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SECTION I

1B Linear Algebra

Define what it means for an n × n complex matrix to be unitary or Hermitian.
Show that every eigenvalue of a Hermitian matrix is real. Show that every eigenvalue of
a unitary matrix has absolute value 1.

Show that two eigenvectors of a Hermitian matrix that correspond to different
eigenvalues are orthogonal, using the standard inner product on Cn.

2C Groups, Rings and Modules

State Eisenstein’s irreducibility criterion. Let n be an integer > 1. Prove that
1 + x+ . . .+ xn−1 is irreducible in Z[x] if and only if n is a prime number.

3B Analysis II

Let V be the vector space of continuous real-valued functions on [0, 1]. Show that
the function

||f || =
∫ 1

0

|f(x)| dx

defines a norm on V .

For n = 1, 2, . . ., let fn(x) = e−nx. Is fn a convergent sequence in the space V with
this norm? Justify your answer.
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4A Complex Analysis

Let γ : [0, 1] → C be a closed path, where all paths are assumed to be piecewise
continuously differentiable, and let a be a complex number not in the image of γ. Write
down an expression for the winding number n(γ, a) in terms of a contour integral. From
this characterization of the winding number, prove the following properties:

(a) If γ1 and γ2 are closed paths not passing through zero, and if γ : [0, 1] → C is
defined by γ(t) = γ1(t)γ2(t) for all t, then

n(γ, 0) = n(γ1, 0) + n(γ2, 0).

(b) If η : [0, 1] → C is a closed path whose image is contained in {Re(z) > 0}, then
n(η, 0) = 0.

(c) If γ1 and γ2 are closed paths and a is a complex number, not in the image of
either path, such that

|γ1(t)− γ2(t)| < |γ1(t)− a|

for all t, then n(γ1, a) = n(γ2, a).

[You may wish here to consider the path defined by η(t) = 1− (γ1(t)− γ2(t))/(γ1(t)− a).]

5H Methods

Show how the general solution of the wave equation for y(x, t),

1
c2
∂2

∂t2
y(x, t)− ∂2

∂x2
y(x, t) = 0 ,

can be expressed as
y(x, t) = f(ct− x) + g(ct+ x) .

Show that the boundary conditions y(0, t) = y(L, t) = 0 relate the functions f and g and
require them to be periodic with period 2L.

Show that, with these boundary conditions,

1
2

∫ L

0

(
1
c2

(∂y
∂t

)2

+
(∂y
∂x

)2
)

dx =
∫ L

−L

g′(ct+ x)2 dx ,

and that this is a constant independent of t.
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6G Quantum Mechanics

Define the commutator [A ,B] of two operators, A and B. In three dimensions
angular momentum is defined by a vector operator L with components

Lx = y pz − z py Ly = z px − x pz Lz = x py − y px .

Show that [Lx , Ly] = i ~Lz and use this, together with permutations, to show that
[L2 , Lw] = 0, where w denotes any of the directions x, y, z.

At a given time the wave function of a particle is given by

ψ = (x+ y + z) exp
(
−

√
x2 + y2 + z2

)
.

Show that this is an eigenstate of L2 with eigenvalue equal to 2~2.

7H Electromagnetism

For a static current density J(x) show that we may choose the vector potential
A(x) so that

−∇2A = µ0J .

For a loop L, centred at the origin, carrying a current I show that

A(x) =
µ0I

4π

∮
L

1
|x− r|

dr ∼ −µ0I

4π
1
|x|3

∮
L

1
2 x× (r× dr) as |x| → ∞ .

[You may assume

−∇2 1
4π|x|

= δ3(x) ,

and for fixed vectors a,b

∮
L

a · dr = 0,
∮

L

(a · r b · dr + b · r a · dr) = 0 .

]

Paper 4



5

8F Numerical Analysis

Define Gaussian quadrature.

Evaluate the coefficients of the Gaussian quadrature of the integral∫ 1

−1

(1− x2)f(x)dx

which uses two function evaluations.

9D Markov Chains

Prove that the simple symmetric random walk in three dimensions is transient.

[You may wish to recall Stirling’s formula: n! ∼ (2π)
1
2 nn+ 1

2 e−n.]
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SECTION II

10B Linear Algebra

(i) Let V be a finite-dimensional real vector space with an inner product. Let
e1, . . . , en be a basis for V . Prove by an explicit construction that there is an orthonormal
basis f1, . . . , fn for V such that the span of e1, . . . , ei is equal to the span of f1, . . . , fi for
every 1 6 i 6 n.

(ii) For any real number a, consider the quadratic form

qa(x, y, z) = xy + yz + zx+ ax2

on R3. For which values of a is qa nondegenerate? When qa is nondegenerate, compute
its signature in terms of a.

11C Groups, Rings and Modules

Let R be the ring of Gaussian integers Z[i], where i2 = −1, which you may assume to
be a unique factorization domain. Prove that every prime element of R divides precisely
one positive prime number in Z. List, without proof, the prime elements of R, up to
associates.

Let p be a prime number in Z. Prove that R/pR has cardinality p2. Prove that
R/2R is not a field. If p ≡ 3 mod 4, show that R/pR is a field. If p ≡ 1 mod 4, decide
whether R/pR is a field or not, justifying your answer.
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12A Geometry

Given a parametrized smooth embedded surface σ : V → U ⊂ R3, where V is an
open subset of R2 with coordinates (u, v), and a point P ∈ U , define what is meant by
the tangent space at P , the unit normal N at P , and the first fundamental form

Edu2 + 2Fdu dv +Gdv2.

[You need not show that your definitions are independent of the parametrization.]

The second fundamental form is defined to be

Ldu2 + 2Mdudv +Ndv2,

where L = σuu ·N, M = σuv ·N and N = σvv ·N. Prove that the partial derivatives
of N (considered as a vector-valued function of u, v) are of the form Nu = aσu + bσv,
Nv = cσu + dσv, where

−
(
L M
M N

)
=

(
a b
c d

) (
E F
F G

)
.

Explain briefly the significance of the determinant ad− bc.

13B Analysis II

Let F : [−a, a] × [x0 − r, x0 + r] → R be a continuous function. Let C be the
maximum value of |F (t, x)|. Suppose there is a constant K such that

|F (t, x)− F (t, y)| 6 K|x− y|

for all t ∈ [−a, a] and x, y ∈ [x0 − r, x0 + r]. Let b < min(a, r/C, 1/K). Show that there is
a unique C1 function x : [−b, b] → [x0 − r, x0 + r] such that

x(0) = x0

and
dx

dt
= F (t, x(t)).

[Hint: First show that the differential equation with its initial condition is equivalent to
the integral equation

x(t) = x0 +
∫ t

0

F (s, x(s)) ds.
]

Paper 4 [TURN OVER



8

14A Metric and Topological Spaces

Let (M,d) be a metric space, and F a non-empty closed subset of M . For x ∈M ,
set

d(x, F ) = inf
z∈F

d(x, z).

Prove that d(x, F ) is a continuous function of x, and that it is strictly positive for x 6∈ F .

A topological space is called normal if for any pair of disjoint closed subsets F1, F2,
there exist disjoint open subsets U1 ⊃ F1, U2 ⊃ F2. By considering the function

d(x, F1)− d(x, F2),

or otherwise, deduce that any metric space is normal.

Suppose now that X is a normal topological space, and that F1, F2 are disjoint
closed subsets in X. Prove that there exist open subsets W1 ⊃ F1,W2 ⊃ F2, whose
closures are disjoint. In the case when X = R2 with the standard metric topology,
F1 = {(x,−1/x) : x < 0} and F2 = {(x, 1/x) : x > 0}, find explicit open subsets W1,W2

with the above property.

15F Complex Methods

Determine the Fourier expansion of the function f(x) = sinλx, where −π 6 x 6 π,
in the two cases where λ is an integer and λ is a real non-integer.

Using the Parseval identity in the case λ = 1
2 , find an explicit expression for the

sum
∞∑

n=1

n2

(4n2 − 1)2
.
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16H Methods

Define an isotropic tensor and show that δij , εijk are isotropic tensors.

For x̂ a unit vector and dS(x̂) the area element on the unit sphere show that∫
dS(x̂) x̂i1 . . . x̂in

is an isotropic tensor for any n. Hence show that∫
dS(x̂) x̂ix̂j = aδij ,

∫
dS(x̂) x̂ix̂j x̂k = 0 ,∫

dS(x̂) x̂ix̂j x̂kx̂l = b
(
δijδkl + δikδjl + δilδjk

)
,

for some a, b which should be determined.

Explain why ∫
V

d3x
(
x1 +

√
−1x2

)n
f(|x|) = 0 , n = 2, 3, 4 ,

where V is the region inside the unit sphere.

[The general isotropic tensor of rank 4 has the form a δijδkl + b δikδjl + c δilδjk.]
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17G Special Relativity

Obtain the Lorentz transformations that relate the coordinates of an event mea-
sured in one inertial frame (t, x, y, z) to those in another inertial frame moving with velocity
v along the x axis. Take care to state the assumptions that lead to your result.

A star is at rest in a three-dimensional coordinate frame S ′ that is moving at
constant velocity v along the x axis of a second coordinate frame S. The star emits light
of frequency ν′, which may considered to be a beam of photons. A light ray from the star
to the origin in S ′ is a straight line that makes an angle θ′ with the x′ axis. Write down
the components of the four-momentum of a photon in this light ray.

The star is seen by an observer at rest at the origin of S at time t = t′ = 0,
when the origins of the coordinate frames S and S ′ coincide. The light that reaches the
observer moves along a line through the origin that makes an angle θ to the x axis and
has frequency ν. Make use of the Lorentz transformations between the four-momenta of
a photon in these two frames to determine the relation

λ = λ′
(

1− v2

c2

)−1/2 (
1 +

v

c
cos θ

)
.

where λ is the observed wavelength of the photon and λ′ is the wavelength in the star’s
rest frame.

Comment on the form of this result in the special cases with cos θ = 1, cos θ = −1
and cos θ = 0.

[You may assume that the energy of a photon of frequency ν is hν and its three-
momentum is a three-vector of magnitude hν/c.]

18E Fluid Dynamics

A fluid of density ρ1 occupies the region z > 0 and a second fluid of density ρ2

occupies the region z < 0. State the equations and boundary conditions that are satisfied
by the corresponding velocity potentials φ1 and φ2 and pressures p1 and p2 when the
system is perturbed so that the interface is at z = ζ(x, t) and the motion is irrotational.

Seek a set of linearised equations and boundary conditions when the disturbances
are proportional to ei(kx−ωt), and derive the dispersion relation

ω2 =
ρ2 − ρ1

ρ2 + ρ1
gk,

where g is the gravitational acceleration.
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19D Statistics

Let Y1, . . . , Yn be observations satisfying

Yi = βxi + εi, 1 6 i 6 n,

where ε1, . . . , εn are independent random variables each with the N(0, σ2) distribution.
Here x1, . . . , xn are known but β and σ2 are unknown.

(i) Determine the maximum-likelihood estimates (β̂, σ̂2) of (β, σ2).

(ii) Find the distribution of β̂.

(iii) By showing that Yi − β̂xi and β̂ are independent, or otherwise, determine
the joint distribution of β̂ and σ̂2.

(iv) Explain carefully how you would test the hypothesis H0 : β = β0 against
H1 : β 6= β0.

20D Optimization

Describe the Ford–Fulkerson algorithm for finding a maximal flow from a source
to a sink in a directed network with capacity constraints on the arcs. Explain why the
algorithm terminates at an optimal flow when the initial flow and the capacity constraints
are rational.

Illustrate the algorithm by applying it to the problem of finding a maximal flow
from S to T in the network below.
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