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1/I/1F Analysis II

Let E be a subset of Rn. Prove that the following conditions on E are equivalent:

(i) E is closed and bounded.

(ii) E has the Bolzano–Weierstrass property (i.e., every sequence in E has a
subsequence convergent to a point of E).

(iii) Every continuous real-valued function on E is bounded.

[The Bolzano–Weierstrass property for bounded closed intervals in R1 may be
assumed.]

1/II/10F Analysis II

Explain briefly what is meant by a metric space, and by a Cauchy sequence in a
metric space.

A function d : X × X → R is called a pseudometric on X if it satisfies all the
conditions for a metric except the requirement that d(x, y) = 0 implies x = y. If d is a
pseudometric on X, show that the binary relation R on X defined by xR y ⇔ d(x, y) = 0
is an equivalence relation, and that the function d induces a metric on the set X/R of
equivalence classes.

Now let (X, d) be a metric space. If (xn) and (yn) are Cauchy sequences in X,
show that the sequence whose nth term is d(xn, yn) is a Cauchy sequence of real numbers.
Deduce that the function d defined by

d((xn), (yn)) = lim
n→∞

d(xn, yn)

is a pseudometric on the set C of all Cauchy sequences in X. Show also that there is an
isometric embedding (that is, a distance-preserving mapping) X → C/R, where R is the
equivalence relation on C induced by the pseudometric d as in the previous paragraph.
Under what conditions on X is X → C/R bijective? Justify your answer.

2/I/1F Analysis II

Explain what it means for a function f : R2 → R1 to be differentiable at a point
(a, b). Show that if the partial derivatives ∂f/∂x and ∂f/∂y exist in a neighbourhood of
(a, b) and are continuous at (a, b) then f is differentiable at (a, b).

Let
f(x, y) =

xy

x2 + y2
((x, y) 6= (0, 0))

and f(0, 0) = 0. Do the partial derivatives of f exist at (0, 0)? Is f differentiable at (0, 0)?
Justify your answers.
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2/II/10F Analysis II

Let V be the space of n× n real matrices. Show that the function

N(A) = sup {‖Ax‖ : x ∈ Rn, ‖x‖ = 1}

(where ‖ − ‖ denotes the usual Euclidean norm on Rn) defines a norm on V . Show also
that this norm satisfies N(AB) 6 N(A)N(B) for all A and B, and that if N(A) < ε then
all entries of A have absolute value less than ε. Deduce that any function f : V → R such
that f(A) is a polynomial in the entries of A is continuously differentiable.

Now let d : V → R be the mapping sending a matrix to its determinant. By
considering d(I +H) as a polynomial in the entries of H, show that the derivative d′(I) is
the function H 7→ trH. Deduce that, for any A, d′(A) is the mapping H 7→ tr((adjA)H),
where adjA is the adjugate of A, i.e. the matrix of its cofactors.

[Hint: consider first the case when A is invertible. You may assume the results that
the set U of invertible matrices is open in V and that its closure is the whole of V , and
the identity (adjA)A = detA.I.]

3/I/1F Analysis II

Let V be the vector space of continuous real-valued functions on [−1, 1]. Show that
the function

‖f‖ =
∫ 1

−1

|f(x)| dx

defines a norm on V .

Let fn(x) = xn. Show that (fn) is a Cauchy sequence in V . Is (fn) convergent?
Justify your answer.

3/II/11F Analysis II

State and prove the Contraction Mapping Theorem.

Let (X, d) be a bounded metric space, and let F denote the set of all continuous
maps X → X. Let ρ : F × F → R be the function

ρ(f, g) = sup{d(f(x), g(x)) : x ∈ X} .

Show that ρ is a metric on F , and that (F, ρ) is complete if (X, d) is complete. [You may
assume that a uniform limit of continuous functions is continuous.]

Now suppose that (X, d) is complete. Let C ⊆ F be the set of contraction mappings,
and let θ : C → X be the function which sends a contraction mapping to its unique fixed
point. Show that θ is continuous. [Hint: fix f ∈ C and consider d(θ(g), f(θ(g))), where
g ∈ C is close to f .]
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4/I/1F Analysis II

Explain what it means for a sequence of functions (fn) to converge uniformly to
a function f on an interval. If (fn) is a sequence of continuous functions converging
uniformly to f on a finite interval [a, b], show that∫ b

a

fn(x) dx −→
∫ b

a

f(x) dx as n→∞ .

Let fn(x) = x exp(−x/n)/n2, x > 0. Does fn → 0 uniformly on [0,∞)? Does∫∞
0
fn(x) dx→ 0? Justify your answers.

4/II/10F Analysis II

Let (fn)n>1 be a sequence of continuous complex-valued functions defined on a set
E ⊆ C, and converging uniformly on E to a function f . Prove that f is continuous on E.

State the Weierstrass M -test for uniform convergence of a series
∑∞

n=1 un(z) of
complex-valued functions on a set E.

Now let f(z) =
∑∞

n=1 un(z), where

un(z) = n−2sec (πz/2n) .

Prove carefully that f is continuous on C \ Z.

[You may assume the inequality | cos z| > | cos(Re z)|.]
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1/I/7B Complex Methods

Let u(x, y) and v(x, y) be a pair of conjugate harmonic functions in a domain D.
Prove that

U(x, y) = e−2uv cos(u2 − v2) and V (x, y) = e−2uv sin(u2 − v2)

also form a pair of conjugate harmonic functions in D.

1/II/16B Complex Methods

Sketch the region A which is the intersection of the discs

D0 = {z ∈ C : |z| < 1} and D1 = {z ∈ C : |z − (1 + i)| < 1} .

Find a conformal mapping that maps A onto the right half-plane H = {z ∈ C : Re z > 0}.
Also find a conformal mapping that maps A onto D0.

[Hint: You may find it useful to consider maps of the form w(z) = az+b
cz+d .]

2/I/7B Complex Methods

(a) Using the residue theorem, evaluate∫
|z|=1

(
z − 1

z

)2n
dz

z
.

(b) Deduce that ∫ 2π

0

sin2nt dt =
π

22n−1

(2n)!
(n!)2

.
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2/II/16B Complex Methods

(a) Show that if f satisfies the equation

f ′′(x)− x2f(x) = µf(x), x ∈ R, (∗)

where µ is a constant, then its Fourier transform f̂ satisfies the same equation, i.e.

f̂ ′′(λ)− λ2f̂(λ) = µf̂(λ) .

(b) Prove that, for each n ≥ 0, there is a polynomial pn(x) of degree n, unique up
to multiplication by a constant, such that

fn(x) = pn(x)e−x2/2

is a solution of (∗) for some µ = µn.

(c) Using the fact that g(x) = e−x2/2 satisfies ĝ = cg for some constant c, show
that the Fourier transform of fn has the form

f̂n(λ) = qn(λ)e−λ2/2

where qn is also a polynomial of degree n.

(d) Deduce that the fn are eigenfunctions of the Fourier transform operator, i.e.
f̂n(x) = cnfn(x) for some constants cn.

4/I/8B Complex Methods

Find the Laurent series centred on 0 for the function

f(z) =
1

(z − 1)(z − 2)

in each of the domains

(a) |z| < 1 , (b) 1 < |z| < 2 , (c) |z| > 2.
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4/II/17B Complex Methods

Let
f(z) =

zm

1 + zn
, n > m+ 1, m, n ∈ N,

and let CR be the boundary of the domain

DR = {z = reiθ : 0 < r < R, 0 < θ < 2π
n }, R > 1.

(a) Using the residue theorem, determine∫
CR

f(z) dz.

(b) Show that the integral of f(z) along the circular part γR of CR tends to 0 as
R→∞.

(c) Deduce that ∫ ∞

0

xm

1 + xn
dx =

π

n sin π(m+1)
n

.
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1/I/6C Fluid Dynamics

An unsteady fluid flow has velocity field given in Cartesian coordinates (x, y, z)
by u = (1, xt, 0), where t denotes time. Dye is released into the fluid from the origin
continuously. Find the position at time t of the dye particle that was released at time s
and hence show that the dye streak lies along the curve

y = 1
2 tx

2 − 1
6x

3.

1/II/15C Fluid Dynamics

Starting from the Euler equations for incompressible, inviscid flow

ρ
Du
Dt

= −∇p, ∇ · u = 0,

derive the vorticity equation governing the evolution of the vorticity ω = ∇× u.

Consider the flow

u = β(−x,−y, 2z) + Ω(t)(−y, x, 0),

in Cartesian coordinates (x, y, z), where t is time and β is a constant. Compute the
vorticity and show that it evolves in time according to

ω = ω0e2βtk,

where ω0 is the initial magnitude of the vorticity and k is a unit vector in the z-direction.

Show that the material curve C(t) that takes the form

x2 + y2 = 1 and z = 1

at t = 0 is given later by

x2 + y2 = a2(t) and z =
1

a2(t)
,

where the function a(t) is to be determined.

Calculate the circulation of u around C and state how this illustrates Kelvin’s
circulation theorem.
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3/I/8C Fluid Dynamics

Show that the velocity field

u = U +
Γ× r
2πr2

,

where U = (U, 0, 0), Γ = (0, 0,Γ) and r = (x, y, 0) in Cartesian coordinates (x, y, z),
represents the combination of a uniform flow and the flow due to a line vortex. Define and
evaluate the circulation of the vortex.

Show that ∮
CR

(u · n)u dl→ 1
2Γ×U as R→∞,

where CR is a circle x2 + y2 = R2, z = const. Explain how this result is related to the lift
force on a two-dimensional aerofoil or other obstacle.

3/II/18C Fluid Dynamics

State the form of Bernoulli’s theorem appropriate for an unsteady irrotational
motion of an inviscid incompressible fluid in the absence of gravity.

Water of density ρ is driven through a tube of length L and internal radius a by
the pressure exerted by a spherical, water-filled balloon of radius R(t) attached to one end
of the tube. The balloon maintains the pressure of the water entering the tube at 2γ/R in
excess of atmospheric pressure, where γ is a constant. It may be assumed that the water
exits the tube at atmospheric pressure. Show that

R3R̈+ 2R2Ṙ2 = − γa
2

2ρL
. (†)

Solve equation (†), by multiplying through by 2RṘ or otherwise, to obtain

t = R2
0

(
2ρL
γa2

)1/2 [
π

4
− θ

2
+

1
4

sin 2θ
]
,

where θ = sin−1(R/R0) and R0 is the initial radius of the balloon. Hence find the time
when R = 0.

Part IB 2003



10

4/I/7C Fluid Dynamics

Inviscid fluid issues vertically downwards at speed u0 from a circular tube of radius
a. The fluid falls onto a horizontal plate a distance H below the end of the tube, where it
spreads out axisymmetrically.

Show that while the fluid is falling freely it has speed

u = u0

[
1 +

2g
u2

0

(H − z)
]1/2

,

and occupies a circular jet of radius

R = a

[
1 +

2g
u2

0

(H − z)
]−1/4

,

where z is the height above the plate and g is the acceleration due to gravity.

Show further that along the plate, at radial distances r � a (i.e. far from the falling
jet), where the fluid is flowing almost horizontally, it does so as a film of height h(r), where

a4

4r2h2
= 1 +

2g
u2

0

(H − h).
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4/II/16C Fluid Dynamics

Define the terms irrotational flow and incompressible flow. The two-dimensional
flow of an incompressible fluid is given in terms of a streamfunction ψ(x, y) as

u = (u, v) =
(
∂ψ

∂y
,−∂ψ

∂x

)
in Cartesian coordinates (x, y). Show that the line integral∫ x2

x1

u · n dl = ψ(x2)− ψ(x1)

along any path joining the points x1 and x2, where n is the unit normal to the path.
Describe how this result is related to the concept of mass conservation.

Inviscid, incompressible fluid is contained in the semi-infinite channel x > 0,
0 < y < 1, which has rigid walls at x = 0 and at y = 0, 1, apart from a small opening
at the origin through which the fluid is withdrawn with volume flux m per unit distance
in the third dimension. Show that the streamfunction for irrotational flow in the channel
can be chosen (up to an additive constant) to satisfy the equation

∂2ψ

∂x2
+
∂2ψ

∂y2
= 0

and boundary conditions

ψ = 0 on y = 0, x > 0,
ψ = −m on x = 0, 0 < y < 1,
ψ = −m on y = 1, x > 0,
ψ → −my as x→∞,

if it is assumed that the flow at infinity is uniform. Solve the boundary-value problem
above using separation of variables to obtain

ψ = −my +
2m
π

∞∑
n=1

1
n

sinnπy e−nπx.
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2/I/4E Further Analysis

Let τ1 be the collection of all subsets A ⊂ N such that A = ∅ or N \A is finite. Let
τ2 be the collection of all subsets of N of the form In = {n, n+1, n+2, . . .}, together with
the empty set. Prove that τ1 and τ2 are both topologies on N.

Show that a function f from the topological space (N, τ1) to the topological space
(N, τ2) is continuous if and only if one of the following alternatives holds:

(i) f(n) →∞ as n→∞;

(ii) there exists N ∈ N such that f(n) = N for all but finitely many n and f(n) 6 N
for all n.

2/II/13E Further Analysis

(a) Let f : [1,∞) → C be defined by f(t) = t−1e2πit and let X be the image of f .
Prove that X ∪ {0} is compact and path-connected. [Hint: you may find it helpful to set
s = t−1.]

(b) Let g : [1,∞) → C be defined by g(t) = (1 + t−1)e2πit, let Y be the image of
g and let D be the closed unit disc {z ∈ C : |z| ≤ 1}. Prove that Y ∪ D is connected.
Explain briefly why it is not path-connected.

3/I/3E Further Analysis

(a) Let f : C → C be an analytic function such that |f(z)| 6 1 + |z|1/2 for every z.
Prove that f is constant.

(b) Let f : C → C be an analytic function such that Re (f(z)) > 0 for every z.
Prove that f is constant.

3/II/13E Further Analysis

(a) State Taylor’s Theorem.

(b) Let f(z) =
∑∞

n=0 an(z−z0)n and g(z) =
∑∞

n=0 bn(z−z0)n be defined whenever
|z−z0| < r. Suppose that zk → z0 as k →∞, that no zk equals z0 and that f(zk) = g(zk)
for every k. Prove that an = bn for every n > 0.

(c) Let D be a domain, let z0 ∈ D and let (zk) be a sequence of points in D that
converges to z0, but such that no zk equals z0. Let f : D → C and g : D → C be analytic
functions such that f(zk) = g(zk) for every k. Prove that f(z) = g(z) for every z ∈ D.

(d) Let D be the domain C\{0}. Give an example of an analytic function f : D → C
such that f(n−1) = 0 for every positive integer n but f is not identically 0.

(e) Show that any function with the property described in (d) must have an essential
singularity at the origin.
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4/I/4E Further Analysis

(a) State and prove Morera’s Theorem.

(b) Let D be a domain and for each n ∈ N let fn : D → C be an analytic function.
Suppose that f : D → C is another function and that fn → f uniformly on D. Prove that
f is analytic.

4/II/13E Further Analysis

(a) State the residue theorem and use it to deduce the principle of the argument,
in a form that involves winding numbers.

(b) Let p(z) = z5 + z. Find all z such that |z| = 1 and Im (p(z)) = 0. Calculate
Re (p(z)) for each such z. [It will be helpful to set z = eiθ. You may use the addition
formulae sinα+ sinβ = 2 sin(α+β

2 ) cos(α−β
2 ) and cosα+ cosβ = 2 cos(α+β

2 ) cos(α−β
2 ).]

(c) Let γ : [0, 2π] → C be the closed path θ 7→ eiθ. Use your answer to (b) to give
a rough sketch of the path p ◦ γ, paying particular attention to where it crosses the real
axis.

(d) Hence, or otherwise, determine for every real t the number of z (counted with
multiplicity) such that |z| < 1 and p(z) = t. (You need not give rigorous justifications for
your calculations.)
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1/I/4F Geometry

Describe the geodesics (that is, hyperbolic straight lines) in either the disc model
or the half-plane model of the hyperbolic plane. Explain what is meant by the statements
that two hyperbolic lines are parallel, and that they are ultraparallel.

Show that two hyperbolic lines l and l′ have a unique common perpendicular if and
only if they are ultraparallel.

[You may assume standard results about the group of isometries of whichever model
of the hyperbolic plane you use.]

1/II/13F Geometry

Write down the Riemannian metric in the half-plane model of the hyperbolic plane.
Show that Möbius transformations mapping the upper half-plane to itself are isometries
of this model.

Calculate the hyperbolic distance from ib to ic, where b and c are positive real
numbers. Assuming that the hyperbolic circle with centre ib and radius r is a Euclidean
circle, find its Euclidean centre and radius.

Suppose that a and b are positive real numbers for which the points ib and a+ ib
of the upper half-plane are such that the hyperbolic distance between them coincides with
the Euclidean distance. Obtain an expression for b as a function of a. Hence show that,
for any b with 0 < b < 1, there is a unique positive value of a such that the hyperbolic
distance between ib and a+ ib coincides with the Euclidean distance.

3/I/4F Geometry

Show that any isometry of Euclidean 3-space which fixes the origin can be written
as a composite of at most three reflections in planes through the origin, and give (with
justification) an example of an isometry for which three reflections are necessary.

3/II/14F Geometry

State and prove the Gauss–Bonnet formula for the area of a spherical triangle.
Deduce a formula for the area of a spherical n-gon with angles α1, α2, . . . , αn. For what
range of values of α does there exist a (convex) regular spherical n-gon with angle α?

Let ∆ be a spherical triangle with angles π/p, π/q and π/r where p, q, r are integers,
and let G be the group of isometries of the sphere generated by reflections in the three
sides of ∆. List the possible values of (p, q, r), and in each case calculate the order
of the corresponding group G. If (p, q, r) = (2, 3, 5), show how to construct a regular
dodecahedron whose group of symmetries is G.

[You may assume that the images of ∆ under the elements of G form a tessellation
of the sphere.]
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1/I/5E Linear Mathematics

Let V be the subset of R5 consisting of all quintuples (a1, a2, a3, a4, a5) such that

a1 + a2 + a3 + a4 + a5 = 0

and
a1 + 2a2 + 3a3 + 4a4 + 5a5 = 0 .

Prove that V is a subspace of R5. Solve the above equations for a1 and a2 in terms of
a3, a4 and a5. Hence, exhibit a basis for V , explaining carefully why the vectors you give
form a basis.

1/II/14E Linear Mathematics

(a) Let U,U ′ be subspaces of a finite-dimensional vector space V . Prove that
dim(U + U ′) = dimU + dimU ′ − dim(U ∩ U ′).

(b) Let V and W be finite-dimensional vector spaces and let α and β be linear
maps from V to W . Prove that

rank(α+ β) 6 rankα+ rankβ .

(c) Deduce from this result that

rank(α+ β) > |rankα− rankβ| .

(d) Let V = W = Rn and suppose that 1 6 r 6 s 6 n. Exhibit linear maps
α, β : V → W such that rankα = r, rankβ = s and rank(α + β) = s − r. Suppose that
r + s > n. Exhibit linear maps α, β : V → W such that rankα = r, rankβ = s and
rank (α+ β) = n.

2/I/6E Linear Mathematics

Let a1, a2, . . . , an be distinct real numbers. For each i let vi be the vector
(1, ai, a

2
i , . . . , a

n−1
i ). Let A be the n × n matrix with rows v1,v2, . . . ,vn and let c be

a column vector of size n. Prove that Ac = 0 if and only if c = 0. Deduce that the vectors
v1,v2, . . . ,vn span Rn.

[You may use general facts about matrices if you state them clearly.]

Part IB 2003



16

2/II/15E Linear Mathematics

(a) Let A = (aij) be an m × n matrix and for each k 6 n let Ak be the m × k
matrix formed by the first k columns of A. Suppose that n > m. Explain why the nullity
of A is non-zero. Prove that if k is minimal such that Ak has non-zero nullity, then the
nullity of Ak is 1.

(b) Suppose that no column of A consists entirely of zeros. Deduce from (a) that
there exist scalars b1, . . . , bk (where k is defined as in (a)) such that

∑k
j=1 aijbj = 0 for

every i 6 m, but whenever λ1, . . . , λk are distinct real numbers there is some i 6 m such
that

∑k
j=1 aijλjbj 6= 0.

(c) Now let v1,v2, . . . ,vm and w1,w2, . . . ,wm be bases for the same real m-
dimensional vector space. Let λ1, λ2, . . . , λn be distinct real numbers such that for every j
the vectors v1 +λjw1, . . . ,vm +λjwm are linearly dependent. For each j, let a1j , . . . , amj

be scalars, not all zero, such that
∑m

i=1 aij(vi + λjwi) = 0. By applying the result of (b)
to the matrix (aij), deduce that n 6 m.

(d) It follows that the vectors v1+λw1, . . . ,vm+λwm are linearly dependent for at
most m values of λ. Explain briefly how this result can also be proved using determinants.

3/I/7G Linear Mathematics

Let α be an endomorphism of a finite-dimensional real vector space U and let β be
another endomorphism of U that commutes with α. If λ is an eigenvalue of α, show that
β maps the kernel of α − λ ι into itself, where ι is the identity map. Suppose now that
α is diagonalizable with n distinct real eigenvalues where n = dimU . Prove that if there
exists an endomorphism β of U such that α = β2, then λ > 0 for all eigenvalues λ of α.

3/II/17G Linear Mathematics

Define the determinant det(A) of an n × n complex matrix A. Let A1, . . . , An

be the columns of A, let σ be a permutation of {1, . . . , n} and let Aσ be the matrix
whose columns are Aσ(1), . . . , Aσ(n). Prove from your definition of determinant that
det(Aσ) = ε(σ) det(A), where ε(σ) is the sign of the permutation σ. Prove also that
det(A) = det(At).

Define the adjugate matrix adj(A) and prove from your definitions that A adj(A) =
adj(A)A = det(A) I, where I is the identity matrix. Hence or otherwise, prove that if
det(A) 6= 0, then A is invertible.

Let C and D be real n × n matrices such that the complex matrix C + iD is
invertible. By considering det(C + λD) as a function of λ or otherwise, prove that there
exists a real number λ such that C + λD is invertible. [You may assume that if a matrix
A is invertible, then det(A) 6= 0.]

Deduce that if two real matrices A and B are such that there exists an invertible
complex matrix P with P−1AP = B, then there exists an invertible real matrix Q such
that Q−1AQ = B.
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4/I/6G Linear Mathematics

Let α be an endomorphism of a finite-dimensional real vector space U such that
α2 = α. Show that U can be written as the direct sum of the kernel of α and the image of
α. Hence or otherwise, find the characteristic polynomial of α in terms of the dimension
of U and the rank of α. Is α diagonalizable? Justify your answer.

4/II/15G Linear Mathematics

Let α ∈ L(U, V ) be a linear map between finite-dimensional vector spaces. Let

M l(α) = {β ∈ L(V,U) : β α = 0} and

Mr(α) = {β ∈ L(V,U) : αβ = 0} .

(a) Prove that M l(α) and Mr(α) are subspaces of L(V,U) of dimensions

dimM l(α) = (dimV − rankα) dimU and

dimMr(α) = dim ker(α) dimV .

[You may use the result that there exist bases in U and V so that α is represented by(
Ir 0
0 0

)
,

where Ir is the r × r identity matrix and r is the rank of α.]

(b) Let Φ: L(U, V ) → L(V ∗, U∗) be given by Φ(α) = α∗, where α∗ is the dual map
induced by α. Prove that Φ is an isomorphism. [You may assume that Φ is linear, and
you may use the result that a finite-dimensional vector space and its dual have the same
dimension.]

(c) Prove that

Φ(M l(α)) = Mr(α∗) and Φ(Mr(α)) = M l(α∗).

[You may use the results that (β α)∗ = α∗ β∗ and that β∗∗ can be identified with β under
the canonical isomorphism between a vector space and its double dual.]

(d) Conclude that rank(α) = rank(α∗).
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1/I/2D Methods

Fermat’s principle of optics states that the path of a light ray connecting two points
will be such that the travel time t is a minimum. If the speed of light varies continuously
in a medium and is a function c(y) of the distance from the boundary y = 0, show that
the path of a light ray is given by the solution to

c(y)y′′ + c′(y)(1 + y′2) = 0 ,

where y′ = dy
dx , etc. Show that the path of a light ray in a medium where the speed of

light c is a constant is a straight line. Also find the path from (0, 0) to (1, 0) if c(y) = y,
and sketch it.

1/II/11D Methods

(a) Determine the Green’s function G(x, ξ) for the operator d2

dx2 + k2 on [0, π] with
Dirichlet boundary conditions by solving the boundary value problem

d2G

dx2
+ k2G = δ(x− ξ) , G(0) = 0, G(π) = 0

when k is not an integer.

(b) Use the method of Green’s functions to solve the boundary value problem

d2y

dx2
+ k2y = f(x) , y(0) = a, y(π) = b

when k is not an integer.
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2/I/2C Methods

Explain briefly why the second-rank tensor∫
S

xixj dS(x)

is isotropic, where S is the surface of the unit sphere centred on the origin.

A second-rank tensor is defined by

Tij(y) =
∫

S

(yi − xi)(yj − xj) dS(x) ,

where S is the surface of the unit sphere centred on the origin. Calculate T (y) in the form

Tij = λδij + µyiyj ,

where λ and µ are to be determined.

By considering the action of T on y and on vectors perpendicular to y, determine
the eigenvalues and associated eigenvectors of T .

2/II/11C Methods

State the transformation law for an nth-rank tensor Tij···k.

Show that the fourth-rank tensor

cijkl = α δij δkl + β δik δjl + γ δil δjk

is isotropic for arbitrary scalars α, β and γ.

The stress σij and strain eij in a linear elastic medium are related by

σij = cijkl ekl.

Given that eij is symmetric and that the medium is isotropic, show that the stress-strain
relationship can be written in the form

σij = λ ekk δij + 2µ eij .

Show that eij can be written in the form eij = pδij + dij , where dij is a traceless
tensor and p is a scalar to be determined. Show also that necessary and sufficient conditions
for the stored elastic energy density E = 1

2σij eij to be non-negative for any deformation
of the solid are that

µ ≥ 0 and λ ≥ −2
3µ.
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3/I/2D Methods

Consider the path between two arbitrary points on a cone of interior angle 2α.
Show that the arc-length of the path r(θ) is given by∫

(r2 + r′2cosec2 α)1/2 dθ ,

where r′ = dr
dθ . By minimizing the total arc-length between the points, determine the

equation for the shortest path connecting them.

3/II/12D Methods

The transverse displacement y(x, t) of a stretched string clamped at its ends x = 0, l
satisfies the equation

∂2y

∂t2
= c2

∂2y

∂x2
− 2k

∂y

∂t
, y(x, 0) = 0,

∂y

∂t
(x, 0) = δ(x− a) ,

where c > 0 is the wave velocity, and k > 0 is the damping coefficient. The initial
conditions correspond to a sharp blow at x = a at time t = 0.

(a) Show that the subsequent motion of the string is given by

y(x, t) =
1√

α2
n − k2

∑
n

2e−kt sin
αna

c
sin

αnx

c
sin /(

√
α2

n − k2 t)

where αn = πcn/l.

(b) Describe what happens in the limits of small and large damping. What critical
parameter separates the two cases?

4/I/2D Methods

Consider the wave equation in a spherically symmetric coordinate system

∂2u(r, t)
∂t2

= c2∆u(r, t) ,

where ∆u = 1
r

∂2

∂r2 (ru) is the spherically symmetric Laplacian operator.

(a) Show that the general solution to the equation above is

u(r, t) = 1
r [f(r + ct) + g(r − ct)] ,

where f(x), g(x) are arbitrary functions.

(b) Using separation of variables, determine the wave field u(r, t) in response to a
pulsating source at the origin u(0, t) = A sinωt.
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4/II/11D Methods

The velocity potential φ(r, θ) for inviscid flow in two dimensions satisfies the Laplace
equation

∆φ =
[
1
r

∂

∂r

(
r
∂

∂r

)
+

1
r2

∂2

∂θ2

]
φ(r, θ) = 0 .

(a) Using separation of variables, derive the general solution to the equation above
that is single-valued and finite in each of the domains (i) 0 6 r 6 a; (ii) a 6 r <∞.

(b) Assuming φ is single-valued, solve the Laplace equation subject to the boundary
conditions ∂φ

∂r = 0 at r = a, and ∂φ
∂r → U cos θ as r → ∞. Sketch the lines of constant

potential.
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2/I/5B Numerical Analysis

Let

A =


1 a a2 a3

a3 1 a a2

a2 a3 1 a
a a2 a3 1

 , b =


γ
0
0
γa

 , γ = 1− a4 6= 0.

Find the LU factorization of the matrix A and use it to solve the system Ax = b.

2/II/14B Numerical Analysis

Let
f ′′(0) ≈ a0f(−1) + a1f(0) + a2f(1) = µ(f)

be an approximation of the second derivative which is exact for f ∈ P2, the set of
polynomials of degree ≤ 2, and let

e(f) = f ′′(0)− µ(f)

be its error.

(a) Determine the coefficients a0, a1, a2.

(b) Using the Peano kernel theorem prove that, for f ∈ C3[−1, 1], the set of three-
times continuously differentiable functions, the error satisfies the inequality

|e(f)| ≤ 1
3

max
x∈[−1,1]

|f ′′′(x)| .
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3/I/6B Numerical Analysis

Given (n+ 1) distinct points x0, x1, . . . , xn, let

`i(x) =
n∏

k=0
k 6=i

x− xk

xi − xk

be the fundamental Lagrange polynomials of degree n, let

ω(x) =
n∏

i=0

(x− xi),

and let p be any polynomial of degree ≤ n.

(a) Prove that
∑n

i=0 p(xi)`i(x) ≡ p(x).

(b) Hence or otherwise derive the formula

p(x)
ω(x)

=
n∑

i=0

Ai

x− xi
, Ai =

p(xi)
ω′(xi)

,

which is the decomposition of p(x)/ω(x) into partial fractions.

3/II/16B Numerical Analysis

The functions H0,H1, . . . are generated by the Rodrigues formula:

Hn(x) = (−1)nex2 dn

dxn
e−x2

.

(a) Show that Hn is a polynomial of degree n, and that the Hn are orthogonal with
respect to the scalar product

(f, g) =
∫ ∞

−∞
f(x)g(x)e−x2

dx .

(b) By induction or otherwise, prove that the Hn satisfy the three-term recurrence
relation

Hn+1(x) = 2xHn(x)− 2nHn−1(x) .

[Hint: you may need to prove the equality H ′
n(x) = 2nHn−1(x) as well.]
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3/I/5H Optimization

Two players A and B play a zero-sum game with the pay-off matrix

B1 B2 B3

A1 4 −2 −5
A2 −2 4 3
A3 −3 6 2
A4 3 −8 −6

Here, the (i, j) entry of the matrix indicates the pay-off to player A if he chooses move Ai

and player B chooses move Bj . Show that the game can be reduced to a zero-sum game
with 2× 2 pay-off matrix.

Determine the value of the game and the optimal strategy for player A.

3/II/15H Optimization

Explain what is meant by a transportation problem where the total demand equals
the total supply. Write the Lagrangian and describe an algorithm for solving such a
problem. Starting from the north-west initial assignment, solve the problem with three
sources and three destinations described by the table

5 9 1 36
3 10 6 84
7 2 5 40

14 68 78

where the figures in the 3×3 box denote the transportation costs (per unit), the right-hand
column denotes supplies, and the bottom row demands.

4/I/5H Optimization

State and prove the Lagrangian sufficiency theorem for a general optimization
problem with constraints.

4/II/14H Optimization

Use the two-phase simplex method to solve the problem

minimize 5x1 − 12x2 + 13x3

subject to 4x1 + 5x2 ≤ 9,
6x1 + 4x2 + x3 ≥ 12,
3x1 + 2x2 − x3 ≤ 3,
xi ≥ 0, i = 1, 2, 3.
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1/I/8G Quadratic Mathematics

Let U and V be finite-dimensional vector spaces. Suppose that b and c are bilinear
forms on U×V and that b is non-degenerate. Show that there exist linear endomorphisms
S of U and T of V such that c(x, y) = b(S(x), y) = b(x, T (y)) for all (x, y) ∈ U × V .

1/II/17G Quadratic Mathematics

(a) Suppose p is an odd prime and a an integer coprime to p. Define the Legendre
symbol (a

p ) and state Euler’s criterion.

(b) Compute (−1
p ) and prove that(

ab

p

)
=

(
a

p

) (
b

p

)
whenever a and b are coprime to p.

(c) Let n be any integer such that 1 6 n 6 p− 2. Let m be the unique integer such
that 1 6 m 6 p− 2 and mn ≡ 1 (mod p). Prove that(

n(n+ 1)
p

)
=

(
1 +m

p

)
.

(d) Find
p−2∑
n=1

(
n(n+ 1)

p

)
.

2/I/8G Quadratic Mathematics

Let U be a finite-dimensional real vector space and b a positive definite symmetric
bilinear form on U×U . Let ψ : U → U be a linear map such that b(ψ(x), y)+b(x, ψ(y)) = 0
for all x and y in U . Prove that if ψ is invertible, then the dimension of U must be even.
By considering the restriction of ψ to its image or otherwise, prove that the rank of ψ is
always even.
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2/II/17G Quadratic Mathematics

Let S be the set of all 2 × 2 complex matrices A which are hermitian, that is,
A∗ = A, where A∗ = A

t
.

(a) Show that S is a real 4-dimensional vector space. Consider the real symmetric
bilinear form b on this space defined by

b(A,B) = 1
2 (tr(AB)− tr(A) tr(B)) .

Prove that b(A,A) = −detA and b(A, I) = − 1
2 tr(A), where I denotes the identity matrix.

(b) Consider the three matrices

A1 =
(

1 0
0 −1

)
, A2 =

(
0 1
1 0

)
and A3 =

(
0 −i
i 0

)
.

Prove that the basis I, A1, A2, A3 of S diagonalizes b. Hence or otherwise find the rank
and signature of b.

(c) Let Q be the set of all 2×2 complex matrices C which satisfy C+C∗ = tr(C) I.
Show that Q is a real 4-dimensional vector space. Given C ∈ Q, put

Φ(C) =
1− i

2
tr(C) I + i C.

Show that Φ takes values in S and is a linear isomorphism between Q and S.

(d) Define a real symmetric bilinear form on Q by setting c(C,D) = − 1
2 tr(C D),

C,D ∈ Q. Show that b(Φ(C),Φ(D)) = c(C,D) for all C,D ∈ Q. Find the rank and
signature of the symmetric bilinear form c defined on Q.

3/I/9G Quadratic Mathematics

Let f(x, y) = ax2 + bxy + cy2 be a binary quadratic form with integer coefficients.
Explain what is meant by the discriminant d of f . State a necessary and sufficient
condition for some form of discriminant d to represent an odd prime number p. Using
this result or otherwise, find the primes p which can be represented by the form x2 + 3y2.
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3/II/19G Quadratic Mathematics

Let U be a finite-dimensional real vector space endowed with a positive definite
inner product. A linear map τ : U → U is said to be an orthogonal projection if τ is
self-adjoint and τ2 = τ .

(a) Prove that for every orthogonal projection τ there is an orthogonal decomposi-
tion

U = ker(τ)⊕ im(τ).

(b) Let φ : U → U be a linear map. Show that if φ2 = φ and φφ∗ = φ∗ φ, where φ∗

is the adjoint of φ, then φ is an orthogonal projection. [You may find it useful to prove
first that if φφ∗ = φ∗ φ, then φ and φ∗ have the same kernel.]

(c) Show that given a subspace W of U there exists a unique orthogonal projection
τ such that im(τ) = W . If W1 and W2 are two subspaces with corresponding orthogonal
projections τ1 and τ2, show that τ2 ◦ τ1 = 0 if and only if W1 is orthogonal to W2.

(d) Let φ : U → U be a linear map satisfying φ2 = φ. Prove that one can define a
positive definite inner product on U such that φ becomes an orthogonal projection.
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1/I/9A Quantum Mechanics

A particle of massm is confined inside a one-dimensional box of length a. Determine
the possible energy eigenvalues.

1/II/18A Quantum Mechanics

What is the significance of the expectation value

〈Q〉 =
∫
ψ∗(x) Q ψ(x)dx

of an observable Q in the normalized state ψ(x)? Let Q and P be two observables. By
considering the norm of (Q+ iλP )ψ for real values of λ, show that

〈Q2〉〈P 2〉 > 1
4 |〈[Q,P ]〉|2 .

The uncertainty ∆Q of Q in the state ψ(x) is defined as

(∆Q)2 = 〈(Q− 〈Q〉)2〉 .

Deduce the generalized uncertainty relation,

∆Q∆P > 1
2 |〈[Q,P ]〉| .

A particle of mass m moves in one dimension under the influence of the potential
1
2mω

2x2. By considering the commutator [x, p], show that the expectation value of the
Hamiltonian satisfies

〈H〉 > 1
2~ω .

2/I/9A Quantum Mechanics

What is meant by the statement than an operator is hermitian?

A particle of mass m moves in the real potential V (x) in one dimension. Show that
the Hamiltonian of the system is hermitian.

Show that
d

dt
〈x〉 =

1
m
〈p〉 ,

d

dt
〈p〉 = 〈−V ′(x)〉 ,

where p is the momentum operator and 〈A〉 denotes the expectation value of the
operator A.
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2/II/18A Quantum Mechanics

A particle of mass m and energy E moving in one dimension is incident from the
left on a potential barrier V (x) given by

V (x) =
{
V0 0 6 x 6 a
0 otherwise

with V0 > 0.

In the limit V0 → ∞, a → 0 with V0a = U held fixed, show that the transmission
probability is

T =
(

1 +
mU2

2E~2

)−1

.

3/II/20A Quantum Mechanics

The radial wavefunction for the hydrogen atom satisfies the equation

−~2

2m
1
r2

d

dr

(
r2
d

dr
R(r)

)
+

~2

2mr2
`(`+ 1)R(r)− e2

4πε0r
R(r) = ER(r) .

Explain the origin of each term in this equation.

The wavefunctions for the ground state and first radially excited state, both with
` = 0, can be written as

R1(r) = N1 exp(−αr)
R2(r) = N2(r + b) exp(−βr)

respectively, where N1 and N2 are normalization constants. Determine α, β, b and the
corresponding energy eigenvalues E1 and E2.

A hydrogen atom is in the first radially excited state. It makes the transition to
the ground state, emitting a photon. What is the frequency of the emitted photon?
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3/I/10A Special Relativity

What are the momentum and energy of a photon of wavelength λ?

A photon of wavelength λ is incident on an electron. After the collision, the photon
has wavelength λ′. Show that

λ′ − λ =
h

mc
(1− cos θ),

where θ is the scattering angle and m is the electron rest mass.

4/I/9A Special Relativity

Prove that the two-dimensional Lorentz transformation can be written in the form

x′ = x coshφ− ct sinhφ
ct′ = −x sinhφ+ ct coshφ,

where tanhφ = v/c. Hence, show that

x′ + ct′ = e−φ(x+ ct)

x′ − ct′ = eφ(x− ct) .

Given that frame S′ has speed v with respect to S and S′′ has speed v′ with respect
to S′, use this formalism to find the speed v′′ of S′′ with respect to S.

[Hint: rotation through a hyperbolic angle φ, followed by rotation through φ′, is
equivalent to rotation through φ+ φ′.]

4/II/18A Special Relativity

A pion of rest mass M decays at rest into a muon of rest mass m < M and a
neutrino of zero rest mass. What is the speed u of the muon?

In the pion rest frame S, the muon moves in the y-direction. A moving observer, in
a frame S′ with axes parallel to those in the pion rest frame, wishes to take measurements
of the decay along the x-axis, and notes that the pion has speed v with respect to the
x-axis. Write down the four-dimensional Lorentz transformation relating S′ to S and
determine the momentum of the muon in S′. Hence show that in S′ the direction of
motion of the muon makes an angle θ with respect to the y-axis, where

tan θ =
M2 +m2

M2 −m2

v

(c2 − v2)1/2
.
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1/I/3H Statistics

Derive the least squares estimators α̂ and β̂ for the coefficients of the simple linear
regression model

Yi = α+ β(xi − x̄) + εi, i = 1, . . . , n,

where x1, . . . , xn are given constants, x̄ = n−1
∑n

i=1 xi, and εi are independent with
E εi = 0, Var εi = σ2, i = 1, . . . , n.

A manufacturer of optical equipment has the following data on the unit cost (in
pounds) of certain custom-made lenses and the number of units made in each order:

No. of units, xi 1 3 5 10 12
Cost per unit, yi 58 55 40 37 22

Assuming that the conditions underlying simple linear regression analysis are met, estimate
the regression coefficients and use the estimated regression equation to predict the unit
cost in an order for 8 of these lenses.

[Hint: for the data above, Sxy =
∑n

i=1(xi − x̄)yi = −257.4.]

1/II/12H Statistics

Suppose that six observations X1, . . . , X6 are selected at random from a normal
distribution for which both the mean µX and the variance σ2

X are unknown, and it is found
that SXX =

∑6
i=1(xi− x̄)2 = 30, where x̄ = 1

6

∑6
i=1 xi. Suppose also that 21 observations

Y1, . . . , Y21 are selected at random from another normal distribution for which both the
mean µY and the variance σ2

Y are unknown, and it is found that SY Y = 40. Derive
carefully the likelihood ratio test of the hypothesis H0: σ2

X = σ2
Y against H1: σ2

X > σ2
Y

and apply it to the data above at the 0.05 level.

[Hint:
Distribution χ2

5 χ2
6 χ2

20 χ2
21 F5,20 F6,21

95% percentile 11.07 12.59 31.41 32.68 2.71 2.57 ]

2/I/3H Statistics

Let X1, . . . , Xn be a random sample from the N(θ, σ2) distribution, and suppose
that the prior distribution for θ is N(µ, τ2), where σ2, µ, τ2 are known. Determine the
posterior distribution for θ, given X1, . . . , Xn, and the best point estimate of θ under both
quadratic and absolute error loss.
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2/II/12H Statistics

An examination was given to 500 high-school students in each of two large cities,
and their grades were recorded as low, medium, or high. The results are given in the table
below.

Low Medium High
City A 103 145 252
City B 140 136 224

Derive carefully the test of homogeneity and test the hypothesis that the distributions of
scores among students in the two cities are the same.

[Hint:
Distribution χ2

1 χ2
2 χ2

3 χ2
5 χ2

6

99% percentile 6.63 9.21 11.34 15.09 16.81
95% percentile 3.84 5.99 7.81 11.07 12.59 ]

4/I/3H Statistics

The following table contains a distribution obtained in 320 tosses of 6 coins and
the corresponding expected frequencies calculated with the formula for the binomial
distribution for p = 0.5 and n = 6.

No. heads 0 1 2 3 4 5 6
Observed frequencies 3 21 85 110 62 32 7
Expected frequencies 5 30 75 100 75 30 5

Conduct a goodness-of-fit test at the 0.05 level for the null hypothesis that the coins are
all fair.

[Hint:
Distribution χ2

5 χ2
6 χ2

7

95% percentile 11.07 12.59 14.07 ]

4/II/12H Statistics

State and prove the Rao–Blackwell theorem.

Suppose that X1, . . . , Xn are independent random variables uniformly distributed
over (θ, 3θ). Find a two-dimensional sufficient statistic T (X) for θ. Show that an unbiased
estimator of θ is θ̂ = X1/2.

Find an unbiased estimator of θ which is a function of T (X) and whose mean square
error is no more than that of θ̂.
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