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Before you begin read these instructions carefully.

Each question in Section II carries twice the credit of each question in Section I.
Candidates may attempt at most four questions from Section I and at most six
questions from Section II.

Complete answers are preferred to fragments.

Write on one side of the paper only and begin each answer on a separate sheet.

Write legibly; otherwise, you place yourself at a grave disadvantage.

At the end of the examination:

Answers must be tied up in separate bundles, marked A, B, . . . , H according to
the letter affixed to each question, and a blue cover sheet must be attached to each
bundle.

A green master cover sheet listing all the questions attempted must be completed.

It is essential that every cover sheet bear the candidate’s examination
number and desk number.
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SECTION I

1E Analysis II

Let f : R → R2 be defined by f = (u, v), where u and v are defined by
u(0) = v(0) = 0 and, for t 6= 0, u(t) = t2 sin(1/t) and v(t) = t2 cos(1/t). Show that
f is differentiable on R.

Show that for any real non-zero a, ||f ′(a) − f ′(0)|| > 1, where we regard f ′(a) as
the vector

(
u′(a), v′(a)

)
in R2.

2A Methods

Write down the wave equation for the displacement y(x, t) of a stretched string
with constant mass density and tension. Obtain the general solution in the form

y(x, t) = f(x + ct) + g(x− ct),

where c is the wave velocity. For a solution in the region 0 6 x < ∞, with y(0, t) = 0 and
y → 0 as x →∞, show that

E =
∫ ∞

0

[
1
2

(
∂y

∂t

)2

+
1
2
c2

(
∂y

∂x

)2
]

dx,

is constant in time. Express E in terms of the general solution in this case.

3G Further Analysis

Let f : X → Y be a continuous map between topological spaces. Let

Gf = {(x, f(x)) : x ∈ X}.

(a) Show that if Y is Hausdorff, then Gf is closed in X × Y .

(b) Show that if X is compact, then Gf is also compact.
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4E Geometry

State Euler’s formula for a graph G with F faces, E edges and V vertices on the
surface of a sphere.

Suppose that every face in G has at least three edges, and that at least three
edges meet at every vertex of G. Let Fn be the number of faces of G that have exactly
n edges (n > 3), and let Vm be the number of vertices at which exactly m edges meet
(m > 3). By expressing 6F −

∑
n nFn in terms of the Vj , or otherwise, show that every

convex polyhedron has at least four faces each of which is a triangle, a quadrilateral or a
pentagon.

5H Optimization

Consider a two-person zero-sum game with a payoff matrix(
3 b
5 2

)
,

where 0 < b < ∞. Here, the (i, j) entry of the matrix indicates the payoff to player one
if he chooses move i and player two move j. Suppose player one chooses moves 1 and 2
with probabilities p and 1− p, 0 ≤ p ≤ 1. Write down the maximization problem for the
optimal strategy and solve it for each value of b.

6B Numerical Analysis

For numerical integration, a quadrature formula∫ b

a

f(x) dx ≈
n∑

i=0

aif(xi)

is applied which is exact on Pn, i.e., for all polynomials of degree n.

Prove that such a formula is exact for all f ∈ P2n+1 if and only if xi, i = 0, . . . , n, are
the zeros of an orthogonal polynomial pn+1 ∈ Pn+1 which satisfies

∫ b

a
pn+1(x)r(x) dx = 0

for all r ∈ Pn. [You may assume that pn+1 has (n + 1) distinct zeros.]
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7F Linear Mathematics

Which of the following statements are true, and which false? Give brief justifications
for your answers.

(a) If U and W are subspaces of a vector space V , then U ∩W is always a subspace
of V .

(b) If U and W are distinct subspaces of a vector space V , then U ∪W is never a
subspace of V .

(c) If U , W and X are subspaces of a vector space V , then U ∩ (W + X) =
(U ∩W ) + (U ∩X).

(d) If U is a subspace of a finite-dimensional space V , then there exists a subspace
W such that U ∩W = {0} and U + W = V .

8C Fluid Dynamics

State and prove Kelvin’s circulation theorem.

Consider a planar flow in the unbounded region outside a cylinder for which the
vorticity vanishes everywhere at time t = 0. What may be deduced about the circulation
around closed loops in the fluid at time t:

(i) that do not enclose the cylinder;

(ii) that enclose the cylinder?

Give a brief justification for your answer in each case.

9F Quadratic Mathematics

Explain what is meant by a quadratic residue modulo an odd prime p, and show that
a is a quadratic residue modulo p if and only if a

1
2 (p−1) ≡ 1 (mod p). Hence characterize

the odd primes p for which −1 is a quadratic residue.

State the law of quadratic reciprocity, and use it to determine whether 73 is a
quadratic residue (mod 127).

10D Special Relativity

Write down the formulae for a Lorentz transformation with velocity v taking one
set of co-ordinates (t, x) to another (t′, x′).

Imagine you observe a train travelling past Cambridge station at a relativistic speed
u. Someone standing still on the train throws a ball in the direction the train is moving,
with speed v. How fast do you observe the ball to be moving? Justify your answer.
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SECTION II

11E Analysis II

Show that if a, b and c are non-negative numbers, and a 6 b + c, then

a

1 + a
6

b

1 + b
+

c

1 + c
.

Deduce that if (X, d) is a metric space, then d(x, y)/[1 + d(x, y)] is a metric on X.

Let D = {z ∈ C : |z| < 1} and Kn = {z ∈ D : |z| 6 (n− 1)/n}. Let F be the class
of continuous complex-valued functions on D and, for f and g in F , define

σ(f, g) =
∞∑

n=2

1
2n

||f − g||n
1 + ||f − g||n

,

where ||f − g||n = sup{|f(z)− g(z)| : z ∈ Kn}. Show that the series for σ(f, g) converges,
and that σ is a metric on F .

For |z| < 1, let sk(z) = 1 + z + z2 + · · ·+ zk and s(z) = 1 + z + z2 + · · ·. Show that
for n > 2, ||sk − s||n = n(1− 1

n )k+1. By considering the sums for 2 6 n 6 N and n > N
separately, show that for each N ,

σ(sk, s) 6
N∑

n=2

||sk − s||n + 2−N ,

and deduce that σ(sk, s) → 0 as k →∞.
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12A Methods

Consider the real Sturm-Liouville problem

Ly(x) = −(p(x)y′)′ + q(x)y = λr(x)y,

with the boundary conditions y(a) = y(b) = 0, where p, q and r are continuous and
positive on [a, b]. Show that, with suitable choices of inner product and normalisation, the
eigenfunctions yn(x), n = 1, 2, 3 . . . , form an orthonormal set.

Hence show that the corresponding Green’s function G(x, ξ) satisfying

(L − µr(x))G(x, ξ) = δ(x− ξ),

where µ is not an eigenvalue, is

G(x, ξ) =
∞∑

n=1

yn(x)yn(ξ)
λn − µ

,

where λn is the eigenvalue corresponding to yn.

Find the Green’s function in the case where

Ly ≡ y′′,

with boundary conditions y(0) = y(π) = 0, and deduce, by suitable choice of µ, that

∞∑
n=0

1
(2n + 1)2

=
π2

8
.

13G Further Analysis

(a) Let f and g be two analytic functions on a domain D and let γ ⊂ D be a simple
closed curve homotopic in D to a point. If |g(z)| < |f(z)| for every z in γ, prove that γ
encloses the same number of zeros of f as of f + g.

(b) Let g be an analytic function on the disk |z| < 1 + ε, for some ε > 0. Suppose
that g maps the closed unit disk into the open unit disk (both centred at 0). Prove that
g has exactly one fixed point in the open unit disk.

(c) Prove that, if |a| < 1, then

zm
( z − a

1− āz

)n

− a

has m + n zeros in |z| < 1.
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14E Geometry

Show that every isometry of Euclidean space R3 is a composition of reflections in
planes.

What is the smallest integer N such that every isometry f of R3 with f(0) = 0 can
be expressed as the composition of at most N reflections? Give an example of an isometry
that needs this number of reflections and justify your answer.

Describe (geometrically) all twelve orientation-reversing isometries of a regular
tetrahedron.

15H Optimization

Consider the following linear programming problem

maximise −2x1 + 3x2

subject to x1 − x2 ≥ 1,
4x1 − x2 ≥ 10, (1)
x2 ≤ 6,
xi ≥ 0, i = 1, 2.

Write down the Phase One problem for (1) and solve it.

By using the solution of the Phase One problem as an initial basic feasible solution
for the Phase Two simplex algorithm, solve (1), i.e., find the optimal tableau and read the
optimal solution (x1, x2) and optimal value from it.

16B Numerical Analysis

(a) Consider a system of linear equations Ax = b with a non-singular square n× n
matrix A. To determine its solution x = x∗ we apply the iterative method

xk+1 = Hxk + v.

Here v ∈ Rn, while the matrix H ∈ Rn×n is such that x∗ = Hx∗ + v implies Ax∗ = b.
The initial vector x0 ∈ Rn is arbitrary. Prove that, if the matrix H possesses n linearly
independent eigenvectors w1, . . . , wn whose corresponding eigenvalues λ1, . . . , λn satisfy
maxi |λi| < 1, then the method converges for any choice of x0, i.e. xk → x∗ as k →∞.

(b) Describe the Jacobi iteration method for solving Ax = b. Show directly from
the definition of the method that, if the matrix A is strictly diagonally dominant by rows,
i.e.

|aii|−1
n∑

j=1,j 6=i

|aij | ≤ γ < 1, i = 1, . . . , n,

then the method converges.

Paper 3 [TURN OVER



8

17F Linear Mathematics

Define the determinant of an n× n matrix A, and prove from your definition that
if A′ is obtained from A by an elementary row operation (i.e. by adding a scalar multiple
of the ith row of A to the jth row, for some j 6= i), then det A′ = det A.

Prove also that if X is a 2n× 2n matrix of the form(
A B
O C

)
,

where O denotes the n × n zero matrix, then det X = det A det C. Explain briefly how
the 2n× 2n matrix (

B I
O A

)
can be transformed into the matrix (

B I
−AB O

)
by a sequence of elementary row operations. Hence or otherwise prove that det AB =
det A det B.
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18C Fluid Dynamics

Use Euler’s equation to derive Bernoulli’s theorem for the steady flow of an inviscid
fluid of uniform density ρ in the absence of body forces.

Such a fluid flows steadily through a long cylindrical elastic tube having circular
cross-section. The variable z measures distance downstream along the axis of the tube.
The tube wall has thickness h(z), so that if the external radius of the tube is r(z), its
internal radius is r(z)−h(z), where h(z) > 0 is a given slowly-varying function that tends
to zero as z → ±∞. The elastic tube wall exerts a pressure p(z) on the fluid given as

p(z) = p0 + k[r(z)−R],

where p0, k and R are positive constants. Far upstream, r has the constant value R, the
fluid pressure has the constant value p0, and the fluid velocity u has the constant value V .
Assume that gravity is negligible and that h(z) varies sufficiently slowly that the velocity
may be taken as uniform across the tube at each value of z. Use mass conservation and
Bernoulli’s theorem to show that u(z) satisfies

h

R
= 1−

(
V

u

)1/2

+
1
4
λ

[
1−

( u

V

)2
]

, where λ =
2ρV 2

kR
.

Sketch a graph of h/R against u/V . Show that if h(z) exceeds a critical value hc(λ), no
such flow is possible and find hc(λ).

Show that if h < hc(λ) everywhere, then for given h the equation has two positive
solutions for u. Explain how the given value of λ determines which solution should be
chosen.

19F Quadratic Mathematics

Explain what is meant by saying that a positive definite integral quadratic form
f(x, y) = ax2+bxy+cy2 is reduced, and show that every positive definite form is equivalent
to a reduced form.

State a criterion for a prime number p to be representable by some form of
discriminant d, and deduce that p is representable by a form of discriminant −32 if and
only if p ≡ 1, 2 or 3 (mod 8). Find the reduced forms of discriminant −32, and hence or
otherwise show that a prime p is representable by the form 3x2 + 2xy + 3y2 if and only if
p ≡ 3 (mod 8).

[Standard results on when −1 and 2 are squares (mod p) may be assumed.]
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20D Quantum Mechanics

A quantum mechanical system has two states χ0 and χ1, which are normalised
energy eigenstates of a Hamiltonian H3, with

H3χ0 = −χ0, H3χ1 = +χ1.

A general time-dependent state may be written

Ψ(t) = a0(t)χ0 + a1(t)χ1, (1)

where a0(t) and a1(t) are complex numbers obeying |a0(t)|2 + |a1(t)|2 = 1.

(a) Write down the time-dependent Schrödinger equation for Ψ(t), and show that
if the Hamiltonian is H3, then

i~
da0

dt
= −a0, i~

da1

dt
= +a1.

For the general state given in equation (1) above, write down the probability to observe
the system, at time t, in a state αχ0 + βχ1, properly normalised so that |α|2 + |β|2 = 1.

(b) Now consider starting the system in the state χ0 at time t = 0, and evolving it
with a different Hamiltonian H1, which acts on the states χ0 and χ1 as follows:

H1χ0 = χ1, H1χ1 = χ0.

By solving the time-dependent Schrödinger equation for the Hamiltonian H1, find a0(t)
and a1(t) in this case. Hence determine the shortest time T > 0 such that Ψ(T ) is an
eigenstate of H3 with eigenvalue +1.

(c) Now consider taking the state Ψ(T ) from part (b), and evolving it for further
length of time T , with Hamiltonian H2, which acts on the states χ0 and χ1 as follows:

H2χ0 = −iχ1, H2χ1 = iχ0.

What is the final state of the system? Is this state observationally distinguishable from
the original state χ0?

END OF PAPER
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