MATHEMATICAL TRIPOS Part IB

Tuesday 1 June 2004 9 to 12

PAPER 1

Before you begin read these instructions carefully.

Each question in Section II carries twice the credit of each question in Section I. You should attempt at most **four** questions from Section I and at most **six** questions from Section II.

Additional credit will be given to substantially complete answers.

Write on one side of the paper only and begin each answer on a separate sheet.

Write legibly; otherwise, you place yourself at a grave disadvantage.

At the end of the examination:

Tie up your answers in separate bundles labelled $\mathbf{A}, \mathbf{B}, \ldots, \mathbf{H}$ according to the code letter affixed to each question, including in the same bundle questions from Sections I and II with the same code letter.

Attach a completed gold cover sheet to each bundle; write the code letter in the box marked 'EXAMINER LETTER' on the cover sheet.

You must also complete a green master cover sheet listing all the questions you have attempted.

Every cover sheet <u>must</u> bear your candidate number and desk number.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

SECTION I

1H Linear Algebra

Suppose that $\{\mathbf{e}_1, \ldots, \mathbf{e}_{r+1}\}$ is a linearly independent set of distinct elements of a vector space V and $\{\mathbf{e}_1, \ldots, \mathbf{e}_r, \mathbf{f}_{r+1}, \ldots, \mathbf{f}_m\}$ spans V. Prove that $\mathbf{f}_{r+1}, \ldots, \mathbf{f}_m$ may be reordered, as necessary, so that $\{\mathbf{e}_1, \ldots, \mathbf{e}_{r+1}, \mathbf{f}_{r+2}, \ldots, \mathbf{f}_m\}$ spans V.

Suppose that $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$ is a linearly independent set of distinct elements of V and that $\{\mathbf{f}_1, \ldots, \mathbf{f}_m\}$ spans V. Show that $n \leq m$.

2F Groups, Rings and Modules

Let G be a finite group of order n. Let H be a subgroup of G. Define the normalizer N(H) of H, and prove that the number of distinct conjugates of H is equal to the index of N(H) in G. If p is a prime dividing n, deduce that the number of Sylow p-subgroups of G must divide n.

[You may assume the existence and conjugacy of Sylow subgroups.]

Prove that any group of order 72 must have either 1 or 4 Sylow 3-subgroups.

3G Geometry

Using the Riemannian metric

$$ds^2 = \frac{dx^2 + dy^2}{y^2} \,,$$

define the length of a curve and the area of a region in the upper half-plane $H = \{x + iy : y > 0\}.$

Find the hyperbolic area of the region $\{(x, y) \in H : 0 < x < 1, y > 1\}$.

4G Analysis II

Define what it means for a sequence of functions $F_n : (0, 1) \to \mathbb{R}$, where n = 1, 2, ..., to converge uniformly to a function F.

For each of the following sequences of functions on (0, 1), find the pointwise limit function. Which of these sequences converge uniformly? Justify your answers.

(i)
$$F_n(x) = \frac{1}{n}e^x$$

(ii) $F_n(x) = e^{-nx^2}$
(iii) $F_n(x) = \sum_{i=0}^n x^i$

Paper 1

5A Complex Methods

Determine the poles of the following functions and calculate their residues there.

(i)
$$\frac{1}{z^2 + z^4}$$
, (ii) $\frac{e^{1/z^2}}{z - 1}$, (iii) $\frac{1}{\sin(e^z)}$.

6B Methods

Write down the general isotropic tensors of rank 2 and 3.

According to a theory of magnetostriction, the mechanical stress described by a second-rank symmetric tensor σ_{ij} is induced by the magnetic field vector B_i . The stress is linear in the magnetic field,

$$\sigma_{ij} = A_{ijk} B_k,$$

where A_{ijk} is a third-rank tensor which depends only on the material. Show that σ_{ij} can be non-zero only in anisotropic materials.

7B Electromagnetism

Write down Maxwell's equations and show that they imply the conservation of charge.

In a conducting medium of conductivity σ , where $\mathbf{J} = \sigma \mathbf{E}$, show that any charge density decays in time exponentially at a rate to be determined.

8D Quantum Mechanics

From the time-dependent Schrödinger equation for $\psi(x,t)$, derive the equation

$$\frac{\partial \rho}{\partial t} + \frac{\partial j}{\partial x} = 0$$

for $\rho(x,t) = \psi^*(x,t)\psi(x,t)$ and some suitable j(x,t).

Show that $\psi(x,t) = e^{i(kx-\omega t)}$ is a solution of the time-dependent Schrödinger equation with zero potential for suitable $\omega(k)$ and calculate ρ and j. What is the interpretation of this solution?

Paper 1

[TURN OVER

9C Fluid Dynamics

From the general mass-conservation equation, show that the velocity field $\mathbf{u}(\mathbf{x})$ of an incompressible fluid is solenoidal, i.e. that $\nabla \cdot \mathbf{u} = 0$.

Verify that the two-dimensional flow

$$\mathbf{u} = \left(\frac{y}{x^2 + y^2}, \frac{-x}{x^2 + y^2}\right)$$

is solenoidal and find a streamfunction $\psi(x, y)$ such that $\mathbf{u} = (\partial \psi / \partial y, -\partial \psi / \partial x)$.

10H Statistics

Use the generalized likelihood-ratio test to derive Student's t-test for the equality of the means of two populations. You should explain carefully the assumptions underlying the test.

11H Markov Chains

Let $P = (P_{ij})$ be a transition matrix. What does it mean to say that P is (a) irreducible, (b) recurrent?

Suppose that P is irreducible and recurrent and that the state space contains at least two states. Define a new transition matrix \tilde{P} by

$$\tilde{P}_{ij} = \begin{cases} 0 & \text{if } i = j, \\ (1 - P_{ii})^{-1} P_{ij} & \text{if } i \neq j. \end{cases}$$

Prove that \tilde{P} is also irreducible and recurrent.

SECTION II

12H Linear Algebra

Let U and W be subspaces of the finite-dimensional vector space V. Prove that both the sum U + W and the intersection $U \cap W$ are subspaces of V. Prove further that

 $\dim U + \dim W = \dim (U + W) + \dim (U \cap W).$

Let $U,\,W$ be the kernels of the maps $A,B:\mathbb{R}^4\to\mathbb{R}^2$ given by the matrices A and B respectively, where

$$A = \begin{pmatrix} 1 & 2 & -1 & -3 \\ -1 & 1 & 2 & -4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -1 & 2 & 0 \\ 0 & 1 & 2 & -4 \end{pmatrix}.$$

Find a basis for the intersection $U \cap W$, and extend this first to a basis of U, and then to a basis of U + W.

13F Groups, Rings and Modules

State the structure theorem for finitely generated abelian groups. Prove that a finitely generated abelian group A is finite if and only if there exists a prime p such that A/pA = 0.

Show that there exist abelian groups $A \neq 0$ such that A/pA = 0 for all primes p. Prove directly that your example of such an A is not finitely generated.

14G Geometry

Show that for every hyperbolic line L in the hyperbolic plane H there is an isometry of H which is the identity on L but not on all of H. Call it the *reflection* R_L .

Show that every isometry of H is a composition of reflections.

15G Analysis II

State the axioms for a norm on a vector space. Show that the usual Euclidean norm on \mathbb{R}^n ,

$$||x|| = (x_1^2 + x_2^2 + \ldots + x_n^2)^{1/2},$$

satisfies these axioms.

Let U be any bounded convex open subset of \mathbb{R}^n that contains 0 and such that if $x \in U$ then $-x \in U$. Show that there is a norm on \mathbb{R}^n , satisfying the axioms, for which U is the set of points in \mathbb{R}^n of norm less than 1.

Paper 1

TURN OVER

16A Complex Methods

Let p and q be two polynomials such that

$$q(z) = \prod_{l=1}^{m} (z - \alpha_l),$$

where $\alpha_1, \ldots, \alpha_m$ are distinct non-real complex numbers and deg $p \leq m-1$. Using contour integration, determine

$$\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} e^{ix} dx \,,$$

carefully justifying all steps.

17B Methods

The equation governing small amplitude waves on a string can be written as

$$\frac{\partial^2 y}{\partial t^2} = \frac{\partial^2 y}{\partial x^2}.$$

The end points x = 0 and x = 1 are fixed at y = 0. At t = 0, the string is held stationary in the waveform,

$$y(x,0) = x(1-x)$$
 in $0 \le x \le 1$.

The string is then released. Find y(x,t) in the subsequent motion.

Given that the energy

$$\int_0^1 \left[\left(\frac{\partial y}{\partial t} \right)^2 + \left(\frac{\partial y}{\partial x} \right)^2 \right] dx$$

is constant in time, show that

$$\sum_{\substack{n \text{ odd}\\n \ge 1}} \frac{1}{n^4} = \frac{\pi^4}{96}.$$

18B Electromagnetism

Inside a volume D there is an electrostatic charge density $\rho(\mathbf{r})$, which induces an electric field $\mathbf{E}(\mathbf{r})$ with associated electrostatic potential $\phi(\mathbf{r})$. The potential vanishes on the boundary of D. The electrostatic energy is

$$W = \frac{1}{2} \int_D \rho \phi \, d^3 \mathbf{r}. \tag{1}$$

Derive the alternative form

$$W = \frac{\epsilon_0}{2} \int_D E^2 d^3 \mathbf{r}.$$
 (2)

A capacitor consists of three identical and parallel thin metal circular plates of area A positioned in the planes z = -H, z = a and z = H, with -H < a < H, with centres on the z axis, and at potentials 0, V and 0 respectively. Find the electrostatic energy stored, verifying that expressions (1) and (2) give the same results. Why is the energy minimal when a = 0?

19D Quantum Mechanics

The angular momentum operators are $\mathbf{L} = (L_1, L_2, L_3)$. Write down their commutation relations and show that $[L_i, \mathbf{L}^2] = 0$. Let

$$L_{\pm} = L_1 \pm i L_2 \,,$$

and show that

$$\mathbf{L}^2 = L_- L_+ + L_3^2 + \hbar L_3 \,.$$

Verify that $\mathbf{L}f(r) = 0$, where $r^2 = x_i x_i$, for any function f. Show that

$$L_3(x_1 + ix_2)^n f(r) = n\hbar(x_1 + ix_2)^n f(r), \qquad L_+(x_1 + ix_2)^n f(r) = 0,$$

for any integer *n*. Show that $(x_1 + ix_2)^n f(r)$ is an eigenfunction of \mathbf{L}^2 and determine its eigenvalue. Why must $L_{-}(x_1 + ix_2)^n f(r)$ be an eigenfunction of \mathbf{L}^2 ? What is its eigenvalue?

[TURN OVER

20C Fluid Dynamics

A layer of water of depth h flows along a wide channel with uniform velocity (U, 0), in Cartesian coordinates (x, y), with x measured downstream. The bottom of the channel is at y = -h, and the free surface of the water is at y = 0. Waves are generated on the free surface so that it has the new position $y = \eta(x, t) = a e^{i(\omega t - kx)}$.

Write down the equation and the full nonlinear boundary conditions for the velocity potential ϕ (for the perturbation velocity) and the motion of the free surface.

By linearizing these equations about the state of uniform flow, show that

$$\frac{\partial \eta}{\partial t} + U \frac{\partial \eta}{\partial x} = \frac{\partial \phi}{\partial y}, \qquad \frac{\partial \phi}{\partial t} + U \frac{\partial \phi}{\partial x} + g\eta = 0 \qquad \text{on} \quad y = 0,$$
$$\frac{\partial \phi}{\partial y} = 0 \qquad \qquad \text{on} \quad y = -h,$$

where g is the acceleration due to gravity.

Hence, determine the dispersion relation for small-amplitude surface waves

$$(\omega - kU)^2 = gk \tanh kh.$$

21H Statistics

State and prove the Rao–Blackwell Theorem.

Suppose that X_1, X_2, \ldots, X_n are independent, identically-distributed random variables with distribution

$$P(X_1 = r) = p^{r-1}(1-p), \quad r = 1, 2, \dots,$$

where p, 0 , is an unknown parameter. Determine a one-dimensional sufficient statistic, <math>T, for p.

By first finding a simple unbiased estimate for p, or otherwise, determine an unbiased estimate for p which is a function of T.

Paper 1

22H Markov Chains

Consider the Markov chain with state space $\{1, 2, 3, 4, 5, 6\}$ and transition matrix

$\int 0$	0	$\frac{1}{2}$	0	0	$\frac{1}{2}$
$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	0
$\frac{1}{2}$	0	$\frac{1}{2}$	0	$\frac{1}{5}$	$\frac{1}{2}$
$ \frac{\frac{1}{5}}{\frac{1}{3}} \frac{\frac{1}{6}}{\frac{1}{6}} 0 $	$\begin{array}{c} \frac{1}{5} \\ 0 \\ \frac{1}{6} \\ 0 \end{array}$	$\frac{1}{2}$ $\frac{1}{5}$ $\frac{1}{3}$ $\frac{1}{6}$ 0	$\frac{\frac{1}{5}}{\frac{1}{6}}$	$\frac{1}{6}$	$\begin{array}{c} \frac{1}{2} \\ 0 \\ \frac{1}{3} \\ \frac{1}{6} \\ 0 \end{array}$
$ \begin{bmatrix} 0\\ 0 \end{bmatrix} $	0	0	0	$\frac{1}{6}$	$\begin{bmatrix} 0\\0 \end{bmatrix}$
$\left(\frac{1}{4}\right)$	0	$\frac{1}{2}$	0	0	$\frac{1}{4}$

Determine the communicating classes of the chain, and for each class indicate whether it is open or closed.

Suppose that the chain starts in state 2; determine the probability that it ever reaches state 6.

Suppose that the chain starts in state 3; determine the probability that it is in state 6 after exactly n transitions, $n \ge 1$.

Paper 1