
MATHEMATICAL TRIPOS Part IB 2007

List of Courses

Linear Algebra
Groups, Rings and Modules
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Metric and Topological Spaces
Complex Analysis or Complex Methods
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Complex Methods
Methods
Quantum Mechanics
Electromagnetism
Special Relativity
Fluid Dynamics
Numerical Analysis
Statistics
Optimization
Markov Chains
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1/I/1G Linear Algebra

Suppose that {e1, . . . , e3} is a basis of the complex vector space C3 and that
A : C3 → C3 is the linear operator defined by A(e1) = e2, A(e2) = e3, and A(e3) = e1.

By considering the action of A on column vectors of the form (1, ξ, ξ2)T , where
ξ3 = 1, or otherwise, find the diagonalization of A and its characteristic polynomial.

1/II/9G Linear Algebra

State and prove Sylvester’s law of inertia for a real quadratic form.

[You may assume that for each real symmetric matrix A there is an orthogonal matrix U ,
such that U−1AU is diagonal.]

Suppose that V is a real vector space of even dimension 2m, that Q is a non-singular
quadratic form on V and that U is an m-dimensional subspace of V on which Q vanishes.
What is the signature of Q?

2/I/1G Linear Algebra

Suppose that S, T are endomorphisms of the 3-dimensional complex vector space
C3 and that the eigenvalues of each of them are 1, 2, 3. What are their characteristic and
minimal polynomials? Are they conjugate?

2/II/10G Linear Algebra

Suppose that P is the complex vector space of complex polynomials in one
variable, z.

(i) Show that the form 〈 , 〉 defined by

〈f, g〉 =
1
2π

∫ 2π

0

f
(
eiθ

)
· g (eiθ) dθ

is a positive definite Hermitian form on P .

(ii) Find an orthonormal basis of P for this form, in terms of the powers of z.

(iii) Generalize this construction to complex vector spaces of complex polynomials
in any finite number of variables.
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3/II/10G Linear Algebra

(i) Define the terms row-rank, column-rank and rank of a matrix, and state a relation
between them.

(ii) Fix positive integers m, n, p with m,n > p. Suppose that A is an m× p matrix
and B a p× n matrix. State and prove the best possible upper bound on the rank of the
product AB.

4/I/1G Linear Algebra

Suppose that α : V → W is a linear map of finite-dimensional complex vector
spaces. What is the dual map α∗ of the dual vector spaces?

Suppose that we choose bases of V,W and take the corresponding dual bases of the
dual vector spaces. What is the relation between the matrices that represent α and α∗

with respect to these bases? Justify your answer.

4/II/10G Linear Algebra

(i) State and prove the Cayley–Hamilton theorem for square complex matrices.

(ii) A square matrix A is of order n for a strictly positive integer n if An = I and
no smaller positive power of A is equal to I.

Determine the order of a complex 2× 2 matrix A of trace zero and determinant 1.

Part IB 2007



4

1/II/10G Groups, Rings and Modules

(i) State a structure theorem for finitely generated abelian groups.

(ii) If K is a field and f a polynomial of degree n in one variable over K, what is
the maximal number of zeroes of f? Justify your answer in terms of unique factorization
in some polynomial ring, or otherwise.

(iii) Show that any finite subgroup of the multiplicative group of non-zero elements
of a field is cyclic. Is this true if the subgroup is allowed to be infinite?

2/I/2G Groups, Rings and Modules

Define the term Euclidean domain.

Show that the ring of integers Z is a Euclidean domain.

2/II/11G Groups, Rings and Modules

(i) Give an example of a Noetherian ring and of a ring that is not Noetherian.
Justify your answers.

(ii) State and prove Hilbert’s basis theorem.

3/I/1G Groups, Rings and Modules

What are the orders of the groups GL2(Fp) and SL2(Fp) where Fp is the field of p
elements?

3/II/11G Groups, Rings and Modules

(i) State the Sylow theorems for Sylow p-subgroups of a finite group.

(ii) Write down one Sylow 3-subgroup of the symmetric group S5 on 5 letters.
Calculate the number of Sylow 3-subgroups of S5.

4/I/2G Groups, Rings and Modules

If p is a prime, how many abelian groups of order p4 are there, up to isomorphism?

Part IB 2007



5

4/II/11G Groups, Rings and Modules

A regular icosahedron has 20 faces, 12 vertices and 30 edges. The group G of its
rotations acts transitively on the set of faces, on the set of vertices and on the set of edges.

(i) List the conjugacy classes in G and give the size of each.

(ii) Find the order of G and list its normal subgroups.

[A normal subgroup of G is a union of conjugacy classes in G.]
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1/I/2A Geometry

State the Gauss–Bonnet theorem for spherical triangles, and deduce from it that
for each convex polyhedron with F faces, E edges, and V vertices, F − E + V = 2.

2/II/12A Geometry

(i) The spherical circle with centre P ∈ S2 and radius r, 0 < r < π, is the set of
all points on the unit sphere S2 at spherical distance r from P . Find the circumference
of a spherical circle with spherical radius r. Compare, for small r, with the formula for a
Euclidean circle and comment on the result.

(ii) The cross ratio of four distinct points zi in C is

(z4 − z1)(z2 − z3)
(z4 − z3)(z2 − z1)

.

Show that the cross-ratio is a real number if and only if z1, z2, z3, z4 lie on a circle or a
line.

[You may assume that Möbius transformations preserve the cross-ratio.]

3/I/2A Geometry

Let l be a line in the Euclidean plane R2 and P a point on l. Denote by ρ the
reflection in l and by τ the rotation through an angle α about P . Describe, in terms of
l, P , and α, a line fixed by the composition τρ and show that τρ is a reflection.

3/II/12A Geometry

For a parameterized smooth embedded surface σ : V → U ⊂ R3, where V is an
open domain in R2, define the first fundamental form, the second fundamental form, and
the Gaussian curvature K. State the Gauss–Bonnet formula for a compact embedded
surface S ⊂ R3 having Euler number e(S).

Let S denote a surface defined by rotating a curve

η(u) = (r + a sinu, 0, b cosu) 0 ≤ u ≤ 2π ,

about the z-axis. Here a, b, r are positive constants, such that a2 + b2 = 1 and a < r. By
considering a smooth parameterization, find the first fundamental form and the second
fundamental form of S.

Part IB 2007



7

4/II/12A Geometry

Write down the Riemannian metric for the upper half-plane model H of the
hyperbolic plane. Describe, without proof, the group of isometries of H and the hyperbolic
lines (i.e. the geodesics) on H.

Show that for any two hyperbolic lines `1, `2, there is an isometry of H which maps
`1 onto `2.

Suppose that g is a composition of two reflections in hyperbolic lines which are
ultraparallel (i.e. do not meet either in the hyperbolic plane or at its boundary). Show
that g cannot be an element of finite order in the group of isometries of H.

[Existence of a common perpendicular to two ultraparallel hyperbolic lines may be assumed.
You might like to choose carefully which hyperbolic line to consider as a common
perpendicular.]
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1/II/11H Analysis II

Define what it means for a function f : Ra → Rb to be differentiable at a point
p ∈ Ra with derivative a linear map Df |p.

State the Chain Rule for differentiable maps f : Ra → Rb and g : Rb → Rc. Prove
the Chain Rule.

Let ‖x‖ denote the standard Euclidean norm of x ∈ Ra. Find the partial
derivatives ∂f

∂xi
of the function f(x) = ‖x‖ where they exist.

2/I/3H Analysis II

For integers a and b, define d(a, b) to be 0 if a = b, or 1
2n if a 6= b and n is the

largest non-negative integer such that a − b is a multiple of 2n. Show that d is a metric
on the integers Z.

Does the sequence xn = 2n − 1 converge in this metric?

2/II/13H Analysis II

Show that the limit of a uniformly convergent sequence of real valued continuous
functions on [0, 1] is continuous on [0, 1].

Let fn be a sequence of continuous functions on [0, 1] which converge point-wise to
a continuous function. Suppose also that the integrals

∫ 1

0
fn(x) dx converge to

∫ 1

0
f(x) dx.

Must the functions fn converge uniformly to f? Prove or give a counterexample.

Let fn be a sequence of continuous functions on [0, 1] which converge point-wise to
a function f . Suppose that f is integrable and that the integrals

∫ 1

0
fn(x) dx converge to∫ 1

0
f(x) dx. Is the limit f necessarily continuous? Prove or give a counterexample.

3/I/3H Analysis II

Define uniform continuity for a real-valued function on an interval in the real line.
Is a uniformly continuous function on the real line necessarily bounded?

Which of the following functions are uniformly continuous on the real line?

(i) f(x) = x sinx,

(ii) f(x) = e−x4
.

Justify your answers.

Part IB 2007



9

3/II/13H Analysis II

Let V be the real vector space of continuous functions f : [0, 1] → R. Show that
defining

||f || =
∫ 1

0

|f(x)|dx

makes V a normed vector space.

Define fn(x) = sinnx for positive integers n. Is the sequence (fn) convergent to
some element of V ? Is (fn) a Cauchy sequence in V ? Justify your answers.

4/I/3H Analysis II

Define uniform convergence for a sequence f1, f2, . . . of real-valued functions on the
interval (0, 1).

For each of the following sequences of functions on (0, 1), find the pointwise limit
function. Which of these sequences converge uniformly on (0, 1)?

(i) fn(x) = log (x+ 1
n ),

(ii) fn(x) = cos ( x
n ).

Justify your answers.

4/II/13H Analysis II

State and prove the Contraction Mapping Theorem.

Find numbers a and b, with a < 0 < b, such that the mapping T : C[a, b] → C[a, b]
defined by

T (f)(x) = 1 +
∫ x

0

3t f(t) dt

is a contraction, in the sup norm on C[a, b]. Deduce that the differential equation

dy

dx
= 3xy, with y = 1 when x = 0,

has a unique solution in some interval containing 0.
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1/II/12A Metric and Topological Spaces

Let X and Y be topological spaces. Define the product topology on X × Y and
show that if X and Y are Hausdorff then so is X × Y .

Show that the following statements are equivalent.

(i) X is a Hausdorff space.

(ii) The diagonal ∆ = {(x, x) : x ∈ X} is a closed subset of X ×X, in the product
topology.

(iii) For any topological space Y and any continuous maps f, g : Y → X, the set
{y ∈ Y : f(y) = g(y)} is closed in Y .

2/I/4A Metric and Topological Spaces

Are the following statements true or false? Give a proof or a counterexample as
appropriate.

(i) If f : X → Y is a continuous map of topological spaces and S ⊆ X is compact
then f(S) is compact.

(ii) If f : X → Y is a continuous map of topological spaces and K ⊆ Y is compact
then f−1(K) = {x ∈ X : f(x) ∈ K}} is compact.

(iii) If a metric space M is complete and a metric space T is homeomorphic to M
then T is complete.

3/I/4A Metric and Topological Spaces

(a) Let X be a connected topological space such that each point x of X has a
neighbourhood homeomorphic to Rn. Prove that X is path-connected.

(b) Let τ denote the topology on N = {1, 2, . . .}, such that the open sets are N, the
empty set, and all the sets {1, 2, . . . , n}, for n ∈ N. Prove that any continuous map from
the topological space (N, τ) to the Euclidean R is constant.
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4/II/14A Metric and Topological Spaces

(a) For a subset A of a topological space X, define the closure cl(A) of A. Let
f : X → Y be a map to a topological space Y . Prove that f is continuous if and only if
f(cl(A)) ⊆ cl(f(A)), for each A ⊆ X.

(b) Let M be a metric space. A subset S of M is called dense in M if the closure
of S is equal to M .

Prove that if a metric space M is compact then it has a countable subset which is
dense in M .
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1/I/3F Complex Analysis or Complex Methods

For the function
f(z) =

2z
z2 + 1

,

determine the Taylor series of f around the point z0 = 1, and give the largest r for which
this series converges in the disc |z − 1| < r.

1/II/13F Complex Analysis or Complex Methods

By integrating round the contour CR, which is the boundary of the domain

DR = {z = reiθ : 0 < r < R, 0 < θ <
π

4
} ,

evaluate each of the integrals ∫ ∞

0

sinx2dx,

∫ ∞

0

cosx2dx .

[You may use the relations

∫ ∞

0

e−r2
dr =

√
π

2
and sin t ≥ 2

π
t for 0 ≤ t ≤ π

2 .
]

2/II/14F Complex Analysis or Complex Methods

Let Ω be the half-strip in the complex plane,

Ω = {z = x+ iy ∈ C : −π
2
< x <

π

2
, y > 0} .

Find a conformal mapping that maps Ω onto the unit disc.
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3/II/14H Complex Analysis

Say that a function on the complex plane C is periodic if f(z + 1) = f(z) and
f(z + i) = f(z) for all z. If f is a periodic analytic function, show that f is constant.

If f is a meromorphic periodic function, show that the number of zeros of f in the
square [0, 1)× [0, 1) is equal to the number of poles, both counted with multiplicities.

Define

f(z) =
1
z2

+
∑
w

[
1

(z − w)2
− 1
w2

]
,

where the sum runs over all w = a+ bi with a and b integers, not both 0. Show that this
series converges to a meromorphic periodic function on the complex plane.

4/I/4H Complex Analysis

State the argument principle.

Show that if f is an analytic function on an open set U ⊂ C which is one-to-one,
then f ′(z) 6= 0 for all z ∈ U .
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3/I/5F Complex Methods

Show that the function φ(x, y) = tan−1 y

x
is harmonic. Find its harmonic conjugate

ψ(x, y) and the analytic function f(z) whose real part is φ(x, y). Sketch the curves
φ(x, y) = C and ψ(x, y) = K.

4/II/15F Complex Methods

(i) Use the definition of the Laplace transform of f(t):

L{f(t)} = F (s) =
∫ ∞

0

e−stf(t) dt ,

to show that, for f(t) = tn,

L{f(t)} = F (s) =
n!
sn+1

, L{eatf(t)} = F (s− a) =
n!

(s− a)n+1
.

(ii) Use contour integration to find the inverse Laplace transform of

F (s) =
1

s2(s+ 1)2
.

(iii) Verify the result in (ii) by using the results in (i) and the convolution theorem.

(iv) Use Laplace transforms to solve the differential equation

f (iv)(t) + 2f ′′′(t) + f ′′(t) = 0,

subject to the initial conditions

f(0) = f ′(0) = f ′′(0) = 0, f ′′′(0) = 1 .
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1/II/14D Methods

Define the Fourier transform f̃(k) of a function f(x) that tends to zero as |x| → ∞,
and state the inversion theorem. State and prove the convolution theorem.

Calculate the Fourier transforms of

(i) f(x) = e−a|x|,

and (ii) g(x) =
{

1 , |x| 6 b
0 , |x| > b .

Hence show that∫ ∞

−∞

sin (bk) eikx

k (a2 + k2)
dk =

π sinh (ab)
a2

e−ax for x > b ,

and evaluate this integral for all other (real) values of x.

2/I/5D Methods

Show that a smooth function y(x) that satisfies y(0) = y′(1) = 0 can be written as
a Fourier series of the form

y(x) =
∞∑

n=0

an sinλnx, 0 6 x 6 1 ,

where the λn should be specified. Write down an integral expression for an.

Hence solve the following differential equation

y′′ − α2y = x cosπx ,

with boundary conditions y(0) = y′(1) = 0, in the form of an infinite series.
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2/II/15D Methods

Let y0(x) be a non-zero solution of the Sturm-Liouville equation

L(y0;λ0) ≡
d

dx

(
p(x)

dy0
dx

)
+ (q(x) + λ0w(x)) y0 = 0

with boundary conditions y0(0) = y0(1) = 0. Show that, if y(x) and f(x) are related by

L(y;λ0) = f ,

with y(x) satisfying the same boundary conditions as y0(x), then∫ 1

0

y0fdx = 0 . (∗)

Suppose that y0 is normalised so that∫ 1

0

wy2
0dx = 1 ,

and consider the problem

L(y;λ) = y3 ; y(0) = y(1) = 0 .

By choosing f appropriately in (∗) deduce that, if

λ− λ0 = ε2µ [µ = O(1), ε� 1 ] , and y(x) = εy0(x) + ε2y1(x)

then

µ =
∫ 1

0

y4
0dx+O(ε) .

3/I/6E Methods

Describe the method of Lagrange multipliers for finding extrema of a function
f(x, y, z) subject to the constraint that g(x, y, z) = c.

Illustrate the method by finding the maximum and minimum values of xy for points
(x, y, z) lying on the ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1 ,

with a, b and c all positive.
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3/II/15E Methods

Legendre’s equation may be written(
1− x2

)
y′′ − 2xy′ + n(n+ 1)y = 0 with y(1) = 1 .

Show that if n is a positive integer, this equation has a solution y = Pn(x) that is a
polynomial of degree n. Find P0, P1 and P2 explicitly.

Write down a general separable solution of Laplace’s equation, ∇2φ = 0, in spherical
polar coordinates (r, θ). (A derivation of this result is not required.)

Hence or otherwise find φ when

∇2φ = 0, a < r < b ,

with φ = sin2 θ both when r = a and when r = b.

4/I/5B Methods

Show that the general solution of the wave equation

∂2y

∂t2
= c2

∂2y

∂x2
,

where c is a constant, is
y = f(x+ ct) + g(x− ct) ,

where f and g are twice differentiable functions. Briefly discuss the physical interpretation
of this solution.

Calculate y(x, t) subject to the initial conditions

y(x, 0) = 0 and
∂y

∂t
(x, 0) = ψ(x) .
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4/II/16E Methods

Write down the Euler-Lagrange equation for extrema of the functional

I =
∫ b

a

F (y, y′) dx .

Show that a first integral of this equation is given by

F − y′
∂F

∂y′
= C .

A road is built between two points A and B in the plane z = 0 whose polar
coordinates are r = a, θ = 0 and r = a, θ = π/2 respectively. Owing to congestion, the
traffic speed at points along the road is kr2 with k a positive constant. If the equation
describing the road is r = r(θ), obtain an integral expression for the total travel time T
from A to B.

[Arc length in polar coordinates is given by ds2 = dr2 + r2dθ2.]

Calculate T for the circular road r = a.

Find the equation for the road that minimises T and determine this minimum value.
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1/II/15B Quantum Mechanics

The relative motion of a neutron and proton is described by the Schrödinger
equation for a single particle of mass m under the influence of the central potential

V (r) =
{
−U r < a

0 r > a,

where U and a are positive constants. Solve this equation for a spherically symmetric state
of the deuteron, which is a bound state of a proton and neutron, giving the condition on
U for this state to exist.

[If ψ is spherically symmetric then ∇2ψ = 1
r

d2

dr2 (rψ).]

2/II/16B Quantum Mechanics

Write down the angular momentum operators L1, L2, L3 in terms of the position
and momentum operators, x and p, and the commutation relations satisfied by x and p.

Verify the commutation relations

[Li, Lj ] = i~εijkLk .

Further, show that
[Li, pj ] = i~εijkpk .

A wave-function Ψ0(r) is spherically symmetric. Verify that

LΨ0(r) = 0 .

Consider the vector function Φ = ∇Ψ0(r). Show that Φ3 and Φ1± iΦ2 are eigenfunctions
of L3 with eigenvalues 0,±~ respectively.
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3/I/7B Quantum Mechanics

The quantum mechanical harmonic oscillator has Hamiltonian

H =
1

2m
p2 +

1
2
mω2x2 ,

and is in a stationary state of energy < H >= E. Show that

E >
1

2m
(∆p)2 +

1
2
mω2(∆x)2 ,

where (∆p)2 = 〈p2〉 − 〈p〉2 and (∆x)2 = 〈x2〉 − 〈x〉2. Use the Heisenberg Uncertainty
Principle to show that

E >
1
2

~ω .

3/II/16B Quantum Mechanics

A quantum system has a complete set of orthonormal eigenstates, ψn(x), with non-
degenerate energy eigenvalues, En, where n = 1, 2, 3 . . .. Write down the wave-function,
Ψ(x, t), t > 0 in terms of the eigenstates.

A linear operator acts on the system such that

Aψ1 = 2ψ1 − ψ2

Aψ2 = 2ψ2 − ψ1

Aψn = 0, n > 3
.

Find the eigenvalues of A and obtain a complete set of normalised eigenfunctions,
φn, of A in terms of the ψn.

At time t = 0 a measurement is made and it is found that the observable
corresponding to A has value 3. After time t, A is measured again. What is the probability
that the value is found to be 1?

4/I/6B Quantum Mechanics

A particle moving in one space dimension with wave-function Ψ(x, t) obeys the
time-dependent Schrödinger equation. Write down the probability density, ρ, and current
density, j, in terms of the wave-function and show that they obey the equation

∂j

∂x
+
∂ρ

∂t
= 0 .

The wave-function is
Ψ(x, t) =

(
eikx +Re−ikx

)
e−iEt/~ ,

where E = ~2k2/2m and R is a constant, which may be complex. Evaluate j.
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1/II/16E Electromagnetism

A steady magnetic field B(x) is generated by a current distribution j(x) that
vanishes outside a bounded region V . Use the divergence theorem to show that∫

V

j dV = 0 and
∫

V

xijk dV = −
∫

V

xkji dV.

Define the magnetic vector potential A(x). Use Maxwell’s equations to obtain a
differential equation for A(x) in terms of j(x).

It may be shown that for an unbounded domain the equation for A(x) has solution

A(x) =
µ0

4π

∫
V

j(x′)
|x− x′|

dV ′ .

Deduce that in general the leading order approximation for A(x) as |x| → ∞ is

A =
µ0

4π
m× x
|x|3

where m =
1
2

∫
V

x′ × j(x′) dV ′ .

Find the corresponding far-field expression for B(x).

2/I/6E Electromagnetism

A metal has uniform conductivity σ. A cylindrical wire with radius a and length
l is manufactured from the metal. Show, using Maxwell’s equations, that when a steady
current I flows along the wire the current density within the wire is uniform.

Deduce the electrical resistance of the wire and the rate of Ohmic dissipation within
it.

Indicate briefly, and without detailed calculation, whether your results would be
affected if the wire was not straight.
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2/II/17E Electromagnetism

If S is a fixed surface enclosing a volume V , use Maxwell’s equations to show that

d

dt

∫
V

(
1
2
ε0E

2 +
1

2µ0
B2

)
dV +

∫
S

P · n dS = −
∫

V

j ·E dV ,

where P = (E×B)/µ0. Give a physical interpretation of each term in this equation.

Show that Maxwell’s equations for a vacuum permit plane wave solutions with
E = E0(0, 1, 0)cos(kx− ωt) with E0, k and ω constants, and determine the relationship
between k and ω.

Find also the corresponding B(x, t) and hence the time average < P >. What does
< P > represent in this case?

3/II/17E Electromagnetism

A capacitor consists of three long concentric cylinders of radii a, λa and 2a
respectively, where 1 < λ < 2. The inner and outer cylinders are earthed (i.e. held at
zero potential); the cylinder of radius λa is raised to a potential V . Find the electrostatic
potential in the regions between the cylinders and deduce the capacitance, C(λ) per unit
length, of the system.

For λ = 1 + δ with 0 < δ � 1 find C(λ) correct to leading order in δ and comment
on your result.

Find also the value of λ at which C(λ) has an extremum. Is the extremum a
maximum or a minimum? Justify your answer.

4/I/7E Electromagnetism

Write down Faraday’s law of electromagnetic induction for a moving circuit C(t)
in a magnetic field B(x, t). Explain carefully the meaning of each term in the equation.

A thin wire is bent into a circular loop of radius a. The loop lies in the (x, z)-plane
at time t = 0. It spins steadily with angular velocity Ωk, where Ω is a constant and k is a
unit vector in the z-direction. A spatially uniform magnetic field B = B0(cosωt, sinωt, 0)
is applied, with B0 and ω both constant. If the resistance of the wire is R, find the current
in the wire at time t.
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1/I/4B Special Relativity

Write down the position four-vector. Suppose this represents the position of a
particle with rest mass M and velocity v. Show that the four momentum of the particle
is

pa = (Mγc, Mγv) ,

where γ =
(
1− |v|2/c2

)−1/2
.

For a particle of zero rest mass show that

pa = (|p|, p) ,

where p is the three momentum.

2/I/7B Special Relativity

A particle in inertial frame S has coordinates (t, x), whilst the coordinates are
(t′, x′) in frame S′, which moves with relative velocity v in the x direction. What is the
relationship between the coordinates of S and S′?

Frame S′′, with cooordinates (t′′, x′′), moves with velocity u with respect to S′ and
velocity V with respect to S. Derive the relativistic formula for V in terms of u and v.
Show how the Newtonian limit is recovered.

4/II/17B Special Relativity

(a) A moving π0 particle of rest-mass mπ decays into two photons of zero rest-mass,

π0 → γ + γ .

Show that

sin
θ

2
=

mπc
2

2
√
E1E2

,

where θ is the angle between the three-momenta of the two photons and E1, E2 are their
energies.

(b) The π− particle of rest-mass mπ decays into an electron of rest-mass me and a
neutrino of zero rest mass,

π− → e− + ν .

Show that v, the speed of the electron in the rest frame of the π−, is

v = c

[
1− (me/mπ)2

1 + (me/mπ)2

]
.
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1/I/5D Fluid Dynamics

A steady two-dimensional velocity field is given by

u(x, y) = (αx− βy , βx− αy) , α > 0 , β > 0 .

(i) Calculate the vorticity of the flow.

(ii) Verify that u is a possible flow field for an incompressible fluid, and calculate
the stream function.

(iii) Show that the streamlines are bounded if and only if α < β.

(iv) What are the streamlines in the case α = β?

1/II/17D Fluid Dynamics

Write down the Euler equation for the steady motion of an inviscid, incompressible
fluid in a constant gravitational field. From this equation, derive (a) Bernoulli’s equation
and (b) the integral form of the momentum equation for a fixed control volume V with
surface S.

(i) A circular jet of water is projected vertically upwards with speed U0 from a
nozzle of cross-sectional area A0 at height z = 0. Calculate how the speed U and cross-
sectional area A of the jet vary with z, for z � U2

0 /2g.

(ii) A circular jet of speed U and cross-sectional area A impinges axisymmetrically
on the vertex of a cone of semi-angle α, spreading out to form an almost parallel-sided
sheet on the surface. Choose a suitable control volume and, neglecting gravity, show that
the force exerted by the jet on the cone is

ρAU2(1− cosα) .

(iii) A cone of mass M is supported, axisymmetrically and vertex down, by the jet
of part (i), with its vertex at height z = h, where h � U2

0 /2g. Assuming that the result
of part (ii) still holds, show that h is given by

ρA0U
2
0

(
1− 2gh

U2
0

) 1
2

(1− cosα) = Mg .
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2/I/8D Fluid Dynamics

An incompressible, inviscid fluid occupies the region beneath the free surface
y = η(x, t) and moves with a velocity field given by the velocity potential φ(x, y, t); gravity
acts in the −y direction. Derive the kinematic and dynamic boundary conditions that must
be satisfied by φ on y = η(x, t).

[You may assume Bernoulli’s integral of the equation of motion:

p

ρ
+
∂φ

∂t
+

1
2
|∇φ|2 + gy = F (t) . ]

In the absence of waves, the fluid has uniform velocity U in the x direction. Derive
the linearised form of the above boundary conditions for small amplitude waves, and verify
that they and Laplace’s equation are satisfied by the velocity potential

φ = Ux+Re{bekyei(kx−ωt)} ,

where |kb| � U , with a corresponding expression for η, as long as

(ω − kU)2 = gk .

What are the propagation speeds of waves with a given wave-number k?
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3/II/18D Fluid Dynamics

Given that the circulation round every closed material curve in an inviscid,
incompressible fluid remains constant in time, show that the velocity field of such a fluid
started from rest can be written as the gradient of a potential, φ, that satisfies Laplace’s
equation.

A rigid sphere of radius a moves in a straight line at speed U in a fluid that is
at rest at infinity. Using axisymmetric spherical polar coordinates (r, θ), with θ = 0 in
the direction of motion, write down the boundary conditions on φ and, by looking for a
solution of the form φ = f(r) cos θ, show that the velocity potential is given by

φ =
−Ua3 cos θ

2r2
.

Calculate the kinetic energy of the fluid.

A rigid sphere of radius a and uniform density ρb is submerged in an infinite fluid
of density ρ, under the action of gravity. Show that, when the sphere is released from rest,
its initial upwards acceleration is

2(ρ− ρb)g
ρ+ 2ρb

.

[Laplace’s equation for an axisymmetric scalar field in spherical polars is:

1
r2

∂

∂r

(
r2
∂φ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
= 0 .

]

4/II/18D Fluid Dynamics

Starting from Euler’s equation for an inviscid, incompressible fluid in the absence
of body forces,

∂u
∂t

+ (u.∇)u = − 1
ρ
∇p ,

derive the equation for the vorticity ω = ∇∧u .

[You may assume that ∇∧(a∧b) = a∇.b− b∇.a + (b.∇)a− (a.∇)b .]

Show that, in a two-dimensional flow, vortex lines keep their strength and move
with the fluid.

Show that a two-dimensional flow driven by a line vortex of circulation Γ at distance
b from a rigid plane wall is the same as if the wall were replaced by another vortex of
circulation −Γ at the image point, distance b from the wall on the other side. Deduce that
the first vortex will move at speed Γ/4πb parallel to the wall.

A line vortex of circulation Γ moves in a quarter-plane, bounded by rigid plane
walls at x = 0, y > 0 and y = 0, x > 0. Show that the vortex follows a trajectory whose
equation in plane polar coordinates is r sin 2θ = constant.
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1/I/6F Numerical Analysis

Solve the least squares problem
1 3
0 2
0 2
0 1

[
x1

x2

]
=


4
1
4

−1


using QR method with Householder transformation. (A solution using normal equations
is not acceptable.)

2/II/18F Numerical Analysis

For a symmetric, positive definite matrix A with the spectral radius ρ(A), the linear
system Ax = b is solved by the iterative procedure

x(k+1) = x(k) − τ(Ax(k) − b), k ≥ 0 ,

where τ is a real parameter. Find the range of τ that guarantees convergence of x(k) to
the exact solution for any choice of x(0).

3/II/19F Numerical Analysis

Prove that the monic polynomials Qn, n ≥ 0, orthogonal with respect to a given
weight function w(x) > 0 on [a, b], satisfy the three-term recurrence relation

Qn+1(x) = (x− an)Qn(x)− bnQn−1(x), n ≥ 0 .

where Q−1(x) ≡ 0, Q0(x) ≡ 1. Express the values an and bn in terms of Qn and Qn−1

and show that bn > 0.

4/I/8F Numerical Analysis

Given f ∈ C3[0, 2], we approximate f ′(0) by the linear combination

µ(f) = −3
2
f(0) + 2f(1)− 1

2
f(2) .

Using the Peano kernel theorem, determine the least constant c in the inequality

|f ′(0)− µ(f)| ≤ c ‖f ′′′‖∞ ,

and give an example of f for which the inequality turns into equality.
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1/I/7C Statistics

Let X1, . . . , Xn be independent, identically distributed random variables from the
N

(
µ, σ2

)
distribution where µ and σ2 are unknown. Use the generalized likelihood-ratio

test to derive the form of a test of the hypothesis H0 : µ = µ0 against H1 : µ 6= µ0.

Explain carefully how the test should be implemented.

1/II/18C Statistics

Let X1, . . . , Xn be independent, identically distributed random variables with

P (Xi = 1) = θ = 1− P (Xi = 0) ,

where θ is an unknown parameter, 0 < θ < 1, and n > 2. It is desired to estimate the
quantity φ = θ(1− θ) = nVar ((X1 + · · ·+Xn) /n).

(i) Find the maximum-likelihood estimate, φ̂, of φ.

(ii) Show that φ̂1 = X1 (1−X2) is an unbiased estimate of φ and hence, or otherwise,
obtain an unbiased estimate of φ which has smaller variance than φ̂1 and which is
a function of φ̂.

(iii) Now suppose that a Bayesian approach is adopted and that the prior distribution
for θ, π(θ), is taken to be the uniform distribution on (0, 1). Compute the Bayes
point estimate of φ when the loss function is L(φ, a) = (φ− a)2.

[You may use that fact that when r, s are non-negative integers,∫ 1

0

xr(1− x)sdx = r!s!/(r + s+ 1)! ]

2/II/19C Statistics

State and prove the Neyman–Pearson lemma.

Suppose that X is a random variable drawn from the probability density function

f(x | θ) = 1
2 |x |

θ−1e−|x|/Γ(θ), −∞ < x <∞ ,

where Γ(θ) =
∞∫
0

yθ−1e−ydy and θ > 1 is unknown. Find the most powerful test of size α,

0 < α < 1, of the hypothesis H0 : θ = 1 against the alternative H1 : θ = 2. Express the
power of the test as a function of α.

Is your test uniformly most powerful for testing H0 : θ = 1 against H1 : θ > 1?
Explain your answer carefully.
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3/I/8C Statistics

Light bulbs are sold in packets of 3 but some of the bulbs are defective. A sample
of 256 packets yields the following figures for the number of defectives in a packet:

No. of defectives 0 1 2 3

No. of packets 116 94 40 6

Test the hypothesis that each bulb has a constant (but unknown) probability θ of
being defective independently of all other bulbs.

[ Hint: You may wish to use some of the following percentage points:

Distribution χ2
1 χ2

2 χ2
3 χ2

4 t1 t2 t3 t4

90% percentile 2·71 4·61 6·25 7·78 3·08 1·89 1·64 1·53
95% percentile 3·84 5·99 7·81 9·49 6·31 2·92 2·35 2·13 ]

4/II/19C Statistics

Consider the linear regression model

Yi = α+ βxi + εi, 1 6 i 6 n ,

where ε1, . . . , εn are independent, identically distributed N(0, σ2), x1, . . . , xn are known
real numbers with

∑n
i=1 xi = 0 and α, β and σ2 are unknown.

(i) Find the least-squares estimates α̂ and β̂ of α and β, respectively, and explain why
in this case they are the same as the maximum-likelihood estimates.

(ii) Determine the maximum-likelihood estimate σ̂2 of σ2 and find a multiple of it which
is an unbiased estimate of σ2.

(iii) Determine the joint distribution of α̂, β̂ and σ̂2.

(iv) Explain carefully how you would test the hypothesis H0 : α = α0 against the
alternative H1 : α 6= α0.

Part IB 2007



30

1/I/8C Optimization

State and prove the max-flow min-cut theorem for network flows.

2/I/9C Optimization

Consider the game with payoff matrix 2 5 4
3 2 2
2 1 3

 ,

where the (i, j) entry is the payoff to the row player if the row player chooses row i and
the column player chooses column j.

Find the value of the game and the optimal strategies for each player.

3/II/20C Optimization

State and prove the Lagrangian sufficiency theorem.

Solve the problem

maximize x1 + 3 ln(1 + x2)
subject to 2x1 + 3x2 6 c1,

ln(1 + x1) > c2, x1 > 0, x2 > 0,

where c1 and c2 are non-negative constants satisfying c1 + 2 > 2ec2 .
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4/II/20C Optimization

Consider the linear programming problem

minimize 2x1 − 3x2 − 2x3

subject to − 2x1 + 2x2 + 4x3 6 5
4x1 + 2x2 − 5x3 6 8
5x1 − 4x2 + 1

2 x3 6 5 , xi > 0 , i = 1, 2, 3 .

(i) After adding slack variables z1 , z2 and z3 and performing one iteration of the
simplex algorithm, the following tableau is obtained.

x1 x2 x3 z1 z2 z3

x2 −1 1 2 1/2 0 0 5/2
z2 6 0 −9 −1 1 0 3
z3 1 0 17/2 2 0 1 15

Payoff −1 0 4 3/2 0 0 15/2

Complete the solution of the problem.

(ii) Now suppose that the problem is amended so that the objective function becomes

2x1 − 3x2 − 5x3 .

Find the solution of this new problem.

(iii) Formulate the dual of the problem in (ii) and identify the optimal solution to the
dual.
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1/II/19C Markov Chains

Consider a Markov chain (Xn)n>0 on states {0, 1, . . . , r} with transition matrix
(Pij), where P0,0 = 1 = Pr,r, so that 0 and r are absorbing states. Let

A = (Xn = 0, for some n > 0) ,
be the event that the chain is absorbed in 0. Assume that hi = P (A | X0 = i) > 0 for
1 6 i < r.

Show carefully that, conditional on the event A, (Xn)n>0 is a Markov chain and
determine its transition matrix.

Now consider the case where Pi,i+1 = 1
2 = Pi,i−1, for 1 6 i < r. Suppose that

X0 = i, 1 6 i < r, and that the event A occurs; calculate the expected number of
transitions until the chain is first in the state 0.

2/II/20C Markov Chains

Consider a Markov chain with state space S = {0, 1, 2, . . .} and transition matrix
given by

Pi,j =

{
qpj−i+1 for i > 1 and j > i− 1,

qpj for i = 0 and j > 0,
and Pi,j = 0 otherwise, where 0 < p = 1− q < 1.

For each value of p, 0 < p < 1, determine whether the chain is transient, null
recurrent or positive recurrent, and in the last case find the invariant distribution.

3/I/9C Markov Chains

Consider a Markov chain (Xn)n>0 with state space S = {0, 1} and transition matrix

P =
(

α 1− α
1− β β

)
,

where 0 < α < 1 and 0 < β < 1.

Calculate P (Xn = 0 | X0 = 0) for each n > 0.

4/I/9C Markov Chains

For a Markov chain with state space S, define what is meant by the following:

(i) states i, j ∈ S communicate;

(ii) state i ∈ S is recurrent.

Prove that communication is an equivalence relation on S and that if two states
i, j communicate and i is recurrent then j is recurrent.
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