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SECTION I

1E Linear Algebra

Suppose that V and W are finite-dimensional vector spaces over R. What does it
mean to say that ψ : V →W is a linear map? State the rank-nullity formula. Using it, or
otherwise, prove that a linear map ψ : V → V is surjective if, and only if, it is injective.

Suppose that ψ : V → V is a linear map which has a right inverse, that is to say
there is a linear map φ : V → V such that ψφ = idV , the identity map. Show that
φψ = idV .

Suppose that A and B are two n × n matrices over R such that AB = I. Prove
that BA = I.

2G Groups, Rings and Modules

What does it means to say that a complex number α is algebraic over Q? Define
the minimal polynomial of α.

Suppose that α satisfies a nonconstant polynomial f ∈ Z[X] which is irreducible
over Z. Show that there is an isomorphism Z[X]/(f) ∼= Z[α].

[You may assume standard results about unique factorisation, including Gauss’s
lemma.]

3F Analysis II

Explain what is meant by the statement that a sequence (fn) of functions defined
on an interval [a, b] converges uniformly to a function f . If (fn) converges uniformly to f ,
and each fn is continuous on [a, b], prove that f is continuous on [a, b].

Now suppose additionally that (xn) is a sequence of points of [a, b] converging to a
limit x. Prove that fn(xn)→ f(x).

4F Metric and Topological Spaces

Stating carefully any results on compactness which you use, show that if X is a
compact space, Y is a Hausdorff space and f : X → Y is bijective and continuous, then f
is a homeomorphism.

Hence or otherwise show that the unit circle S = {(x, y) ∈ R2 : x2 + y2 = 1} is
homeomorphic to the quotient space [0, 1]/ ∼, where ∼ is the equivalence relation defined
by

x ∼ y ⇔ either x = y or {x, y} = {0, 1} .
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5D Methods

Describe briefly the method of Lagrange multipliers for finding the stationary values
of a function f(x, y) subject to a constraint g(x, y) = 0.

Use the method to find the largest possible volume of a circular cylinder that has
surface area A (including both ends).

6B Electromagnetism

Given the electric potential of a dipole

φ(r, θ) =
p cos θ
4πε0r2

,

where p is the magnitude of the dipole moment, calculate the corresponding electric field
and show that it can be written as

E(r) =
1

4πε0
1
r3

[3 (p · êr) êr − p] ,

where êr is the unit vector in the radial direction.

7C Special Relativity

A photon of energy E collides with a particle of rest mass m, which is at rest. The
final state consists of a photon and a particle of rest mass M , M > m. Show that the
minimum value of E for which it is possible for this reaction to take place is

Emin =
M2 −m2

2m
c2 .

8B Fluid Dynamics

(i) Show that for a two-dimensional incompressible flow (u(x, y), v(x, y), 0), the
vorticity is given by ω ≡ ωzêz = (0, 0,−∇2ψ) where ψ is the stream function.

(ii) Express the z-component of the vorticity equation

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u

in terms of the stream function ψ.
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9H Optimization

Goods from three warehouses have to be delivered to five shops, the cost of
transporting one unit of good from warehouse i to shop j being cij , where

C =

 2 3 6 6 4
7 6 1 1 5
3 6 6 2 1

 .

The requirements of the five shops are respectively 9, 6, 12, 5 and 10 units of the good,
and each warehouse holds a stock of 15 units. Find a minimal-cost allocation of goods
from warehouses to shops and its associated cost.
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SECTION II

10E Linear Algebra

Define the determinant det(A) of an n × n square matrix A over the complex
numbers. If A and B are two such matrices, show that det(AB) = det(A) det(B).

Write pM (λ) = det(M − λI) for the characteristic polynomial of a matrix M . Let
A,B,C be n × n matrices and suppose that C is nonsingular. Show that pBC = pCB .
Taking C = A+ tI for appropriate values of t, or otherwise, deduce that pBA = pAB .

Show that if pA = pB then tr(A) = tr(B). Which of the following statements is
true for all n× n matrices A,B,C? Justify your answers.

(i) pABC = pACB ;

(ii) pABC = pBCA.

11G Groups, Rings and Modules

Let F be a field. Prove that every ideal of the ring F [X1, . . . , Xn] is finitely
generated.

Consider the set

R =
{
p(X,Y ) =

∑
cijX

iY j ∈ F [X,Y ]
∣∣∣ c0j = cj0 = 0 whenever j > 0

}
.

Show that R is a subring of F [X,Y ] which is not Noetherian.

12G Geometry

Show that the area of a spherical triangle with angles α, β, γ is α + β + γ − π.
Hence derive the formula for the area of a convex spherical n-gon.

Deduce Euler’s formula F − E + V = 2 for a decomposition of a sphere into F
convex polygons with a total of E edges and V vertices.

A sphere is decomposed into convex polygons, comprising m quadrilaterals, n
pentagons and p hexagons, in such a way that at each vertex precisely three edges meet.
Show that there are at most 7 possibilities for the pair (m,n), and that at least 3 of these
do occur.
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13F Analysis II

Let (un(x) : n = 0, 1, 2, . . .) be a sequence of real-valued functions defined on a
subset E of R. Suppose that for all n and all x ∈ E we have |un(x)| 6 Mn, where∑∞
n=0Mn converges. Prove that

∑∞
n=0 un(x) converges uniformly on E.

Now let E = R \ Z, and consider the series
∑∞
n=0 un(x), where u0(x) = 1/x2 and

un(x) = 1/(x− n)2 + 1/(x+ n)2

for n > 0. Show that the series converges uniformly on ER = {x ∈ E : |x| < R} for any
real number R. Deduce that f(x) =

∑∞
n=0 un(x) is a continuous function on E. Does the

series converge uniformly on E? Justify your answer.

14C Complex Analysis or Complex Methods

Let f(z) = 1/(ez − 1). Find the first three terms in the Laurent expansion for f(z)
valid for 0 < |z| < 2π.

Now let n be a positive integer, and define

f1(z) =
1
z

+
n∑
r=1

2z
z2 + 4π2r2

,

f2(z) = f(z)− f1(z) .

Show that the singularities of f2 in {z : |z| < 2(n + 1)π } are all removable. By
expanding f1 as a Laurent series valid for |z| > 2nπ, and f2 as a Taylor series valid
for |z| < 2(n + 1)π, find the coefficients of zj for −1 ≤ j ≤ 1 in the Laurent series for f
valid for 2nπ < |z| < 2(n+ 1)π.

By estimating an appropriate integral around the contour |z| = (2n + 1)π, show
that

∞∑
r=1

1
r2

=
π2

6
.
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15D Methods

(a) Legendre’s equation may be written in the form

d

dx

(
(1− x2)

dy

dx

)
+ λy = 0.

Show that there is a series solution for y of the form

y =
∞∑
k=0

akx
k,

where the ak satisfy the recurrence relation

ak+2

ak
= − (λ− k(k + 1))

(k + 1)(k + 2)
.

Hence deduce that there are solutions for y(x) = Pn(x) that are polynomials of degree
n, provided that λ = n(n + 1). Given that a0 is then chosen so that Pn(1) = 1, find the
explicit form for P2(x).

(b) Laplace’s equation for Φ(r, θ) in spherical polar coordinates (r, θ, φ) may be
written in the axisymmetric case as

∂2Φ
∂r2

+
2
r

∂Φ
∂r

+
1
r2

∂

∂x

(
(1− x2)

∂Φ
∂x

)
= 0,

where x = cos θ.

Write down without proof the general form of the solution obtained by the method
of separation of variables. Use it to find the form of Φ exterior to the sphere r = a that
satisfies the boundary conditions, Φ(a, x) = 1 + x2, and limr→∞ Φ(r, x) = 0.
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16A Quantum Mechanics

Give the physical interpretation of the expression

〈A〉ψ =
∫
ψ(x)∗Âψ(x)dx

for an observable A, where Â is a Hermitian operator and ψ is normalised. By considering
the norm of the state (A+ iλB)ψ for two observables A and B, and real values of λ, show
that

〈A2〉ψ〈B2〉ψ >
1
4
|〈[A,B]〉ψ|2 .

Deduce the uncertainty relation

∆A∆B >
1
2
|〈[A,B]〉ψ| ,

where ∆A is the uncertainty of A.

A particle of mass m moves in one dimension under the influence of potential
1
2mω

2x2. By considering the commutator [x, p], show that the expectation value of the
Hamiltonian satisfies

〈H〉ψ >
1
2

~ω .
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17B Electromagnetism

Two perfectly conducting rails are placed on the xy-plane, one coincident with the
x-axis, starting at (0, 0), the other parallel to the first rail a distance ` apart, starting at
(0, `). A resistor R is connected across the rails between (0, 0) and (0, `), and a uniform
magnetic field B = Bêz, where êz is the unit vector along the z-axis and B > 0, fills
the entire region of space. A metal bar of negligible resistance and mass m slides without
friction on the two rails, lying perpendicular to both of them in such a way that it closes
the circuit formed by the rails and the resistor. The bar moves with speed v to the right
such that the area of the loop becomes larger with time.

(i) Calculate the current in the resistor and indicate its direction of flow in a diagram
of the system.

(ii) Show that the magnetic force on the bar is

F = −B
2`2v

R
êx .

(iii) Assume that the bar starts moving with initial speed v0 at time t = 0, and is
then left to slide freely. Using your result from part (ii) and Newton’s laws show that its
velocity at the time t is

v(t) = v0e
−(B2`2/mR)t.

(iv) By calculating the total energy delivered to the resistor, verify that energy is
conserved.
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18D Numerical Analysis

(a) A Householder transformation (reflection) is given by

H = I − 2uuT

‖u‖2
,

where H ∈ Rm×m, u ∈ Rm, and I is the m ×m unit matrix and u is a non-zero vector
which has norm ‖u‖ = (

∑m
i=1 u

2
i )

1/2. Show that H is orthogonal.

(b) Suppose that A ∈ Rm×n, x ∈ Rn and b ∈ Rm with n < m. Show that if x
minimises ‖Ax− b‖2 then it also minimises ‖QAx−Qb‖2, where Q is an arbitrary m×m
orthogonal matrix.

(c) Using Householder reflection, find the x that minimises ‖Ax− b‖2 when

A =


1 2
0 4
0 2
0 4

 b =


1
1
2
−1

 .

19H Statistics

Suppose that the joint distribution of random variables X,Y taking values in
Z+ = {0, 1, 2, . . . } is given by the joint probability generating function

ϕ(s, t) ≡ E [sXtY ] =
1− α− β

1− αs− βt
,

where the unknown parameters α and β are positive, and satisfy the inequality α+β < 1.
Find E(X). Prove that the probability mass function of (X,Y ) is

f(x, y |α, β) = (1− α− β)
(
x+ y

x

)
αxβy (x, y ∈ Z+) ,

and prove that the maximum-likelihood estimators of α and β based on a sample of size
n drawn from the distribution are

α̂ =
X

1 +X + Y
, β̂ =

Y

1 +X + Y
,

where X (respectively, Y ) is the sample mean of X1, . . . , Xn (respectively, Y1, . . . , Yn).

By considering α̂ + β̂ or otherwise, prove that the maximum-likelihood estimator
is biased. Stating clearly any results to which you appeal, prove that as n → ∞, α̂ → α,
making clear the sense in which this convergence happens.
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20H Markov Chains

A Markov chain with state–space I = Z+ has non-zero transition probabilities
p00 = q0 and

pi,i+1 = pi , pi+1,i = qi+1 (i ∈ I) .

Prove that this chain is recurrent if and only if

∑
n>1

n∏
r=1

qr
pr

= ∞ .

Prove that this chain is positive-recurrent if and only if

∑
n>1

n∏
r=1

pr−1

qr
< ∞ .

END OF PAPER
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