PAPER 2

Before you begin read these instructions carefully.

Each question in Section II carries twice the credit of each question in Section I. Candidates may attempt at most four questions from Section I and at most six questions from Section II.

Complete answers are preferred to fragments.
Write on one side of the paper only and begin each answer on a separate sheet.
Write legibly; otherwise, you place yourself at a grave disadvantage.

At the end of the examination:
Answers must be tied up in separate bundles, marked $\boldsymbol{A}, \boldsymbol{B}, \ldots, \boldsymbol{H}$ according to the letter affixed to each question, and a blue cover sheet must be attached to each bundle.

A green master cover sheet listing all the questions attempted must be completed.
It is essential that every cover sheet bear the candidate's examination number and desk number.

SECTION I

1E Analysis II

Define what is meant by (i) a complete metric space, and (ii) a totally bounded metric space.

Give an example of a metric space that is complete but not totally bounded. Give an example of a metric space that is totally bounded but not complete.

Give an example of a continuous function that maps a complete metric space onto a metric space that is not complete. Give an example of a continuous function that maps a totally bounded metric space onto a metric space that is not totally bounded.
[You need not justify your examples.]

2C Methods

Write down the transformation law for the components of a second-rank tensor $A_{i j}$ explaining the meaning of the symbols that you use.

A tensor is said to have cubic symmetry if its components are unchanged by rotations of $\pi / 2$ about each of the three co-ordinate axes. Find the most general secondrank tensor having cubic symmetry.

3H Statistics

Explain what is meant by a uniformly most powerful test, its power function and size.

Let Y_{1}, \ldots, Y_{n} be independent identically distributed random variables with common density $\rho e^{-\rho y}, y \geq 0$. Obtain the uniformly most powerful test of $\rho=\rho_{0}$ against alternatives $\rho<\rho_{0}$ and determine the power function of the test.

4G Further Analysis

Let the function $f=u+i v$ be analytic in the complex plane \mathbb{C} with u, v real-valued. Prove that, if $u v$ is bounded above everywhere on \mathbb{C}, then f is constant.

5B Numerical Analysis

Applying the Gram-Schmidt orthogonalization, compute a "skinny"
QR-factorization of the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 3 & 6 \\
1 & 1 & 0 \\
1 & 3 & 4
\end{array}\right]
$$

i.e. find a 4×3 matrix Q with orthonormal columns and an uper triangular 3×3 matrix R such that $A=Q R$.

6G Linear Mathematics

Let A be a complex 4×4 matrix such that $A^{3}=A^{2}$. What are the possible minimal polynomials of A ? If A is not diagonalisable and $A^{2} \neq 0$, list all possible Jordan normal forms of A.

7B Complex Methods

Suppose that f is analytic, and that $|f(z)|^{2}$ is constant in an open disk D. Use the Cauchy-Riemann equations to show that $f(z)$ is constant in D.

8F Quadratic Mathematics

Explain what is meant by a sesquilinear form on a complex vector space V. If ϕ and ψ are two such forms, and $\phi(v, v)=\psi(v, v)$ for all $v \in V$, prove that $\phi(v, w)=\psi(v, w)$ for all $v, w \in V$. Deduce that if $\alpha: V \rightarrow V$ is a linear map satisfying $\phi(\alpha(v), \alpha(v))=\phi(v, v)$ for all $v \in V$, then $\phi(\alpha(v), \alpha(w))=\phi(v, w)$ for all $v, w \in V$.

9D Quantum Mechanics

From the expressions

$$
L_{x}=y P_{z}-z P_{y}, \quad L_{y}=z P_{x}-x P_{z}, \quad L_{z}=x P_{y}-y P_{x},
$$

show that

$$
(x+i y) z
$$

is an eigenfunction of \mathbf{L}^{2} and L_{z}, and compute the corresponding eigenvalues.

SECTION II

10E Analysis II

(a) Let f be a map of a complete metric space (X, d) into itself, and suppose that there exists some k in $(0,1)$, and some positive integer N, such that $d\left(f^{N}(x), f^{N}(y)\right) \leqslant$ $k d(x, y)$ for all distinct x and y in X, where f^{m} is the m th iterate of f. Show that f has a unique fixed point in X.
(b) Let f be a map of a compact metric space (X, d) into itself such that $d(f(x), f(y))<d(x, y)$ for all distinct x and y in X. By considering the function $d(f(x), x)$, or otherwise, show that f has a unique fixed point in X.
(c) Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies $|f(x)-f(y)|<|x-y|$ for every distinct x and y in \mathbb{R}^{n}. Suppose that for some x, the orbit $O(x)=\left\{x, f(x), f^{2}(x), \ldots\right\}$ is bounded. Show that f maps the closure of $O(x)$ into itself, and deduce that f has a unique fixed point in \mathbb{R}^{n}.
[The Contraction Mapping Theorem may be used without proof providing that it is correctly stated.]

11C Methods

If \mathbf{B} is a vector, and

$$
T_{i j}=\alpha B_{i} B_{j}+\beta B_{k} B_{k} \delta_{i j},
$$

show for arbitrary scalars α and β that $T_{i j}$ is a symmetric second-rank tensor.
Find the eigenvalues and eigenvectors of $T_{i j}$.
Suppose now that \mathbf{B} depends upon position \mathbf{x} and that $\nabla \cdot \mathbf{B}=0$. Find constants α and β such that

$$
\frac{\partial}{\partial x_{j}} T_{i j}=[(\nabla \times \mathbf{B}) \times \mathbf{B}]_{i} .
$$

Hence or otherwise show that if \mathbf{B} vanishes everywhere on a surface S that encloses a volume V then

$$
\int_{V}(\nabla \times \mathbf{B}) \times \mathbf{B} d V=0
$$

12H Statistics

For ten steel ingots from a production process the following measures of hardness were obtained:

$$
73.2, \quad 74.3, \quad 75.4, \quad 73.8, \quad 74.4, \quad 76.7, \quad 76.1, \quad 73.0, \quad 74.6, \quad 74.1 .
$$

On the assumption that the variation is well described by a normal density function obtain an estimate of the process mean.

The manufacturer claims that he is supplying steel with mean hardness 75. Derive carefully a (generalized) likelihood ratio test of this claim. Knowing that for the data above

$$
S_{X X}=\sum_{j=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=12.824
$$

what is the result of the test at the 5% significance level?

[Distribution	t_{9}	t_{10}	
95% percentile	1.83	1.81	
97.5\% percentile	2.26	2.23	$]$

13G Further Analysis

(a) Given a topology \mathcal{T} on X, a collection $\mathcal{B} \subseteq \mathcal{T}$ is called a basis for \mathcal{T} if every non-empty set in \mathcal{T} is a union of sets in \mathcal{B}. Prove that a collection \mathcal{B} is a basis for some topology if it satisfies:
(i) the union of all sets in \mathcal{B} is X;
(ii) if $x \in B_{1} \cap B_{2}$ for two sets B_{1} and B_{2} in \mathcal{B}, then there is a set $B \in \mathcal{B}$ with $x \in B \subset B_{1} \cap B_{2}$.
(b) On $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$ consider the dictionary order given by

$$
\left(a_{1}, b_{1}\right)<\left(a_{2}, b_{2}\right)
$$

if $a_{1}<a_{2}$ or if $a_{1}=a_{2}$ and $b_{1}<b_{2}$. Given points \mathbf{x} and \mathbf{y} in \mathbb{R}^{2} let

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\left\{\mathbf{z} \in \mathbb{R}^{2}: \mathbf{x}<\mathbf{z}<\mathbf{y}\right\}
$$

Show that the sets $\langle\mathbf{x}, \mathbf{y}\rangle$ for \mathbf{x} and \mathbf{y} in \mathbb{R}^{2} form a basis of a topology.
(c) Show that this topology on \mathbb{R}^{2} does not have a countable basis.

14B Numerical Analysis

Let $f \in C[a, b]$ and let $n+1$ distinct points $x_{0}, \ldots, x_{n} \in[a, b]$ be given.
(a) Define the divided difference $f\left[x_{0}, \ldots, x_{n}\right]$ of order n in terms of interpolating polynomials. Prove that it is a symmetric function of the variables $x_{i}, i=0, \ldots, n$.
(b) Prove the recurrence relation

$$
f\left[x_{0}, \ldots, x_{n}\right]=\frac{f\left[x_{1}, \ldots, x_{n}\right]-f\left[x_{0}, \ldots, x_{n-1}\right]}{x_{n}-x_{0}}
$$

(c) Hence or otherwise deduce that, for any $i \neq j$, we have

$$
f\left[x_{0}, \ldots, x_{n}\right]=\frac{f\left[x_{0}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right]-f\left[x_{0}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}\right]}{x_{j}-x_{i}}
$$

(d) From the formulas above, show that, for any $i=1, \ldots, n-1$,

$$
f\left[x_{0}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right]=\gamma f\left[x_{0}, \ldots, x_{n-1}\right]+(1-\gamma) f\left[x_{1}, \ldots, x_{n}\right]
$$

where $\gamma=\frac{x_{i}-x_{0}}{x_{n}-x_{0}}$.

15G Linear Mathematics

(a) A complex $n \times n$ matrix is said to be unipotent if $U-I$ is nilpotent, where I is the identity matrix. Show that U is unipotent if and only if 1 is the only eigenvalue of U.
(b) Let T be an invertible complex matrix. By considering the Jordan normal form of T show that there exists an invertible matrix P such that

$$
P T P^{-1}=D_{0}+N
$$

where D_{0} is an invertible diagonal matrix, N is an upper triangular matrix with zeros in the diagonal and $D_{0} N=N D_{0}$.
(c) Set $D=P^{-1} D_{0} P$ and show that $U=D^{-1} T$ is unipotent.
(d) Conclude that any invertible matrix T can be written as $T=D U$ where D is diagonalisable, U is unipotent and $D U=U D$.

16B Complex Methods

A function $f(z)$ has an isolated singularity at a, with Laurent expansion

$$
f(z)=\sum_{n=-\infty}^{\infty} c_{n}(z-a)^{n}
$$

(a) Define res (f, a), the residue of f at the point a.
(b) Prove that if a is a pole of order $k+1$, then

$$
\operatorname{res}(f, a)=\lim _{z \rightarrow a} \frac{h^{(k)}(z)}{k!}, \quad \text { where } \quad h(z)=(z-a)^{k+1} f(z)
$$

(c) Using the residue theorem and the formula above show that

$$
\int_{-\infty}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{k+1}}=\pi \frac{(2 k)!}{(k!)^{2}} 4^{-k}, \quad k \geq 1 .
$$

17F Quadratic Mathematics

Define the adjoint α^{*} of an endomorphism α of a complex inner-product space V. Show that if W is a subspace of V, then $\alpha(W) \subseteq W$ if and only if $\alpha^{*}\left(W^{\perp}\right) \subseteq W^{\perp}$.

An endomorphism of a complex inner-product space is said to be normal if it commutes with its adjoint. Prove the following facts about a normal endomorphism α of a finite-dimensional space V.
(i) α and α^{*} have the same kernel.
(ii) α and α^{*} have the same eigenvectors, with complex conjugate eigenvalues.
(iii) If $E_{\lambda}=\{x \in V: \alpha(x)=\lambda x\}$, then $\alpha\left(E_{\lambda}^{\perp}\right) \subseteq E_{\lambda}^{\perp}$.
(iv) There is an orthonormal basis of V consisting of eigenvectors of α.

Deduce that an endomorphism α is normal if and only if it can be written as a product $\beta \gamma$, where β is Hermitian, γ is unitary and β and γ commute with each other. [Hint: Given α, define β and γ in terms of their effect on the basis constructed in (iv).]

18D Quantum Mechanics

Consider a quantum mechanical particle moving in an upside-down harmonic oscillator potential. Its wavefunction $\Psi(x, t)$ evolves according to the time-dependent Schrödinger equation,

$$
\begin{equation*}
i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2} \frac{\partial^{2} \Psi}{\partial x^{2}}-\frac{1}{2} x^{2} \Psi \tag{1}
\end{equation*}
$$

(a) Verify that

$$
\begin{equation*}
\Psi(x, t)=A(t) e^{-B(t) x^{2}} \tag{2}
\end{equation*}
$$

is a solution of equation (1), provided that

$$
\frac{d A}{d t}=-i \hbar A B
$$

and

$$
\begin{equation*}
\frac{d B}{d t}=-\frac{i}{2 \hbar}-2 i \hbar B^{2} \tag{3}
\end{equation*}
$$

(b) Verify that $B=\frac{1}{2 \hbar} \tan (\phi-i t)$ provides a solution to (3), where ϕ is an arbitrary real constant.
(c) The expectation value of an operator \mathcal{O} at time t is

$$
\langle\mathcal{O}\rangle(t) \equiv \int_{-\infty}^{\infty} d x \Psi^{*}(x, t) \mathcal{O} \Psi(x, t)
$$

where $\Psi(x, t)$ is the normalised wave function. Show that for $\Psi(x, t)$ given by (2),

$$
\left\langle x^{2}\right\rangle=\frac{1}{4 \operatorname{Re}(B)}, \quad\left\langle p^{2}\right\rangle=4 \hbar^{2}|B|^{2}\left\langle x^{2}\right\rangle .
$$

Hence show that as $t \rightarrow \infty$,

$$
\left\langle x^{2}\right\rangle \approx\left\langle p^{2}\right\rangle \approx \frac{\hbar}{4 \sin 2 \phi} e^{2 t}
$$

[Hint: You may use

$$
\left.\frac{\int_{-\infty}^{\infty} d x e^{-C x^{2}} x^{2}}{\int_{-\infty}^{\infty} d x e^{-C x^{2}}}=\frac{1}{2 C} \cdot\right]
$$

END OF PAPER

