is

s = −ik ρ1U1 + ρ2U2

ρ1 + ρ2
±
[
k2ρ1ρ2(U1 − U2)2

(ρ1 + ρ2)2
− qg(ρ1 − ρ2)

ρ1 + ρ2

]1/2
.

Find the criterion for instability.
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2/I/8B Fluid Dynamics

(i) Show that for a two-dimensional incompressible flow (u(x, y), v(x, y), 0), the
vorticity is given by ω ≡ ωzêz = (0, 0,−∇2ψ) where ψ is the stream function.

(ii) Express the z-component of the vorticity equation
∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u

in terms of the stream function ψ.

3/II/18B Fluid Dynamics

An ideal liquid contained within a closed circular cylinder of radius a rotates about
the axis of the cylinder (assume this axis to be in the vertical z-direction).

(i) Prove that the equation of continuity and the boundary conditions are satisfied
by the velocity v = Ω× r, where Ω = Ωêz is the angular velocity, with êz the unit vector
in the z-direction, which depends only on time, and r is the position vector measured from
a point on the axis of rotation.

(ii) Calculate the angular momentum M = ρ
∫

(r × v)dV per unit length of the
cylinder.

(iii) Suppose the the liquid starts from rest and flows under the action of an external
force per unit mass f = (αx + βy, γx + δy, 0). By taking the curl of the Euler equation,
prove that

dΩ
dt

=
1
2

(γ − β) .

(iv) Find the pressure.

4/II/18B Fluid Dynamics

(i) Starting from Euler’s equation for an incompressible fluid show that for potential
flow with u = ∇φ,

∂φ

∂t
+

1
2
u2 + χ = f(t) ,

where u = |u|, χ = p/ρ+V , the body force per unit mass is −∇V and f(t) is an arbitrary
function of time.

(ii) Hence show that, for the steady flow of a liquid of density ρ through a pipe of
varying cross-section that is subject to a pressure difference ∆p = p1− p2 between its two
ends, the mass flow through the pipe per unit time is given by

m ≡ dM

dt
= S1S2

√
2ρ∆p
S2

1 − S2
2

,

where S1 and S2 are the cross-sectional areas of the two ends.
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1/I/6D Numerical Analysis

Show that if A = LDLT , where L ∈ Rm×m is a lower triangular matrix with all
elements on the main diagonal being unity and D ∈ Rm×m is a diagonal matrix with
positive elements, then A is positive definite. Find L and the corresponding D when

A =

 1 −1 2
−1 3 1

2 1 3

 .

2/II/18D Numerical Analysis

(a) A Householder transformation (reflection) is given by

H = I − 2uuT

‖u‖2
,

where H ∈ Rm×m, u ∈ Rm, and I is the m ×m unit matrix and u is a non-zero vector
which has norm ‖u‖ = (

∑m
i=1 u

2
i )

1/2. Show that H is orthogonal.

(b) Suppose that A ∈ Rm×n, x ∈ Rn and b ∈ Rm with n < m. Show that if x
minimises ‖Ax− b‖2 then it also minimises ‖QAx−Qb‖2, where Q is an arbitrary m×m
orthogonal matrix.

(c) Using Householder reflection, find the x that minimises ‖Ax− b‖2 when

A =


1 2
0 4
0 2
0 4

 b =


1
1
2
−1

 .
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3/II/19D Numerical Analysis

Starting from the Taylor formula for f(x) ∈ Ck+1[a, b] with an integral remainder
term, show that the error of an approximant L(f) can be written in the form (Peano
kernel theorem)

L(f) =
1
k!

∫ b

a

K(θ)f (k+1)(θ)dθ,

when L(f), which is identically zero if f(x) is a polynomial of degree k, satisfies conditions
that you should specify. Give an expression for K(θ).

Hence determine the minimum value of c in the inequality

|L(f)| ≤ c‖f ′′′‖∞ ,

when
L(f) = f ′(1)− 1

2
(f(2)− f(0)) for f(x) ∈ C3[0, 2].

4/I/8D Numerical Analysis

Show that the Chebyshev polynomials, Tn(x) = cos(n cos−1 x) , n = 0, 1, 2, . . .
obey the orthogonality relation∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx =
π

2
δn,m(1 + δn,0).

State briefly how an optimal choice of the parameters ak, xk, k = 1, 2 . . . n is made
in the Gaussian quadrature formula∫ 1

−1

f(x)√
1− x2

dx ∼
n∑
k=1

akf(xk).

Find these parameters for the case n = 3.
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1/I/7H Statistics

A Bayesian statistician observes a random sample X1, . . . , Xn drawn from a
N(µ, τ−1) distribution. He has a prior density for the unknown parameters µ, τ of the
form

π0(µ, τ) ∝ τ α0−1 exp (− 1
2 K0τ (µ− µ0)2 − β0τ)

√
τ ,

where α0 , β0 , µ0 and K0 are constants which he chooses. Show that after observing
X1, . . . , Xn his posterior density πn(µ, τ) is again of the form

πn(µ, τ) ∝ τ αn−1 exp (− 1
2 Knτ (µ− µn)2 − βnτ)

√
τ ,

where you should find explicitly the form of αn , βn , µn and Kn .

1/II/18H Statistics

Suppose that X1, . . . , Xn is a sample of size n with common N(µX , 1) distribution,
and Y1, . . . , Yn is an independent sample of size n from a N(µY , 1) distribution.

(i) Find (with careful justification) the form of the size-α likelihood–ratio test of the
null hypothesis H0 : µY = 0 against alternative H1 : (µX , µY ) unrestricted.

(ii) Find the form of the size-α likelihood–ratio test of the hypothesis

H0 : µX > A,µY = 0 ,

against H1 : (µX , µY ) unrestricted, where A is a given constant.

Compare the critical regions you obtain in (i) and (ii) and comment briefly.
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2/II/19H Statistics

Suppose that the joint distribution of random variables X,Y taking values in
Z+ = {0, 1, 2, . . . } is given by the joint probability generating function

ϕ(s, t) ≡ E [sXtY ] =
1− α− β

1− αs− βt
,

where the unknown parameters α and β are positive, and satisfy the inequality α+β < 1.
Find E(X). Prove that the probability mass function of (X,Y ) is

f(x, y |α, β) = (1− α− β)
(
x+ y

x

)
αxβy (x, y ∈ Z+) ,

and prove that the maximum-likelihood estimators of α and β based on a sample of size
n drawn from the distribution are

α̂ =
X

1 +X + Y
, β̂ =

Y

1 +X + Y
,

where X (respectively, Y ) is the sample mean of X1, . . . , Xn (respectively, Y1, . . . , Yn).

By considering α̂ + β̂ or otherwise, prove that the maximum-likelihood estimator
is biased. Stating clearly any results to which you appeal, prove that as n → ∞, α̂ → α,
making clear the sense in which this convergence happens.

3/I/8H Statistics

If X1, . . . , Xn is a sample from a density f(·|θ) with θ unknown, what is a 95%
confidence set for θ?

In the case where the Xi are independent N(µ, σ2) random variables with σ2 known,
µ unknown, find (in terms of σ2) how large the size n of the sample must be in order for
there to exist a 95% confidence interval for µ of length no more than some given ε > 0 .

[Hint: If Z ∼ N(0, 1) then P (Z > 1.960) = 0.025 .]
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4/II/19H Statistics

(i) Consider the linear model

Yi = α+ βxi + εi ,

where observations Yi, i = 1, . . . , n, depend on known explanatory variables xi,
i = 1, . . . , n, and independent N(0, σ2) random variables εi, i = 1, . . . , n .

Derive the maximum-likelihood estimators of α , β and σ2.

Stating clearly any results you require about the distribution of the maximum-likelihood
estimators of α , β and σ2, explain how to construct a test of the hypothesis that α = 0
against an unrestricted alternative.

(ii) A simple ballistic theory predicts that the range of a gun fired at angle of
elevation θ should be given by the formula

Y =
V 2

g
sin 2θ ,

where V is the muzzle velocity, and g is the gravitational acceleration. Shells are fired at
9 different elevations, and the ranges observed are as follows:

θ (degrees) 5 15 25 35 45 55 65 75 85
sin 2θ 0.1736 0.5 0.7660 0.9397 1 0.9397 0.7660 0.5 0.1736
Y (m) 4322 11898 17485 20664 21296 19491 15572 10027 3458

The model
Yi = α+ β sin 2θi + εi (∗)

is proposed. Using the theory of part (i) above, find expressions for the maximum-
likelihood estimators of α and β.

The t-test of the null hypothesis that α = 0 against an unrestricted alternative
does not reject the null hypothesis. Would you be willing to accept the model (∗)? Briefly
explain your answer.

[You may need the following summary statistics of the data. If xi = sin 2θi, then
x̄ ≡ n−1

∑
xi = 0.63986, Ȳ = 13802, Sxx ≡

∑
(xi − x̄)2 = 0.81517, Sxy =

∑
Yi(xi − x̄) =

17186. ]
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1/I/8H Optimization

State the Lagrangian Sufficiency Theorem for the maximization over x of f(x)
subject to the constraint g(x) = b .

For each p > 0 , solve

max
d∑
i=1

xpi subject to
d∑
i=1

xi = 1, xi > 0 .

2/I/9H Optimization

Goods from three warehouses have to be delivered to five shops, the cost of
transporting one unit of good from warehouse i to shop j being cij , where

C =

 2 3 6 6 4
7 6 1 1 5
3 6 6 2 1

 .

The requirements of the five shops are respectively 9, 6, 12, 5 and 10 units of the good,
and each warehouse holds a stock of 15 units. Find a minimal-cost allocation of goods
from warehouses to shops and its associated cost.

3/II/20H Optimization

Use the simplex algorithm to solve the problem

max x1 + 2x2 − 6x3

subject to x1, x2 > 0, |x3| 6 5, and

x1 + x2 + x3 6 7 ,
2x2 + x3 > 1 .
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4/II/20H Optimization

(i) Suppose that f : Rn → R, and g : Rn → Rm are continuously differentiable.
Suppose that the problem

max f(x) subject to g(x) = b

is solved by a unique x̄ = x̄(b) for each b ∈ Rm, and that there exists a unique λ(b) ∈ Rm
such that

ϕ(b) ≡ f(x̄(b)) = sup
x

{
f(x) + λ(b)T (b− g(x))

}
.

Assuming that x̄ and λ are continuously differentiable, prove that

∂ϕ

∂bi
(b) = λi(b) . (∗)

(ii) The output of a firm is a function of the capital K deployed, and the amount
L of labour employed, given by

f(K,L) = KαLβ ,

where α, β ∈ (0, 1). The firm’s manager has to optimize the output subject to the budget
constraint

K + wL = b ,

where w > 0 is the wage rate and b > 0 is the available budget. By casting the problem
in Lagrangian form, find the optimal solution and verify the relation (∗).
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1/II/19H Markov Chains

The village green is ringed by a fence withN fenceposts, labelled 0, 1, . . . , N−1. The
village idiot is given a pot of paint and a brush, and started at post 0 with instructions to
paint all the posts. He paints post 0, and then chooses one of the two nearest neighbours, 1
or N−1 , with equal probability, moving to the chosen post and painting it. After painting
a post, he chooses with equal probability one of the two nearest neighbours, moves there
and paints it (regardless of whether it is already painted). Find the distribution of the
last post unpainted.

2/II/20H Markov Chains

A Markov chain with state–space I = Z+ has non-zero transition probabilities
p00 = q0 and

pi,i+1 = pi , pi+1,i = qi+1 (i ∈ I) .

Prove that this chain is recurrent if and only if

∑
n>1

n∏
r=1

qr
pr

= ∞ .

Prove that this chain is positive-recurrent if and only if

∑
n>1

n∏
r=1

pr−1

qr
< ∞ .

3/I/9H Markov Chains

What does it mean to say that a Markov chain is recurrent?

Stating clearly any general results to which you appeal, prove that the symmetric
simple random walk on Z is recurrent.
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4/I/9H Markov Chains

A Markov chain on the state–space I = {1, 2, 3, 4, 5, 6, 7} has transition matrix

P =



0 1/2 1/4 0 1/4 0 0
1/3 0 1/2 0 0 1/6 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 1/2 0 1/2


.

Classify the chain into its communicating classes, deciding for each what the period
is, and whether the class is recurrent.

For each i, j ∈ I say whether the limit limn→∞ p
(n)
ij exists, and evaluate the limit

when it does exist.
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