MATHEMATICAL TRIPOS Part IB

Friday 6 June 2003 1.30 to 4.30

PAPER 4

Before you begin read these instructions carefully.

Each question in Section II carries twice the credit of each question in Section I. You should attempt at most **four** questions from Section I and at most **six** questions from Section II.

Complete answers are preferred to fragments.

Write on one side of the paper only and begin each answer on a separate sheet.

Write legibly; otherwise, you place yourself at a grave disadvantage.

At the end of the examination:

Tie up your answers in separate bundles labelled $\mathbf{A}, \mathbf{B}, \ldots, \mathbf{H}$ according to the code letter affixed to each question, including in the same bundle questions from Sections I and II with the same code letter.

Attach a completed blue cover sheet to each bundle; write the code letter in the box marked 'SECTION' on the cover sheet.

You must also complete a green master cover sheet listing all the questions you have attempted.

Every cover sheet <u>must</u> bear your examination number and desk number.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

SECTION I

1F Analysis II

Explain what it means for a sequence of functions (f_n) to converge uniformly to a function f on an interval. If (f_n) is a sequence of continuous functions converging uniformly to f on a finite interval [a, b], show that

$$\int_{a}^{b} f_{n}(x) dx \longrightarrow \int_{a}^{b} f(x) dx \quad \text{as } n \to \infty .$$

Let $f_n(x) = x \exp(-x/n)/n^2$, $x \ge 0$. Does $f_n \to 0$ uniformly on $[0, \infty)$? Does $\int_0^\infty f_n(x) dx \to 0$? Justify your answers.

2D Methods

Consider the wave equation in a spherically symmetric coordinate system

$$\frac{\partial^2 u(r,t)}{\partial t^2} = c^2 \Delta u(r,t) \,,$$

where $\Delta u = \frac{1}{r} \frac{\partial^2}{\partial r^2} (ru)$ is the spherically symmetric Laplacian operator.

(a) Show that the general solution to the equation above is

$$u(r,t) = \frac{1}{r} [f(r+ct) + g(r-ct)],$$

where f(x), g(x) are arbitrary functions.

(b) Using separation of variables, determine the wave field u(r,t) in response to a pulsating source at the origin $u(0,t) = A \sin \omega t$.

3H Statistics

The following table contains a distribution obtained in 320 tosses of 6 coins and the corresponding expected frequencies calculated with the formula for the binomial distribution for p = 0.5 and n = 6.

No. heads	0	1	2	3	4	5	6
Observed frequencies	3	21	85	110	62	32	$\overline{7}$
Expected frequencies	5	30	75	100	75	30	5

Conduct a goodness-of-fit test at the 0.05 level for the null hypothesis that the coins are all fair.

[Hint:

Distribution	χ_5^2	χ_6^2	χ^2_7	
95% percentile	11.07	12.59	14.07]

4E Further Analysis

(a) State and prove Morera's Theorem.

(b) Let D be a domain and for each $n \in \mathbb{N}$ let $f_n : D \to \mathbb{C}$ be an analytic function. Suppose that $f : D \to \mathbb{C}$ is another function and that $f_n \to f$ uniformly on D. Prove that f is analytic.

5H Optimization

State and prove the Lagrangian sufficiency theorem for a general optimization problem with constraints.

6G Linear Mathematics

Let α be an endomorphism of a finite-dimensional real vector space U such that $\alpha^2 = \alpha$. Show that U can be written as the direct sum of the kernel of α and the image of α . Hence or otherwise, find the characteristic polynomial of α in terms of the dimension of U and the rank of α . Is α diagonalizable? Justify your answer.

7C Fluid Dynamics

Inviscid fluid issues vertically downwards at speed u_0 from a circular tube of radius a. The fluid falls onto a horizontal plate a distance H below the end of the tube, where it spreads out axisymmetrically.

Show that while the fluid is falling freely it has speed

$$u = u_0 \left[1 + \frac{2g}{u_0^2} (H - z) \right]^{1/2},$$

and occupies a circular jet of radius

$$R = a \left[1 + \frac{2g}{u_0^2} (H - z) \right]^{-1/4},$$

where z is the height above the plate and g is the acceleration due to gravity.

Show further that along the plate, at radial distances $r \gg a$ (i.e. far from the falling jet), where the fluid is flowing almost horizontally, it does so as a film of height h(r), where

$$\frac{a^4}{4r^2h^2} = 1 + \frac{2g}{u_0^2}(H-h).$$

[TURN OVER

4

8B Complex Methods

Find the Laurent series centred on 0 for the function

$$f(z) = \frac{1}{(z-1)(z-2)}$$

in each of the domains

(a)
$$|z| < 1$$
, (b) $1 < |z| < 2$, (c) $|z| > 2$.

9A Special Relativity

Prove that the two-dimensional Lorentz transformation can be written in the form

$$\begin{aligned} x' &= x \cosh \phi - ct \sinh \phi \\ ct' &= -x \sinh \phi + ct \cosh \phi, \end{aligned}$$

where $\tanh \phi = v/c$. Hence, show that

$$x' + ct' = e^{-\phi}(x + ct)$$
$$x' - ct' = e^{\phi}(x - ct).$$

Given that frame S' has speed v with respect to S and S'' has speed v' with respect to S', use this formalism to find the speed v'' of S'' with respect to S.

[*Hint:* rotation through a hyperbolic angle ϕ , followed by rotation through ϕ' , is equivalent to rotation through $\phi + \phi'$.]

SECTION II

10F Analysis II

Let $(f_n)_{n \ge 1}$ be a sequence of continuous complex-valued functions defined on a set $E \subseteq \mathbb{C}$, and converging uniformly on E to a function f. Prove that f is continuous on E.

State the Weierstrass *M*-test for uniform convergence of a series $\sum_{n=1}^{\infty} u_n(z)$ of complex-valued functions on a set *E*.

Now let $f(z) = \sum_{n=1}^{\infty} u_n(z)$, where

$$u_n(z) = n^{-2} \sec\left(\pi z/2n\right) \,.$$

Prove carefully that f is continuous on $\mathbb{C} \setminus \mathbb{Z}$.

[You may assume the inequality $|\cos z| \ge |\cos(\operatorname{Re} z)|$.]

11D Methods

The velocity potential $\phi(r, \theta)$ for inviscid flow in two dimensions satisfies the Laplace equation

$$\Delta \phi = \left[\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}\right]\phi(r,\theta) = 0.$$

(a) Using separation of variables, derive the general solution to the equation above that is single-valued and finite in each of the domains (i) $0 \le r \le a$; (ii) $a \le r < \infty$.

(b) Assuming ϕ is single-valued, solve the Laplace equation subject to the boundary conditions $\frac{\partial \phi}{\partial r} = 0$ at r = a, and $\frac{\partial \phi}{\partial r} \to U \cos \theta$ as $r \to \infty$. Sketch the lines of constant potential.

12H Statistics

State and prove the Rao–Blackwell theorem.

Suppose that X_1, \ldots, X_n are independent random variables uniformly distributed over $(\theta, 3\theta)$. Find a two-dimensional sufficient statistic T(X) for θ . Show that an unbiased estimator of θ is $\hat{\theta} = X_1/2$.

Find an unbiased estimator of θ which is a function of T(X) and whose mean square error is no more than that of $\hat{\theta}$.

Paper 4

[TURN OVER

13E Further Analysis

(a) State the residue theorem and use it to deduce the principle of the argument, in a form that involves winding numbers.

(b) Let $p(z) = z^5 + z$. Find all z such that |z| = 1 and $\operatorname{Im}(p(z)) = 0$. Calculate $\operatorname{Re}(p(z))$ for each such z. [It will be helpful to set $z = e^{i\theta}$. You may use the addition formulae $\sin \alpha + \sin \beta = 2 \sin(\frac{\alpha+\beta}{2}) \cos(\frac{\alpha-\beta}{2})$ and $\cos \alpha + \cos \beta = 2 \cos(\frac{\alpha+\beta}{2}) \cos(\frac{\alpha-\beta}{2})$.]

(c) Let $\gamma : [0, 2\pi] \to \mathbb{C}$ be the closed path $\theta \mapsto e^{i\theta}$. Use your answer to (b) to give a rough sketch of the path $p \circ \gamma$, paying particular attention to where it crosses the real axis.

(d) Hence, or otherwise, determine for every real t the number of z (counted with multiplicity) such that |z| < 1 and p(z) = t. (You need not give rigorous justifications for your calculations.)

14H Optimization

Use the two-phase simplex method to solve the problem

minimize	$5x_1$ –	$12x_2$	+	$13x_{3}$		
subject to	$6x_1 +$	$ \begin{array}{ccc} - & 5x_2 \\ - & 4x_2 \\ - & 2x_2 \end{array} $	+	-	\geq	9, 12, 3,
	$x_i \ge 0,$	i =	1, 2,	3.		

 $\overline{7}$

15G Linear Mathematics

Let $\alpha \in L(U, V)$ be a linear map between finite-dimensional vector spaces. Let

$$\begin{split} M^l(\alpha) &= \{\beta \in L(V,U): \ \beta \, \alpha = 0\} \quad \text{ and } \\ M^r(\alpha) &= \{\beta \in L(V,U): \ \alpha \, \beta = 0\} \ . \end{split}$$

(a) Prove that $M^{l}(\alpha)$ and $M^{r}(\alpha)$ are subspaces of L(V, U) of dimensions

 $\dim M^{l}(\alpha) = (\dim V - \operatorname{rank} \alpha) \dim U \qquad \text{and} \qquad$

$$\dim M^{r}(\alpha) = \dim \ker(\alpha) \dim V .$$

[You may use the result that there exist bases in U and V so that α is represented by

$$\begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix},$$

where I_r is the $r \times r$ identity matrix and r is the rank of α .]

(b) Let $\Phi: L(U, V) \to L(V^*, U^*)$ be given by $\Phi(\alpha) = \alpha^*$, where α^* is the dual map induced by α . Prove that Φ is an isomorphism. [You may assume that Φ is linear, and you may use the result that a finite-dimensional vector space and its dual have the same dimension.]

(c) Prove that

$$\Phi(M^{l}(\alpha)) = M^{r}(\alpha^{*})$$
 and $\Phi(M^{r}(\alpha)) = M^{l}(\alpha^{*}).$

[You may use the results that $(\beta \alpha)^* = \alpha^* \beta^*$ and that β^{**} can be identified with β under the canonical isomorphism between a vector space and its double dual.]

(d) Conclude that $rank(\alpha) = rank(\alpha^*)$.

TURN OVER

8

16C Fluid Dynamics

Define the terms *irrotational flow* and *incompressible flow*. The two-dimensional flow of an incompressible fluid is given in terms of a streamfunction $\psi(x, y)$ as

$$\mathbf{u} = (u, v) = \left(\frac{\partial \psi}{\partial y}, -\frac{\partial \psi}{\partial x}\right)$$

in Cartesian coordinates (x, y). Show that the line integral

$$\int_{\mathbf{x_1}}^{\mathbf{x_2}} \mathbf{u} \cdot \mathbf{n} \, dl = \psi(\mathbf{x_2}) - \psi(\mathbf{x_1})$$

along any path joining the points $\mathbf{x_1}$ and $\mathbf{x_2}$, where **n** is the unit normal to the path. Describe how this result is related to the concept of mass conservation.

Inviscid, incompressible fluid is contained in the semi-infinite channel x > 0, 0 < y < 1, which has rigid walls at x = 0 and at y = 0, 1, apart from a small opening at the origin through which the fluid is withdrawn with volume flux m per unit distance in the third dimension. Show that the streamfunction for irrotational flow in the channel can be chosen (up to an additive constant) to satisfy the equation

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = 0$$

and boundary conditions

$$\begin{split} \psi &= 0 & \text{on } y = 0, \ x > 0, \\ \psi &= -m & \text{on } x = 0, \ 0 < y < 1, \\ \psi &= -m & \text{on } y = 1, \ x > 0, \\ \psi &\to -my & \text{as } x \to \infty, \end{split}$$

if it is assumed that the flow at infinity is uniform. Solve the boundary-value problem above using separation of variables to obtain

$$\psi = -my + \frac{2m}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin n\pi y \ e^{-n\pi x}.$$

9

17B Complex Methods

Let

$$f(z) = \frac{z^m}{1+z^n}, \quad n > m+1, \quad m, n \in \mathbb{N},$$

and let C_R be the boundary of the domain

$$D_R = \{ z = re^{i\theta} : 0 < r < R, \quad 0 < \theta < \frac{2\pi}{n} \}, \quad R > 1.$$

(a) Using the residue theorem, determine

$$\int_{C_R} f(z) \, dz.$$

(b) Show that the integral of f(z) along the circular part γ_R of C_R tends to 0 as $R \to \infty$.

(c) Deduce that

$$\int_0^\infty \frac{x^m}{1+x^n} \, dx = \frac{\pi}{n \sin \frac{\pi(m+1)}{n}} \, .$$

18A Special Relativity

A pion of rest mass M decays at rest into a muon of rest mass m < M and a neutrino of zero rest mass. What is the speed u of the muon?

In the pion rest frame S, the muon moves in the y-direction. A moving observer, in a frame S' with axes parallel to those in the pion rest frame, wishes to take measurements of the decay along the x-axis, and notes that the pion has speed v with respect to the x-axis. Write down the four-dimensional Lorentz transformation relating S' to S and determine the momentum of the muon in S'. Hence show that in S' the direction of motion of the muon makes an angle θ with respect to the y-axis, where

$$\tan \theta = \frac{M^2 + m^2}{M^2 - m^2} \frac{v}{(c^2 - v^2)^{1/2}} \,.$$