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SECTION I

1C Groups, Rings and Modules

Define what is meant by two elements of a group G being conjugate, and prove
that this defines an equivalence relation on G. If G is finite, sketch the proof that the
cardinality of each conjugacy class divides the order of G.

2A Geometry

Write down the Riemannian metric on the disc model ∆ of the hyperbolic plane.
Given that the length minimizing curves passing through the origin correspond to
diameters, show that the hyperbolic circle of radius ρ centred on the origin is just the
Euclidean circle centred on the origin with Euclidean radius tanh(ρ/2). Prove that the
hyperbolic area is 2π(cosh ρ− 1).

State the Gauss–Bonnet theorem for the area of a hyperbolic triangle. Given a
hyperbolic triangle and an interior point P , show that the distance from P to the nearest
side is at most cosh−1(3/2).

3B Analysis II

Let f : R2 → R be a function. What does it mean to say that f is differentiable
at a point (a, b) in R2? Show that if f is differentiable at (a, b), then f is continuous at
(a, b).

For each of the following functions, determine whether or not it is differentiable at
(0, 0). Justify your answers.

(i)

f(x, y) =
{
x2y2(x2 + y2)−1 if (x, y) 6= (0, 0)
0 if (x, y) = (0, 0).

(ii)

f(x, y) =
{
x2(x2 + y2)−1 if (x, y) 6= (0, 0)
0 if (x, y) = (0, 0).
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4A Metric and Topological Spaces

Show that a topology τ1 is determined on the real line R by specifying that a non-
empty subset is open if and only if it is a union of half-open intervals {a ≤ x < b}, where
a < b are real numbers. Determine whether (R, τ1) is Hausdorff.

Let τ2 denote the cofinite topology on R (that is, a non-empty subset is open if
and only if its complement is finite). Prove that the identity map induces a continuous
map (R, τ1) → (R, τ2).

5F Complex Methods

Define a harmonic function and state when the harmonic functions f and g are
conjugate.

Let {u, v} and {p, q} be two pairs of harmonic conjugate functions. Prove that
{p(u, v), q(u, v)} are also harmonic conjugate.

6E Methods

Describe briefly the method of Lagrangian multipliers for finding the stationary
points of a function f(x, y) subject to a constraint g(x, y) = 0.

Use the method to find the stationary values of xy subject to the constraint
x2

a2
+
y2

b2
= 1.

7G Quantum Mechanics

The wave function Ψ(x, t) is a solution of the time-dependent Schrödinger equation
for a particle of mass m in a potential V (x),

H Ψ(x, t) = i~
∂

∂t
Ψ(x, t) ,

where H is the Hamiltonian. Define the expectation value, 〈O〉, of any operator O.

At time t = 0, Ψ(x, t) can be written as a sum of the form

Ψ(x, 0) =
∑

n

an un(x) ,

where un is a complete set of normalized eigenfunctions of the Hamiltonian with energy
eigenvalues En and an are complex coefficients that satisfy

∑
n a

∗
nan = 1. Find Ψ(x, t) for

t > 0. What is the probability of finding the system in a state with energy Ep at time t?

Show that the expectation value of the energy is independent of time.
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8D Statistics

Let X1, . . . , Xn be a random sample from a normal distribution with mean µ and
variance σ2, where µ and σ2 are unknown. Derive the form of the size-α generalized
likelihood-ratio test of the hypothesis H0 : µ = µ0 against H1 : µ 6= µ0, and show that it
is equivalent to the standard t-test of size α.

[You should state, but need not derive, the distribution of the test statistic.]

9D Markov Chains

Prove that if two states of a Markov chain communicate then they have the same
period.

Consider a Markov chain with state space {1, 2, . . . , 7} and transition probabilities
determined by the matrix 

0 1
4

1
4 0 0 1

4
1
4

0 0 0 0 0 0 1
0 0 0 1

3 0 1
3

1
3

1
2 0 0 0 0 1

2 0
1
6

1
6

1
6

1
6 0 1

6
1
6

0 0 0 0 0 1 0
0 1 0 0 0 0 0


.

Identify the communicating classes of the chain and for each class state whether it is open
or closed and determine its period.
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SECTION II

10B Linear Algebra

Let S be the vector space of functions f : R → R such that the nth derivative
of f is defined and continuous for every n > 0. Define linear maps A,B : S → S by
A(f) = df/dx and B(f)(x) = xf(x). Show that

[A,B] = 1S ,

where in this question [A,B] means AB −BA and 1S is the identity map on S.

Now let V be any real vector space with linear maps A,B : V → V such that
[A,B] = 1V . Suppose that there is a nonzero element y ∈ V with Ay = 0. Let W be the
subspace of V spanned by y, By, B2y, and so on. Show that A(By) is in W and give
a formula for it. More generally, show that A(Biy) is in W for each i > 0, and give a
formula for it.

Show, using your formula or otherwise, that {y,By,B2y, . . .} are linearly indepen-
dent. (Or, equivalently: show that y,By,B2y, . . . , Bny are linearly independent for every
n > 0.)

11C Groups, Rings and Modules

(i) Define a primitive polynomial in Z[x], and prove that the product of two
primitive polynomials is primitive. Deduce that Z[x] is a unique factorization domain.

(ii) Prove that
Q[x]/(x5 − 4x+ 2)

is a field. Show, on the other hand, that

Z[x]/(x5 − 4x+ 2)

is an integral domain, but is not a field.
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12A Geometry

Describe geometrically the stereographic projection map π from the unit sphere S2

to the extended complex plane C∞ = C∪{∞}, positioned equatorially, and find a formula
for π.

Show that any Möbius transformation T 6= 1 on C∞ has one or two fixed points.
Show that the Möbius transformation corresponding (under the stereographic projection
map) to a rotation of S2 through a non-zero angle has exactly two fixed points z1 and z2,
where z2 = −1/z̄1. If now T is a Möbius transformation with two fixed points z1 and z2
satisfying z2 = −1/z̄1, prove that either T corresponds to a rotation of S2, or one of the
fixed points, say z1, is an attractive fixed point, i.e. for z 6= z2, Tnz → z1 as n→∞.

[You may assume the fact that any rotation of S2 corresponds to some Möbius transfor-
mation of C∞ under the stereographic projection map.]

13B Analysis II

Let f be a real-valued differentiable function on an open subset U of Rn. Assume
that 0 6∈ U and that for all x ∈ U and λ > 0, λx is also in U . Suppose that f is
homogeneous of degree c ∈ R, in the sense that f(λx) = λcf(x) for all x ∈ U and λ > 0.
By means of the Chain Rule or otherwise, show that

Df |x(x) = cf(x)

for all x ∈ U . (Here Df |x denotes the derivative of f at x, viewed as a linear map
Rn → R.)

Conversely, show that any differentiable function f on U with Df |x(x) = cf(x) for
all x ∈ U must be homogeneous of degree c.

14A Complex Analysis

State the Cauchy integral formula, and use it to deduce Liouville’s theorem.

Let f be a meromorphic function on the complex plane such that |f(z)/zn| is
bounded outside some disc (for some fixed integer n). By considering Laurent expansions,
or otherwise, show that f is a rational function in z.
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15H Methods

Obtain the power series solution about t = 0 of

(1− t2)
d2

dt2
y − 2t

d
dt
y + λ y = 0 ,

and show that regular solutions y(t) = Pn(t), which are polynomials of degree n, are
obtained only if λ = n(n+ 1), n = 0, 1, 2, . . .. Show that the polynomial must be even or
odd according to the value of n.

Show that ∫ 1

−1

Pn(t)Pm(t) dt = knδnm ,

for some kn > 0.

Using the identity(
x
∂2

∂x2
x+

∂

∂t
(1− t2)

∂

∂t

)
1

(1− 2xt+ x2)
1
2

= 0 ,

and considering an expansion
∑

n an(x)Pn(t) show that

1
(1− 2xt+ x2)

1
2

=
∞∑

n=0

xnPn(t) , 0 < x < 1 ,

if we assume Pn(1) = 1.

By considering ∫ 1

−1

1
1− 2xt+ x2

dt ,

determine the coefficient kn.
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16G Quantum Mechanics

A particle of mass µ moves in two dimensions in an axisymmetric potential. Show
that the time-independent Schrödinger equation can be separated in polar coordinates.
Show that the angular part of the wave function has the form eimφ, where φ is the angular
coordinate and m is an integer. Suppose that the potential is zero for r < a, where r is the
radial coordinate, and infinite otherwise. Show that the radial part of the wave function
satisfies

d2R

dρ2
+

1
ρ

dR

dρ
+

(
1− m2

ρ2

)
R = 0 ,

where ρ = r
(
2µE/~2

)1/2. What conditions must R satisfy at r = 0 and R = a?

Show that, when m = 0, the equation has the solution R(ρ) =
∑∞

k=0Ak ρ
k, where

Ak = 0 if k is odd and

Ak+2 = − Ak

(k + 2)2
,

if k is even.

Deduce the coefficients A2 and A4 in terms of A0. By truncating the series
expansion at order ρ4, estimate the smallest value of ρ at which the R is zero. Hence
give an estimate of the ground state energy.

[You may use the fact that the Laplace operator is given in polar coordinates by the
expression

∇2 =
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂φ2
.

]
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17H Electromagnetism

If E(x, t),B(x, t) are solutions of Maxwell’s equations in a region without any
charges or currents show that E′(x, t) = cB(x, t), B′(x, t) = −E(x, t)/c are also solutions.

At the boundary of a perfect conductor with normal n briefly explain why

n ·B = 0 , n×E = 0 .

Electromagnetic waves inside a perfectly conducting tube with axis along the z-axis
are given by the real parts of complex solutions of Maxwell’s equations of the form

E(x, t) = e(x, y) ei(kz−ωt) , B(x, t) = b(x, y) ei(kz−ωt) .

Suppose bz = 0. Show that we can find a solution in this case in terms of a function
ψ(x, y) where

(ex, ey) =
( ∂

∂x
ψ,

∂

∂y
ψ

)
, ez = i

(
k − ω2

kc2

)
ψ ,

so long as ψ satisfies ( ∂2

∂x2
+

∂2

∂y2
+ γ2

)
ψ = 0 ,

for suitable γ. Show that the boundary conditions are satisfied if ψ = 0 on the surface of
the tube.

Obtain a similar solution with ez = 0 but show that the boundary conditions are
now satisfied if the normal derivative ∂ψ/∂n = 0 on the surface of the tube.

18E Fluid Dynamics

Consider the velocity potential in plane polar coordinates

φ(r, θ) = U

(
r +

a2

r

)
cos θ +

κθ

2π
.

Find the velocity field and show that it corresponds to flow past a cylinder r = a with
circulation κ and uniform flow U at large distances.

Find the distribution of pressure p over the surface of the cylinder. Hence find the
x and y components of the force on the cylinder

(Fx, Fy) =
∫

(cos θ, sin θ)pa dθ.
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19F Numerical Analysis

Given real µ 6= 0, we consider the matrix

A =


1
µ 1 0 0
−1 1

µ 1 0
0 −1 1

µ 1
0 0 −1 1

µ

 .

Construct the Jacobi and Gauss–Seidel iteration matrices originating in the solution of
the linear system Ax = b.

Determine the range of real µ 6= 0 for which each iterative procedure converges.

20D Optimization

Consider the linear programming problem

maximize 4x1 + x2 − 9x3

subject to x2 − 11x3 6 11
−3x1 + 2x2 − 7x3 6 16

9x1 − 2x2 + 10x3 6 29, xi > 0, i = 1, 2, 3.

(a) After adding slack variables z1, z2 and z3 and performing one pivot in the
simplex algorithm the following tableau is obtained:

x1 x2 x3 z1 z2 z3

z1 0 1 −11 1 0 0 11
z2 0 4

3 − 11
3 0 1 1

3
77
3

x1 1 − 2
9

10
9 0 0 1

9
29
9

Payoff 0 17
9 − 121

9 0 0 − 4
9 − 116

9

Complete the solution of the problem using the simplex algorithm.

(b) Obtain the dual problem and identify its optimal solution from the optimal
tableau in (a).

(c) Suppose that the right-hand sides in the constraints to the original problem
are changed from (11, 16, 29) to (11 + ε1, 16 + ε2, 29 + ε3). Give necessary and sufficient
conditions on (ε1, ε2, ε3) which ensure that the optimal solution to the dual obtained in
(b) remains optimal for the dual for the amended problem.

END OF PAPER
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