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SECTION I

1G Groups, Rings and Modules

Let G be the abelian group generated by elements a, b, c, d subject to the relations

4a− 2b+ 2c+ 12d = 0, −2b+ 2c = 0, 2b+ 2c = 0, 8a+ 4c+ 24d = 0 .

Express G as a product of cyclic groups, and find the number of elements of G of order 2.

2G Geometry

A smooth surface in R3 has parametrization

σ(u, v) =
(
u− u3

3
+ uv2, v − v3

3
+ u2v, u2 − v2

)
.

Show that a unit normal vector at the point σ(u, v) is(
−2u

1 + u2 + v2
,

2v
1 + u2 + v2

,
1− u2 − v2

1 + u2 + v2

)

and that the curvature is
−4

(1 + u2 + v2)4
.

3F Analysis II

Explain what it means for a function f(x, y) of two variables to be differentiable
at a point (x0, y0). If f is differentiable at (x0, y0), show that for any α the function gα
defined by

gα(t) = f(x0 + t cos α, y0 + t sin α)

is differentiable at t = 0, and find its derivative in terms of the partial derivatives of f at
(x0, y0).

Consider the function f defined by

f(x, y) = (x2y + xy2)/(x2 + y2) ((x, y) 6= (0, 0))
= 0 ((x, y) = (0, 0)).

Is f differentiable at (0, 0)? Justify your answer.
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4F Metric and Topological Spaces

Explain what it means for a topological space to be connected.

Are the following subspaces of the unit square [0, 1]× [0, 1] connected? Justify your
answers.

(a) {(x, y) : x 6= 0, y 6= 0, and x/y ∈ Q} .

(b) {(x, y) : (x = 0) or (x 6= 0 and y ∈ Q)} .

5C Complex Methods

Using the contour integration formula for the inversion of Laplace transforms find
the inverse Laplace transforms of the following functions:

(a)
s

s2 + a2
(a real and non–zero), (b)

1√
s
.

[You may use the fact that
∫∞
−∞ e−bx

2
dx =

√
π/b.]

6D Methods

Let L be the operator

Ly =
d2y

dx2
− k2y

on functions y(x) satisfying limx→−∞ y(x) = 0 and limx→∞ y(x) = 0.

Given that the Green’s function G(x; ξ) for L satisfies

LG = δ(x− ξ),

show that a solution of
Ly = S(x),

for a given function S(x), is given by

y(x) =
∫ ∞
−∞

G(x; ξ)S(ξ)dξ.

Indicate why this solution is unique.

Show further that the Green’s function is given by

G(x; ξ) = − 1
2|k|

exp(−|k||x− ξ|).
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7A Quantum Mechanics

Write down a formula for the orbital angular momentum operator L̂. Show that
its components satisfy

[Li, Lj ] = i~ εijk Lk .

If L3ψ = 0, show that (L1 ± iL2)ψ are also eigenvectors of L3, and find their eigenvalues.

8H Statistics

If X1, . . . , Xn is a sample from a density f(·|θ) with θ unknown, what is a 95%
confidence set for θ?

In the case where the Xi are independent N(µ, σ2) random variables with σ2 known,
µ unknown, find (in terms of σ2) how large the size n of the sample must be in order for
there to exist a 95% confidence interval for µ of length no more than some given ε > 0 .

[Hint: If Z ∼ N(0, 1) then P (Z > 1.960) = 0.025 .]

9H Markov Chains

What does it mean to say that a Markov chain is recurrent?

Stating clearly any general results to which you appeal, prove that the symmetric
simple random walk on Z is recurrent.
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SECTION II

10E Linear Algebra

Let k = R or C. What is meant by a quadratic form q : kn → k? Show that
there is a basis {v1, . . . , vn} for kn such that, writing x = x1v1 + . . . + xnvn, we have
q(x) = a1x

2
1 + . . .+ anx

2
n for some scalars a1, . . . , an ∈ {−1, 0, 1}.

Suppose that k = R. Define the rank and signature of q and compute these
quantities for the form q : R3 → R given by q(x) = −3x2

1 + x2
2 + 2x1x2 − 2x1x3 + 2x2x3.

Suppose now that k = C and that q1, . . . , qd : Cn → C are quadratic forms. If
n > 2d, show that there is some nonzero x ∈ Cn such that q1(x) = . . . = qd(x) = 0.

11G Groups, Rings and Modules

What is a Euclidean domain? Show that a Euclidean domain is a principal ideal
domain.

Show that Z[
√
−7] is not a Euclidean domain (for any choice of norm), but that

the ring

Z
[1 +

√
−7

2

]
is Euclidean for the norm function N(z) = zz̄.
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12G Geometry

Let D be the unit disc model of the hyperbolic plane, with metric

4 |dζ|2

(1− |ζ|2)2
.

(i) Show that the group of Möbius transformations mapping D to itself is the group
of transformations

ζ 7→ ω
ζ − λ
λ̄ζ − 1

,

where |λ| < 1 and |ω| = 1.

(ii) Assuming that the transformations in (i) are isometries of D, show that any
hyperbolic circle in D is a Euclidean circle.

(iii) Let P and Q be points on the unit circle with ∠POQ = 2α. Show that the
hyperbolic distance from O to the hyperbolic line PQ is given by

2 tanh−1

(
1− sinα

cosα

)
.

(iv) Deduce that if a > 2 tanh−1(2−
√

3) then no hyperbolic open disc of radius a
is contained in a hyperbolic triangle.

13F Analysis II

Let f : R2 → R be a function, and (x0, y0) a point of R2. Prove that if the partial
derivatives of f exist in some open disc around (x0, y0) and are continuous at (x0, y0),
then f is differentiable at (x0, y0).

Now let X denote the vector space of all (n× n) real matrices, and let f : X → R
be the function assigning to each matrix its determinant. Show that f is differentiable
at the identity matrix I, and that Df |I is the linear map H 7→ tr H. Deduce
that f is differentiable at any invertible matrix A, and that Df |A is the linear map
H 7→ detA tr (A−1H).

Show also that if K is a matrix with ‖K‖ < 1, then (I +K) is invertible. Deduce
that f is twice differentiable at I, and find D2f |I as a bilinear map X ×X → R.

[You may assume that the norm ‖ − ‖ on X is complete, and that it satisfies the
inequality ‖AB‖ 6 ‖A‖.‖B‖ for any two matrices A and B.]
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14E Complex Analysis

State and prove Rouché’s theorem, and use it to count the number of zeros of
3z9 + 8z6 + z5 + 2z3 + 1 inside the annulus {z : 1 < |z| < 2}.

Let (pn)∞n=1 be a sequence of polynomials of degree at most d with the property
that pn(z) converges uniformly on compact subsets of C as n → ∞. Prove that there is
a polynomial p of degree at most d such that pn → p uniformly on compact subsets of C.
[If you use any results about uniform convergence of analytic functions, you should prove
them.]

Suppose that p has d distinct roots z1, . . . , zd. Using Rouché’s theorem, or
otherwise, show that for each i there is a sequence (zi,n)∞n=1 such that pn(zi,n) = 0 and
zi,n → zi as n→∞.
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15D Methods

Let λ1 < λ2 < . . . λn . . . and y1(x), y2(x), . . . yn(x) . . . be the eigenvalues and
corresponding eigenfunctions for the Sturm–Liouville system

Lyn = λnw(x)yn,

where

Ly ≡ d

dx

(
−p(x)

dy

dx

)
+ q(x)y,

with p(x) > 0 and w(x) > 0. The boundary conditions on y are that y(0) = y(1) = 0.

Show that two distinct eigenfunctions are orthogonal in the sense that∫ 1

0

wynym dx = δnm

∫ 1

0

wy2
n dx.

Show also that if y has the form

y =
∞∑
n=1

anyn,

with an being independent of x, then∫ 1

0
yLy dx∫ 1

0
wy2 dx

≥ λ1.

Assuming that the eigenfunctions are complete, deduce that a solution of the diffusion
equation,

∂y

∂t
= − 1

w
Ly,

that satisfies the boundary conditions given above is such that

1
2
d

dt

(∫ 1

0

wy2 dx

)
≤ −λ1

∫ 1

0

wy2 dx.
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16A Quantum Mechanics

What is the probability current for a particle of mass m, wavefunction ψ, moving
in one dimension?

A particle of energy E is incident from x < 0 on a barrier given by

V (x) =

 0 x 6 0
V1 0 < x < a
V0 x > a

where V1 > V0 > 0. What are the conditions satisfied by ψ at x = 0 and x = a? Write
down the form taken by the wavefunction in the regions x 6 0 and x > a distinguishing
between the cases E > V0 and E < V0. For both cases, use your expressions for ψ to
calculate the probability currents in these two regions.

Define the reflection and transmission coefficients, R and T . Using current
conservation, show that the expressions you have derived satisfy R + T = 1. Show that
T = 0 if 0 < E < V0.
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17B Electromagnetism

(i) From Maxwell’s equations in vacuum,

∇ ·E = 0 ∇×E = −∂B
∂t

∇ ·B = 0 ∇×B = µ0ε0
∂E
∂t

,

obtain the wave equation for the electric field E. [You may find the following identity
useful: ∇× (∇×A) = ∇(∇ ·A)−∇2A.]

(ii) If the electric and magnetic fields of a monochromatic plane wave in vacuum
are

E(z, t) = E0ei(kz−ωt) and B(z, t) = B0ei(kz−ωt) ,

show that the corresponding electromagnetic waves are transverse (that is, both fields
have no component in the direction of propagation).

(iii) Use Faraday’s law for these fields to show that

B0 =
k

ω
(êz ×E0).

(iv) Explain with symmetry arguments how these results generalise to

E(r, t) = E0ei(k·r−ωt)n̂ and B(r, t) =
1
c
E0ei(k·r−ωt)(k̂× n̂) ,

where n̂ is the polarisation vector, i.e., the unit vector perpendicular to the direction of
motion and along the direction of the electric field, and k̂ is the unit vector in the direction
of propagation of the wave.

(v) Using Maxwell’s equations in vacuum prove that:∮
A

(1/µ0)(E×B) · dA = − ∂

∂t

∫
V

(
ε0E

2

2
+
B2

2µ0

)
dV , (1)

where V is the closed volume and A is the bounding surface. Comment on the differing
time dependencies of the left-hand-side of (1) for the case of (a) linearly-polarized and (b)
circularly-polarized monochromatic plane waves.
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18B Fluid Dynamics

An ideal liquid contained within a closed circular cylinder of radius a rotates about
the axis of the cylinder (assume this axis to be in the vertical z-direction).

(i) Prove that the equation of continuity and the boundary conditions are satisfied
by the velocity v = Ω× r, where Ω = Ωêz is the angular velocity, with êz the unit vector
in the z-direction, which depends only on time, and r is the position vector measured from
a point on the axis of rotation.

(ii) Calculate the angular momentum M = ρ
∫

(r × v)dV per unit length of the
cylinder.

(iii) Suppose the the liquid starts from rest and flows under the action of an external
force per unit mass f = (αx + βy, γx + δy, 0). By taking the curl of the Euler equation,
prove that

dΩ
dt

=
1
2

(γ − β) .

(iv) Find the pressure.

19D Numerical Analysis

Starting from the Taylor formula for f(x) ∈ Ck+1[a, b] with an integral remainder
term, show that the error of an approximant L(f) can be written in the form (Peano
kernel theorem)

L(f) =
1
k!

∫ b

a

K(θ)f (k+1)(θ)dθ,

when L(f), which is identically zero if f(x) is a polynomial of degree k, satisfies conditions
that you should specify. Give an expression for K(θ).

Hence determine the minimum value of c in the inequality

|L(f)| ≤ c‖f ′′′‖∞ ,

when
L(f) = f ′(1)− 1

2
(f(2)− f(0)) for f(x) ∈ C3[0, 2].

20H Optimization

Use the simplex algorithm to solve the problem

max x1 + 2x2 − 6x3

subject to x1, x2 > 0, |x3| 6 5, and

x1 + x2 + x3 6 7 ,
2x2 + x3 > 1 .

END OF PAPER
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