MATHEMATICAL TRIPOS Part IB

Wednesday 4 June 2003 1.30 to 4.30

PAPER 2

Before you begin read these instructions carefully.

Each question in Section II carries twice the credit of each question in Section I. You should attempt at most **four** questions from Section I and at most **six** questions from Section II.

Complete answers are preferred to fragments.

Write on one side of the paper only and begin each answer on a separate sheet.

Write legibly; otherwise, you place yourself at a grave disadvantage.

At the end of the examination:

Tie up your answers in separate bundles labelled $\mathbf{A}, \mathbf{B}, \ldots, \mathbf{H}$ according to the code letter affixed to each question, including in the same bundle questions from Sections I and II with the same code letter.

Attach a completed blue cover sheet to each bundle; write the code letter in the box marked 'SECTION' on the cover sheet.

You must also complete a green master cover sheet listing all the questions you have attempted.

Every cover sheet <u>must</u> bear your examination number and desk number.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

SECTION I

1F Analysis II

Explain what it means for a function $f : \mathbb{R}^2 \to \mathbb{R}^1$ to be *differentiable* at a point (a, b). Show that if the partial derivatives $\partial f/\partial x$ and $\partial f/\partial y$ exist in a neighbourhood of (a, b) and are continuous at (a, b) then f is differentiable at (a, b).

Let

$$f(x,y) = \frac{xy}{x^2 + y^2} \qquad ((x,y) \neq (0,0))$$

and f(0,0) = 0. Do the partial derivatives of f exist at (0,0)? Is f differentiable at (0,0)? Justify your answers.

2C Methods

Explain briefly why the second-rank tensor

$$\int_{S} x_i x_j \, dS(\mathbf{x})$$

is isotropic, where S is the surface of the unit sphere centred on the origin.

A second-rank tensor is defined by

$$T_{ij}(\mathbf{y}) = \int_S (y_i - x_i)(y_j - x_j) \, dS(\mathbf{x}) \,,$$

where S is the surface of the unit sphere centred on the origin. Calculate $T(\mathbf{y})$ in the form

$$T_{ij} = \lambda \delta_{ij} + \mu y_i y_j \,,$$

where λ and μ are to be determined.

By considering the action of T on \mathbf{y} and on vectors perpendicular to \mathbf{y} , determine the eigenvalues and associated eigenvectors of T.

3H Statistics

Let X_1, \ldots, X_n be a random sample from the $N(\theta, \sigma^2)$ distribution, and suppose that the prior distribution for θ is $N(\mu, \tau^2)$, where σ^2 , μ , τ^2 are known. Determine the posterior distribution for θ , given X_1, \ldots, X_n , and the best point estimate of θ under both quadratic and absolute error loss.

3

4E Further Analysis

Let τ_1 be the collection of all subsets $A \subset \mathbb{N}$ such that $A = \emptyset$ or $\mathbb{N} \setminus A$ is finite. Let τ_2 be the collection of all subsets of \mathbb{N} of the form $I_n = \{n, n+1, n+2, \ldots\}$, together with the empty set. Prove that τ_1 and τ_2 are both topologies on \mathbb{N} .

Show that a function f from the topological space (\mathbb{N}, τ_1) to the topological space (\mathbb{N}, τ_2) is continuous if and only if one of the following alternatives holds:

(i) $f(n) \to \infty$ as $n \to \infty$;

(ii) there exists $N \in \mathbb{N}$ such that f(n) = N for all but finitely many n and $f(n) \leq N$ for all n.

5B Numerical Analysis

Let

$$A = \begin{pmatrix} 1 & a & a^2 & a^3 \\ a^3 & 1 & a & a^2 \\ a^2 & a^3 & 1 & a \\ a & a^2 & a^3 & 1 \end{pmatrix}, \qquad b = \begin{pmatrix} \gamma \\ 0 \\ 0 \\ \gamma a \end{pmatrix}, \quad \gamma = 1 - a^4 \neq 0.$$

Find the LU factorization of the matrix A and use it to solve the system Ax = b.

6E Linear Mathematics

Let a_1, a_2, \ldots, a_n be distinct real numbers. For each *i* let \mathbf{v}_i be the vector $(1, a_i, a_i^2, \ldots, a_i^{n-1})$. Let *A* be the $n \times n$ matrix with rows $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ and let **c** be a column vector of size *n*. Prove that $A\mathbf{c} = \mathbf{0}$ if and only if $\mathbf{c} = \mathbf{0}$. Deduce that the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ span \mathbb{R}^n .

[You may use general facts about matrices if you state them clearly.]

7B Complex Methods

(a) Using the residue theorem, evaluate

$$\int_{|z|=1} \left(z - \frac{1}{z}\right)^{2n} \frac{dz}{z}.$$

(b) Deduce that

$$\int_0^{2\pi} \sin^{2n} t \, dt = \frac{\pi}{2^{2n-1}} \frac{(2n)!}{(n!)^2} \, .$$

[TURN OVER

4

8G Quadratic Mathematics

Let U be a finite-dimensional real vector space and b a positive definite symmetric bilinear form on $U \times U$. Let $\psi: U \to U$ be a linear map such that $b(\psi(x), y) + b(x, \psi(y)) = 0$ for all x and y in U. Prove that if ψ is invertible, then the dimension of U must be even. By considering the restriction of ψ to its image or otherwise, prove that the rank of ψ is always even.

9A Quantum Mechanics

What is meant by the statement than an operator is *hermitian*?

A particle of mass m moves in the real potential V(x) in one dimension. Show that the Hamiltonian of the system is hermitian.

Show that

$$egin{aligned} &rac{d}{dt}\langle x
angle &=rac{1}{m}\langle p
angle\,,\ &rac{d}{dt}\langle p
angle &=\langle -V'(x)
angle\,, \end{aligned}$$

where p is the momentum operator and $\langle A \rangle$ denotes the expectation value of the operator A.

SECTION II

10F Analysis II

Let V be the space of $n \times n$ real matrices. Show that the function

 $N(A) = \sup \{ \|A\mathbf{x}\| : \mathbf{x} \in \mathbb{R}^n, \|\mathbf{x}\| = 1 \}$

(where $\|-\|$ denotes the usual Euclidean norm on \mathbb{R}^n) defines a norm on V. Show also that this norm satisfies $N(AB) \leq N(A)N(B)$ for all A and B, and that if $N(A) < \epsilon$ then all entries of A have absolute value less than ϵ . Deduce that any function $f: V \to \mathbb{R}$ such that f(A) is a polynomial in the entries of A is continuously differentiable.

Now let $d: V \to \mathbb{R}$ be the mapping sending a matrix to its determinant. By considering d(I+H) as a polynomial in the entries of H, show that the derivative d'(I) is the function $H \mapsto \operatorname{tr} H$. Deduce that, for any A, d'(A) is the mapping $H \mapsto \operatorname{tr}((\operatorname{adj} A)H)$, where $\operatorname{adj} A$ is the adjugate of A, i.e. the matrix of its cofactors.

[Hint: consider first the case when A is invertible. You may assume the results that the set U of invertible matrices is open in V and that its closure is the whole of V, and the identity (adj A)A = det A.I.]

11C Methods

State the transformation law for an *n*th-rank tensor $T_{ij\cdots k}$.

Show that the fourth-rank tensor

$$c_{ijkl} = \alpha \,\delta_{ij} \,\delta_{kl} + \beta \,\delta_{ik} \,\delta_{jl} + \gamma \,\delta_{il} \,\delta_{jk}$$

is isotropic for arbitrary scalars α , β and γ .

The stress σ_{ij} and strain e_{ij} in a linear elastic medium are related by

$$\sigma_{ij} = c_{ijkl} \, e_{kl}.$$

Given that e_{ij} is symmetric and that the medium is isotropic, show that the stress-strain relationship can be written in the form

$$\sigma_{ij} = \lambda \, e_{kk} \, \delta_{ij} + 2\mu \, e_{ij}.$$

Show that e_{ij} can be written in the form $e_{ij} = p\delta_{ij} + d_{ij}$, where d_{ij} is a traceless tensor and p is a scalar to be determined. Show also that necessary and sufficient conditions for the stored elastic energy density $E = \frac{1}{2}\sigma_{ij} e_{ij}$ to be non-negative for any deformation of the solid are that

$$\mu \ge 0$$
 and $\lambda \ge -\frac{2}{3}\mu$.

[TURN OVER

12H Statistics

An examination was given to 500 high-school students in each of two large cities, and their grades were recorded as low, medium, or high. The results are given in the table below.

	Low	Medium	High
City A	103	145	252
City B	140	136	224

Derive carefully the test of homogeneity and test the hypothesis that the distributions of scores among students in the two cities are the same.

[Hint:

Distribution	χ_1^2	χ^2_2	χ^2_3	χ_5^2	χ_6^2	
99% percentile	6.63	9.21	11.34	15.09	16.81	
95% percentile	3.84	5.99	7.81	11.07	12.59]

13E Further Analysis

(a) Let $f: [1, \infty) \to \mathbb{C}$ be defined by $f(t) = t^{-1}e^{2\pi i t}$ and let X be the image of f. Prove that $X \cup \{0\}$ is compact and path-connected. [*Hint: you may find it helpful to set* $s = t^{-1}$.]

(b) Let $g: [1, \infty) \to \mathbb{C}$ be defined by $g(t) = (1 + t^{-1})e^{2\pi i t}$, let Y be the image of g and let \overline{D} be the closed unit disc $\{z \in \mathbb{C} : |z| \leq 1\}$. Prove that $Y \cup \overline{D}$ is connected. Explain briefly why it is not path-connected.

14B Numerical Analysis

Let

$$f''(0) \approx a_0 f(-1) + a_1 f(0) + a_2 f(1) = \mu(f)$$

be an approximation of the second derivative which is exact for $f \in \mathcal{P}_2$, the set of polynomials of degree ≤ 2 , and let

$$e(f) = f''(0) - \mu(f)$$

be its error.

(a) Determine the coefficients a_0, a_1, a_2 .

(b) Using the Peano kernel theorem prove that, for $f \in C^3[-1, 1]$, the set of threetimes continuously differentiable functions, the error satisfies the inequality

$$|e(f)| \le \frac{1}{3} \max_{x \in [-1,1]} |f'''(x)|.$$

15E Linear Mathematics

(a) Let $A = (a_{ij})$ be an $m \times n$ matrix and for each $k \leq n$ let A_k be the $m \times k$ matrix formed by the first k columns of A. Suppose that n > m. Explain why the nullity of A is non-zero. Prove that if k is minimal such that A_k has non-zero nullity, then the nullity of A_k is 1.

(b) Suppose that no column of A consists entirely of zeros. Deduce from (a) that there exist scalars b_1, \ldots, b_k (where k is defined as in (a)) such that $\sum_{j=1}^k a_{ij}b_j = 0$ for every $i \leq m$, but whenever $\lambda_1, \ldots, \lambda_k$ are distinct real numbers there is some $i \leq m$ such that $\sum_{j=1}^k a_{ij}\lambda_j b_j \neq 0$.

(c) Now let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$ and $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_m$ be bases for the same real *m*dimensional vector space. Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be distinct real numbers such that for every *j* the vectors $\mathbf{v}_1 + \lambda_j \mathbf{w}_1, \ldots, \mathbf{v}_m + \lambda_j \mathbf{w}_m$ are linearly dependent. For each *j*, let a_{1j}, \ldots, a_{mj} be scalars, not all zero, such that $\sum_{i=1}^m a_{ij}(\mathbf{v}_i + \lambda_j \mathbf{w}_i) = \mathbf{0}$. By applying the result of (b) to the matrix (a_{ij}) , deduce that $n \leq m$.

(d) It follows that the vectors $\mathbf{v}_1 + \lambda \mathbf{w}_1, \dots, \mathbf{v}_m + \lambda \mathbf{w}_m$ are linearly dependent for at most *m* values of λ . Explain briefly how this result can also be proved using determinants.

16B Complex Methods

(a) Show that if f satisfies the equation

$$f''(x) - x^2 f(x) = \mu f(x), \quad x \in \mathbb{R},$$
(*)

where μ is a constant, then its Fourier transform \widehat{f} satisfies the same equation, i.e.

$$\widehat{f}''(\lambda) - \lambda^2 \widehat{f}(\lambda) = \mu \widehat{f}(\lambda).$$

(b) Prove that, for each $n \ge 0$, there is a polynomial $p_n(x)$ of degree n, unique up to multiplication by a constant, such that

$$f_n(x) = p_n(x)e^{-x^2/2}$$

is a solution of (*) for some $\mu = \mu_n$.

(c) Using the fact that $g(x) = e^{-x^2/2}$ satisfies $\hat{g} = cg$ for some constant c, show that the Fourier transform of f_n has the form

$$\widehat{f_n}(\lambda) = q_n(\lambda)e^{-\lambda^2/2}$$

where q_n is also a polynomial of degree n.

(d) Deduce that the f_n are eigenfunctions of the Fourier transform operator, i.e. $\widehat{f_n}(x) = c_n f_n(x)$ for some constants c_n .

[TURN OVER

8

17G Quadratic Mathematics

Let S be the set of all 2×2 complex matrices A which are *hermitian*, that is, $A^* = A$, where $A^* = \overline{A}^t$.

(a) Show that S is a real 4-dimensional vector space. Consider the real symmetric bilinear form b on this space defined by

$$b(A,B) = \frac{1}{2} \left(\operatorname{tr}(AB) - \operatorname{tr}(A) \operatorname{tr}(B) \right) \,.$$

Prove that $b(A, A) = -\det A$ and $b(A, I) = -\frac{1}{2} \operatorname{tr}(A)$, where I denotes the identity matrix.

(b) Consider the three matrices

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $A_3 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$.

Prove that the basis I, A_1, A_2, A_3 of S diagonalizes b. Hence or otherwise find the rank and signature of b.

(c) Let Q be the set of all 2×2 complex matrices C which satisfy $C + C^* = \operatorname{tr}(C) I$. Show that Q is a real 4-dimensional vector space. Given $C \in Q$, put

$$\Phi(C) = \frac{1-i}{2} \operatorname{tr}(C) I + i C.$$

Show that Φ takes values in S and is a linear isomorphism between Q and S.

(d) Define a real symmetric bilinear form on Q by setting $c(C, D) = -\frac{1}{2} \operatorname{tr}(C D)$, $C, D \in Q$. Show that $b(\Phi(C), \Phi(D)) = c(C, D)$ for all $C, D \in Q$. Find the rank and signature of the symmetric bilinear form c defined on Q.

18A Quantum Mechanics

A particle of mass m and energy E moving in one dimension is incident from the left on a potential barrier V(x) given by

$$V(x) = \begin{cases} V_0 & 0 \le x \le a \\ 0 & \text{otherwise} \end{cases}$$

with $V_0 > 0$.

In the limit $V_0 \to \infty, a \to 0$ with $V_0 a = U$ held fixed, show that the transmission probability is

$$T = \left(1 + \frac{mU^2}{2E\hbar^2}\right)^{-1}$$