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1/I/5C Linear Mathematics

Determine for which values of x ∈ C the matrix

M =

 x 1 1
1− x 0 −1

2 2x 1


is invertible. Determine the rank of M as a function of x. Find the adjugate and hence
the inverse of M for general x.

1/II/14C Linear Mathematics

(a) Find a matrix M over C with both minimal polynomial and characteristic
polynomial equal to (x− 2)3(x+ 1)2. Furthermore find two matrices M1 and M2 over C
which have the same characteristic polynomial, (x − 3)5(x − 1)2, and the same minimal
polynomial, (x− 3)2(x− 1)2, but which are not conjugate to one another. Is it possible to
find a third such matrix, M3, neither conjugate to M1 nor to M2? Justify your answer.

(b) Suppose A is an n × n matrix over R which has minimal polynomial of the
form (x − λ1)(x − λ2) for distinct roots λ1 6= λ2 in R. Show that the vector space
V = Rn on which A defines an endomorphism α : V → V decomposes as a direct sum
into V = ker(α− λ1ι)⊕ ker(α− λ2ι), where ι is the identity.

[Hint: Express v ∈ V in terms of (α− λ1ι)(v) and (α− λ2ι)(v).]

Now suppose that A has minimal polynomial (x−λ1)(x−λ2) . . . (x−λm) for distinct
λ1, . . . , λm ∈ R. By induction or otherwise show that

V = ker(α− λ1ι)⊕ ker(α− λ2ι)⊕ . . .⊕ ker(α− λmι).

Use this last statement to prove that an arbitrary matrix A ∈Mn×n(R) is diagonalizable
if and only if all roots of its minimal polynomial lie in R and have multiplicity 1.

2/I/6C Linear Mathematics

Show that right multiplication by A =
(
a b
c d

)
∈ M2×2(C) defines a linear

transformation ρA : M2×2(C) →M2×2(C). Find the matrix representing ρA with respect
to the basis (

1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
of M2×2(C). Prove that the characteristic polynomial of ρA is equal to the square of the
characteristic polynomial of A, and that A and ρA have the same minimal polynomial.
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2/II/15C Linear Mathematics

Define the dual V ∗ of a vector space V . Given a basis {v1, . . . , vn} of V define its
dual and show it is a basis of V ∗. For a linear transformation α : V →W define the dual
α∗ : W ∗ → V ∗.

Explain (with proof) how the matrix representing α : V →W with respect to given
bases of V and W relates to the matrix representing α∗ : W ∗ → V ∗ with respect to the
corresponding dual bases of V ∗ and W ∗.

Prove that α and α∗ have the same rank.

Suppose that α is an invertible endomorphism. Prove that (α∗)−1 = (α−1)∗.

3/I/7C Linear Mathematics

Determine the dimension of the subspace W of R5 spanned by the vectors
1
2
2

−1
1

 ,


4
2

−2
6

−2

 ,


4
5
3
1
1

 ,


5
4
0
5

−1

 .

Write down a 5× 5 matrix M which defines a linear map R5 → R5 whose image is W and
which contains (1, 1, 1, 1, 1)T in its kernel. What is the dimension of the space of all linear
maps R5 → R5 with (1, 1, 1, 1, 1)T in the kernel, and image contained in W?

3/II/17C Linear Mathematics

Let V be a vector space over R. Let α : V → V be a nilpotent endomorphism of
V , i.e. αm = 0 for some positive integer m. Prove that α can be represented by a strictly
upper-triangular matrix (with zeros along the diagonal). [You may wish to consider the
subspaces ker(αj) for j = 1, . . . ,m.]

Show that if α is nilpotent, then αn = 0 where n is the dimension of V . Give an
example of a 4× 4 matrix M such that M4 = 0 but M3 6= 0.

Let A be a nilpotent matrix and I the identity matrix. Prove that I + A has all
eigenvalues equal to 1. Is the same true of (I+A)(I+B) if A and B are nilpotent? Justify
your answer.
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4/I/6C Linear Mathematics

Find the Jordan normal form J of the matrix

M =


1 0 1 0
0 1 0 0
0 −1 2 0
0 0 0 2

 ,

and determine both the characteristic and the minimal polynomial of M .

Find a basis of C4 such that J (the Jordan normal form of M) is the matrix
representing the endomorphism M : C4 → C4 in this basis. Give a change of basis matrix
P such that P−1MP = J .

4/II/15C Linear Mathematics

Let A and B be n × n matrices over C. Show that AB and BA have the same
characteristic polynomial. [Hint: Look at det(CBC − xC) for C = A + yI, where x and
y are scalar variables.]

Show by example that AB and BA need not have the same minimal polynomial.

Suppose that AB is diagonalizable, and let p(x) be its minimal polynomial. Show
that the minimal polynomial of BA must divide xp(x). Using this and the first part of
the question prove that (AB)2 and (BA)2 are conjugate.
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1/I/4B Geometry

Write down the Riemannian metric on the disc model ∆ of the hyperbolic plane.
What are the geodesics passing through the origin? Show that the hyperbolic circle of
radius ρ centred on the origin is just the Euclidean circle centred on the origin with
Euclidean radius tanh(ρ/2).

Write down an isometry between the upper half-plane model H of the hyperbolic
plane and the disc model ∆, under which i ∈ H corresponds to 0 ∈ ∆. Show that the
hyperbolic circle of radius ρ centred on i in H is a Euclidean circle with centre i cosh ρ
and of radius sinh ρ.

1/II/13B Geometry

Describe geometrically the stereographic projection map φ from the unit sphere S2

to the extended complex plane C∞ = C ∪ ∞, and find a formula for φ. Show that any
rotation of S2 about the z-axis corresponds to a Möbius transformation of C∞. You are
given that the rotation of S2 defined by the matrix 0 0 1

0 1 0
−1 0 0


corresponds under φ to a Möbius transformation of C∞; deduce that any rotation of S2

about the x-axis also corresponds to a Möbius transformation.

Suppose now that u, v ∈ C correspond under φ to distinct points P,Q ∈ S2, and let
d denote the angular distance from P to Q on S2. Show that − tan2(d/2) is the cross-ratio
of the points u, v,−1/ū,−1/v̄, taken in some order (which you should specify). [You may
assume that the cross-ratio is invariant under Möbius transformations.]

3/I/4B Geometry

State and prove the Gauss–Bonnet theorem for the area of a spherical triangle.

Suppose D is a regular dodecahedron, with centre the origin. Explain how each
face of D gives rise to a spherical pentagon on the 2-sphere S2. For each such spherical
pentagon, calculate its angles and area.
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3/II/14B Geometry

Describe the hyperbolic lines in the upper half-plane model H of the hyperbolic
plane. The group G = SL(2,R)/{±I} acts on H via Möbius transformations, which you
may assume are isometries of H. Show that G acts transitively on the hyperbolic lines.
Find explicit formulae for the reflection in the hyperbolic line L in the cases (i) L is a
vertical line x = a, and (ii) L is the unit semi-circle with centre the origin. Verify that the
composite T of a reflection of type (ii) followed afterwards by one of type (i) is given by
T (z) = −z−1 + 2a.

Suppose now that L1 and L2 are distinct hyperbolic lines in the hyperbolic plane,
with R1, R2 denoting the corresponding reflections. By considering different models of the
hyperbolic plane, or otherwise, show that

(a) R1R2 has infinite order if L1 and L2 are parallel or ultraparallel, and

(b) R1R2 has finite order if and only if L1 and L2 meet at an angle which is a rational
multiple of π.
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1/I/1A Analysis II

Define uniform continuity for functions defined on a (bounded or unbounded)
interval in R.

Is it true that a real function defined and uniformly continuous on [0, 1] is necessarily
bounded?

Is it true that a real function defined and with a bounded derivative on [1,∞) is
necessarily uniformly continuous there?

Which of the following functions are uniformly continuous on [1,∞):

(i) x2;

(ii) sin(x2);

(iii) sinx
x ?

Justify your answers.

1/II/10A Analysis II

Show that each of the functions below is a metric on the set of functions x(t) ∈
C[a, b] :

d1(x, y) = sup
t∈[a,b]

|x(t)− y(t)|,

d2(x, y) =
{ ∫ b

a
|x(t)− y(t)|2dt}

1/2
.

Is the space complete in the d1 metric? Justify your answer.

Show that the set of functions

xn(t) =

{ 0, −1 6 t < 0
nt, 0 6 t < 1/n
1, 1/n 6 t 6 1

is a Cauchy sequence with respect to the d2 metric on C[−1, 1], yet does not tend to a
limit in the d2 metric in this space. Hence, deduce that this space is not complete in the
d2 metric.
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2/I/1A Analysis II

State and prove the contraction mapping theorem.

Let A = {x, y, z}, let d be the discrete metric on A, and let d ′ be the metric given
by: d ′ is symmetric and

d ′(x, y) = 2, d ′(x, z) = 2, d ′(y, z) = 1,

d ′(x, x) = d ′(y, y) = d ′(z, z) = 0.

Verify that d ′ is a metric, and that it is Lipschitz equivalent to d.

Define an appropriate function f : A → A such that f is a contraction in the d ′

metric, but not in the d metric.

2/II/10A Analysis II

Define total boundedness for metric spaces.

Prove that a metric space has the Bolzano–Weierstrass property if and only if it is
complete and totally bounded.

3/I/1A Analysis II

Define what is meant by a norm on a real vector space.

(a) Prove that two norms on a vector space (not necessarily finite-dimensional) give
rise to equivalent metrics if and only if they are Lipschitz equivalent.

(b) Prove that if the vector space V has an inner product, then for all x, y ∈ V,

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2,

in the induced norm.

Hence show that the norm on R2 defined by ‖x‖ = max (|x1|, |x2|), where x = (x1, x2) ∈
R2, cannot be induced by an inner product.
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3/II/11A Analysis II

Prove that if all the partial derivatives of f : Rp → R (with p > 2) exist in an
open set containing (0, 0, . . . , 0) and are continuous at this point, then f is differentiable
at (0, 0, . . . , 0).

Let

g(x) =
{
x2 sin(1/x), x 6= 0,
0, x = 0,

and
f(x, y) = g(x) + g(y).

At which points of the plane is the partial derivative fx continuous?

At which points is the function f(x, y) differentiable? Justify your answers.

4/I/1A Analysis II

Let f be a mapping of a metric space (X, d) into itself such that d(f(x), f(y)) <
d(x, y) for all distinct x, y in X.

Show that f(x) and d(x, f(x)) are continuous functions of x.

Now suppose that (X, d) is compact and let

h = inf
x∈X

d(x, f(x)).

Show that we cannot have h > 0.

[You may assume that a continuous function on a compact metric space is bounded and
attains its bounds.]

Deduce that f possesses a fixed point, and that it is unique.

4/II/10A Analysis II

Let {fn} be a pointwise convergent sequence of real-valued functions on a closed
interval [a, b]. Prove that, if for every x ∈ [a, b], the sequence {fn(x)} is monotonic in n,
and if all the functions fn, n = 1, 2, . . . , and f = lim fn are continuous, then fn → f
uniformly on [a, b].

By considering a suitable sequence of functions {fn} on [0, 1), show that if the
interval is not closed but all other conditions hold, the conclusion of the theorem may fail.
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1/I/7E Complex Methods

State the Cauchy integral formula.

Assuming that the function f(z) is analytic in the disc |z| < 1, prove that, for every
0 < r < 1, it is true that

dnf(0)
dzn

=
n!
2πi

∫
|ξ|=r

f(ξ)
ξn+1

dξ, n = 0, 1, . . . .

[Taylor’s theorem may be used if clearly stated.]

1/II/16E Complex Methods

Let the function F be integrable for all real arguments x, such that∫ ∞

−∞
|F (x)|dx <∞ ,

and assume that the series

f(τ) =
∞∑

n=−∞
F (2nπ + τ)

converges uniformly for all 0 6 τ 6 2π.

Prove the Poisson summation formula

f(τ) =
1
2π

∞∑
n=−∞

F̂ (n)einτ ,

where F̂ is the Fourier transform of F . [Hint: You may show that

1
2π

∫ 2π

0

e−imxf(x)dx =
1
2π

∫ ∞

−∞
e−imxF (x)dx

or, alternatively, prove that f is periodic and express its Fourier expansion coefficients
explicitly in terms of F̂ .]

Letting F (x) = e−|x|, use the Poisson summation formula to evaluate the sum

∞∑
n=−∞

1
1 + n2

·
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2/I/7E Complex Methods

A complex function is defined for every z ∈ V , where V is a non-empty open subset
of C, and it possesses a derivative at every z ∈ V . Commencing from a formal definition
of derivative, deduce the Cauchy–Riemann equations.

2/II/16E Complex Methods

Let R be a rational function such that limz→∞{zR(z)} = 0. Assuming that R has
no real poles, use the residue calculus to evaluate∫ ∞

−∞
R(x)dx.

Given that n > 1 is an integer, evaluate∫ ∞

0

dx

1 + x2n
·

4/I/8F Complex Methods

Consider a conformal mapping of the form

f(z) =
a+ bz

c+ dz
, z ∈ C ,

where a, b, c, d ∈ C, and ad 6= bc. You may assume b 6= 0. Show that any such f(z) which
maps the unit circle onto itself is necessarily of the form

f(z) = eiψ
a+ z

1 + āz
·

[Hint: Show that it is always possible to choose b = 1.]

4/II/17F Complex Methods

State Jordan’s Lemma.

Consider the integral

I =
∮
C

dz
z sin(xz)

(a2 + z2) sinπz
,

for real x and a. The rectangular contour C runs from +∞+ iε to −∞+ iε, to −∞− iε, to
+∞− iε and back to +∞+ iε, where ε is infinitesimal and positive. Perform the integral
in two ways to show that

∞∑
n=−∞

(−1)n
n sinnx
a2 + n2

= −π sinh ax
sinh aπ

,

for |x| < π.
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1/I/2H Methods

The even function f(x) has the Fourier cosine series

f(x) =
1
2
a0 +

∞∑
n=1

an cosnx

in the interval −π 6 x 6 π. Show that

1
π

∫ π

−π
(f(x))2dx =

1
2
a2
0 +

∞∑
n=1

a2
n.

Find the Fourier cosine series of x2 in the same interval, and show that

∞∑
n=1

1
n4

=
π4

90
.

1/II/11H Methods

Use the substitution y = xp to find the general solution of

Lxy ≡
d2y

dx2
− 2
x2
y = 0.

Find the Green’s function G(x, ξ), 0 < ξ <∞, which satisfies

LxG(x, ξ) = δ(x− ξ)

for x > 0, subject to the boundary conditions G(x, ξ) → 0 as x → 0 and as x → ∞, for
each fixed ξ.

Hence, find the solution of the equation

Lxy =
{

1, 0 6 x < 1,
0, x > 1,

subject to the same boundary conditions.

Verify that both forms of your solution satisfy the appropriate equation and
boundary conditions, and match at x = 1.
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2/I/2G Methods

Show that the symmetric and antisymmetric parts of a second-rank tensor are them-
selves tensors, and that the decomposition of a tensor into symmetric and antisymmetric
parts is unique.

For the tensor A having components

A =

 1 2 3
4 5 6
1 2 3

 ,

find the scalar a, vector p and symmetric traceless tensor B such that

Ax = ax + p ∧ x +Bx

for every vector x.

2/II/11G Methods

Explain what is meant by an isotropic tensor.

Show that the fourth-rank tensor

Aijkl = αδijδkl + βδikδjl + γδilδjk (∗)

is isotropic for arbitrary scalars α, β and γ.

Assuming that the most general isotropic tensor of rank 4 has the form (∗), or
otherwise, evaluate

Bijkl =
∫
r<a

xixj
∂2

∂xk∂xl

(
1
r

)
dV,

where x is the position vector and r = |x|.
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3/I/2G Methods

Laplace’s equation in the plane is given in terms of plane polar coordinates r and
θ in the form

∇2φ ≡ 1
r

∂

∂r

(
r
∂φ

∂r

)
+

1
r2
∂2φ

∂θ2
= 0.

In each of the cases

(i) 0 6 r 6 1, and (ii) 1 6 r <∞,

find the general solution of Laplace’s equation which is single-valued and finite.

Solve also Laplace’s equation in the annulus a 6 r 6 b with the boundary conditions

φ = 1 on r = a for all θ,

φ = 2 on r = b for all θ.

3/II/12H Methods

Find the Fourier sine series representation on the interval 0 6 x 6 l of the function

f(x) =

{ 0, 0 6 x < a,
1, a 6 x 6 b,
0, b < x 6 l.

The motion of a struck string is governed by the equation

∂2y

∂t2
= c2

∂2y

∂x2
, for 0 6 x 6 l and t > 0,

subject to boundary conditions y = 0 at x = 0 and x = l for t > 0, and to the initial

conditions y = 0 and
∂y

∂t
= δ(x− 1

4
l) at t = 0.

Obtain the solution y(x, t) for this motion. Evaluate y(x, t) for t = 1
2 l/c, and sketch

it clearly.

4/I/2H Methods

The Legendre polynomial Pn(x) satisfies

(1− x2)P ′′n − 2xP ′n + n(n+ 1)Pn = 0, n = 0, 1, . . . , −1 6 x 6 1.

Show that Rn(x) = P ′n(x) obeys an equation which can be recast in Sturm–Liouville form
and has the eigenvalue (n−1)(n+2). What is the orthogonality relation for Rn(x), Rm(x)
for n 6= m?
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4/II/11H Methods

A curve y(x) in the xy-plane connects the points (±a, 0) and has a fixed length
l, 2a < l < πa. Find an expression for the area A of the surface of the revolution obtained
by rotating y(x) about the x-axis.

Show that the area A has a stationary value for

y =
1
k

(cosh kx− cosh ka),

where k is a constant such that
lk = 2 sinh ka.

Show that the latter equation admits a unique positive solution for k.
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1/I/9F Quantum Mechanics

A quantum mechanical particle of mass m and energy E encounters a potential
step,

V (x) =
{

0, x < 0,
V0, x > 0.

Calculate the probability P that the particle is reflected in the case E > V0.

If V0 is positive, what is the limiting value of P when E tends to V0? If V0 is
negative, what is the limiting value of P as V0 tends to −∞ for fixed E?
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1/II/18F Quantum Mechanics

Consider a quantum-mechanical particle of mass m moving in a potential well,

V (x) =
{

0, −a < x < a,
∞, elsewhere.

(a) Verify that the set of normalised energy eigenfunctions are

ψn(x) =

√
1
a

sin
(
nπ(x+ a)

2a

)
, n = 1, 2, . . . ,

and evaluate the corresponding energy eigenvalues En.

(b) At time t = 0 the wavefunction for the particle is only nonzero in the positive
half of the well,

ψ(x) =

{√
2
a sin

(
πx
a

)
, 0 < x < a,

0, elsewhere.

Evaluate the expectation value of the energy, first using

〈E〉 =
∫ a

−a
ψHψdx,

and secondly using
〈E〉 =

∑
n

|an|2En,

where the an are the expansion coefficients in

ψ(x) =
∑
n

anψn(x).

Hence, show that

1 =
1
2

+
8
π2

∞∑
p=0

(2p+ 1)2

[(2p+ 1)2 − 4]2
·
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2/I/9F Quantum Mechanics

Consider a solution ψ(x, t) of the time-dependent Schrödinger equation for a particle
of mass m in a potential V (x). The expectation value of an operator O is defined as

〈 O 〉 =
∫

dx ψ∗(x, t) O ψ(x, t).

Show that
d

dt
〈x〉 =

〈p〉
m
,

where
p =

~
i

∂

∂x
,

and that
d

dt
〈p〉 =

〈
−∂V
∂x

(x)
〉
.

[You may assume that ψ(x, t) vanishes as x→ ±∞.]

2/II/18F Quantum Mechanics

(a) Write down the angular momentum operators L1, L2, L3 in terms of xi and

pi = −i~ ∂

∂xi
, i = 1, 2, 3.

Verify the commutation relation

[L1, L2] = i~L3.

Show that this result and its cyclic permutations imply

[L3, L1 ± iL2] = ±~ (L1 ± iL2),

[L2, L1 ± iL2] = 0.

(b) Consider a wavefunction of the form ψ = (x2
3 + ar2)f(r), where

r2 = x2
1 + x2

2 + x2
3. Show that for a particular value of a, ψ is an eigenfunction of both L2

and L3. What are the corresponding eigenvalues?
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3/II/20F Quantum Mechanics

A quantum system has a complete set of orthonormalised energy eigenfunctions
ψn(x) with corresponding energy eigenvalues En, n = 1, 2, 3, . . ..

(a) If the time-dependent wavefunction ψ(x, t) is, at t = 0,

ψ(x, 0) =
∞∑
n=1

anψn(x),

determine ψ(x, t) for all t > 0.

(b) A linear operator S acts on the energy eigenfunctions as follows:

Sψ1 = 7ψ1 + 24ψ2,

Sψ2 = 24ψ1 − 7ψ2,

Sψn = 0, n > 3.

Find the eigenvalues of S. At time t = 0, S is measured and its lowest eigenvalue is found.
At time t > 0, S is measured again. Show that the probability for obtaining the lowest
eigenvalue again is

1
625

(
337 + 288 cos(ωt)

)
,

where ω = (E1 − E2)/~.
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3/I/10F Special Relativity

A particle of rest mass m and four-momentum P = (E/c,p) is detected by an
observer with four-velocity U , satisfying U ·U = c2, where the product of two four-vectors
P = (p0,p) and Q = (q0,q) is P ·Q = p0q0 − p · q.

Show that the speed of the detected particle in the observer’s rest frame is

v = c

√
1− P · Pc2

(P · U)2
·

4/I/9F Special Relativity

What is Einstein’s principle of relativity?

Show that a spherical shell expanding at the speed of light, x2 = c2t2, in one
coordinate system (t,x), is still spherical in a second coordinate system (t′,x′) defined by

ct′ = γ
(
ct− u

c
x
)
,

x′ = γ(x− ut),
y′ = y,

z′ = z,

where γ = (1− u2/c2)−
1
2 . Why do these equations define a Lorentz transformation?

4/II/18F Special Relativity

A particle of mass M is at rest at x = 0, in coordinates (t, x). At time t = 0 it
decays into two particles A and B of equal mass m < M/2. Assume that particle A moves
in the negative x direction.

(a) Using relativistic energy and momentum conservation compute the energy,
momentum and velocity of both particles A and B.

(b) After a proper time τ , measured in its own rest frame, particle A decays. Show
that the spacetime coordinates of this event are

t =
M

2m
τ,

x =− MV

2m
τ,

where V = c
√

1− 4(m/M)2.
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1/I/6G Fluid Dynamics

Determine the pressure at a depth z below the surface of a static fluid of density
ρ subject to gravity g. A rigid body having volume V is fully submerged in such a fluid.
Calculate the buoyancy force on the body.

An iceberg of uniform density ρI is observed to float with volume VI protruding
above a large static expanse of seawater of density ρw. What is the total volume of the
iceberg?

1/II/15G Fluid Dynamics

A fluid motion has velocity potential φ(x, y, t) given by

φ = εy cos (x− t)

where ε is a constant. Find the corresponding velocity field u (x, y, t). Determine ∇ · u.

The time-average of a quantity ψ (x, y, t) is defined as 1
2π

∫ 2π

0
ψ (x, y, t) dt.

Show that the time-average of this velocity field at every point (x, y) is zero.

Write down an expression for the fluid acceleration and find the time-average
acceleration at (x, y).

Suppose now that |ε| � 1. The material particle at (0, 0) at time t = 0 is marked
with dye. Write down equations for its subsequent motion and verify that its position
(x, y) at time t > 0 is given (correct to terms of order ε2) as

x = ε2( 1
2 t−

1
4 sin 2t),

y = ε sin t .

Deduce the time-average velocity of the dyed particle correct to this order.

3/I/8G Fluid Dynamics

Inviscid incompressible fluid occupies the region y > 0, which is bounded by a rigid
barrier along y = 0. At time t = 0, a line vortex of strength κ is placed at position (a, b).
By considering the flow due to an image vortex at (a,−b), or otherwise, determine the
velocity potential in the fluid.

Derive the position of the original vortex at time t > 0.
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3/II/18G Fluid Dynamics

State the form of Bernoulli’s theorem appropriate for an unsteady irrotational
motion of an inviscid incompressible fluid.

A circular cylinder of radius a is immersed in unbounded inviscid fluid of uniform
density ρ. The cylinder moves in a prescribed direction perpendicular to its axis, with
speed U . Use cylindrical polar coordinates, with the direction θ = 0 parallel to the
direction of the motion, to find the velocity potential in the fluid.

If U depends on time t and gravity is negligible, determine the pressure field in the
fluid at time t. Deduce the fluid force per unit length on the cylinder.

[In cylindrical polar coordinates, ∇φ =
∂φ

∂r
er +

1
r

∂φ

∂θ
eθ.]

4/I/7G Fluid Dynamics

Starting from the Euler equation, derive the vorticity equation for the motion of
an inviscid incompressible fluid under a conservative body force, and give a physical
interpretation of each term in the equation. Deduce that in a flow field of the form
u = (u(x, y, t), v(x, y, t), 0) the vorticity of a material particle is conserved.

Find the vorticity for such a flow in terms of the stream function ψ. Deduce that
if the flow is steady, there must be a function f such that

∇2ψ = f(ψ) .

4/II/16G Fluid Dynamics

A long straight canal has rectangular cross-section with a horizontal bottom and
width w(x) that varies slowly with distance x downstream. Far upstream, w has a constant
value W , the water depth has a constant value H, and the velocity has a constant value
U . Assuming that the water velocity is steady and uniform across the channel, use mass
conservation and Bernoulli’s theorem, which should be stated carefully, to show that the
water depth h(x) satisfies(

W

w

)2

=
(

1 +
2
F

) (
h

H

)2

− 2
F

(
h

H

)3

where F =
U2

gH
.

Deduce that for a given value of F , a flow of this kind can exist only if w(x) is
everywhere greater than or equal to a critical value wc, which is to be determined in terms
of F .

Suppose that w(x) > wc everywhere. At locations where the channel width exceeds
W , determine graphically, or otherwise, under what circumstances the water depth exceeds
H.
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2/I/5E Numerical Analysis

Find an LU factorization of the matrix

A =


2 −1 3 2

−4 3 −4 −2
4 −2 3 6

−6 5 −8 1

 ,

and use it to solve the linear system Ax = b, where

b =


−2

2
4

11

 .

2/II/14E Numerical Analysis

(a) Let B be an n × n positive-definite, symmetric matrix. Define the Cholesky
factorization of B and prove that it is unique.

(b) Let A be an m×n matrix, m > n, such that rankA = n. Prove the uniqueness
of the “skinny QR factorization”

A = QR,

where the matrixQ ism×n with orthonormal columns, while R is an n×n upper-triangular
matrix with positive diagonal elements.

[Hint: Show that you may choose R as a matrix that features in the Cholesky factorization
of B = ATA.]

3/I/6E Numerical Analysis

Given f ∈ Cn+1[a, b], let the nth-degree polynomial p interpolate the values f(xi),
i = 0, 1, . . . , n, where x0, x1, . . . , xn ∈ [a, b] are distinct. Given x ∈ [a, b], find the error
f(x)− p(x) in terms of a derivative of f .
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3/II/16E Numerical Analysis

Let the monic polynomials pn, n > 0, be orthogonal with respect to the weight
function w(x) > 0, a < x < b, where the degree of each pn is exactly n.

(a) Prove that each pn, n > 1, has n distinct zeros in the interval (a, b).

(b) Suppose that the pn satisfy the three-term recurrence relation

pn(x) = (x− an)pn−1(x)− b2npn−2(x), n > 2,

where p0(x) ≡ 1, p1(x) = x− a1. Set

An =



a1 b2 0 · · · 0

b2 a2 b3
. . .

...

0
. . . . . . . . . 0

...
. . . bn−1 an−1 bn

0 · · · 0 bn an

 , n > 2.

Prove that pn(x) = det(xI −An), n > 2, and deduce that all the eigenvalues of An reside
in (a, b).
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1/I/3D Statistics

Let X1, . . . , Xn be independent, identically distributed N(µ, µ2) random variables,
µ > 0.

Find a two-dimensional sufficient statistic for µ, quoting carefully, without proof,
any result you use.

What is the maximum likelihood estimator of µ?

1/II/12D Statistics

What is a simple hypothesis? Define the terms size and power for a test of one
simple hypothesis against another.

State, without proof, the Neyman–Pearson lemma.

Let X be a single random variable, with distribution F . Consider testing the null
hypothesis H0 : F is standard normal, N(0, 1), against the alternative hypothesis H1 : F
is double exponential, with density 1

4e
−|x|/2, x ∈ R.

Find the test of size α, α < 1
4 , which maximises power, and show that the power is e−t/2,

where Φ(t) = 1− α/2 and Φ is the distribution function of N(0, 1).

[Hint: if X ∼ N(0, 1), P (|X| > 1) = 0.3174.]

2/I/3D Statistics

Suppose the single random variable X has a uniform distribution on the interval
[0, θ] and it is required to estimate θ with the loss function

L(θ, a) = c(θ − a)2,

where c > 0.

Find the posterior distribution for θ and the optimal Bayes point estimate with respect
to the prior distribution with density p(θ) = θe−θ, θ > 0.
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2/II/12D Statistics

What is meant by a generalized likelihood ratio test? Explain in detail how to
perform such a test.

Let X1, . . . , Xn be independent random variables, and let Xi have a Poisson
distribution with unknown mean λi, i = 1, . . . , n.

Find the form of the generalized likelihood ratio statistic for testing
H0 : λ1 = . . . = λn, and show that it may be approximated by

1
X̄

n∑
i=1

(Xi − X̄)2,

where X̄ = n−1
∑n
i=1Xi.

If, for n = 7, you found that the value of this statistic was 27.3, would you accept
H0? Justify your answer.

4/I/3D Statistics

Consider the linear regression model

Yi = βxi + εi,

i = 1, . . . , n, where x1, . . . , xn are given constants, and ε1, . . . , εn are independent,
identically distributed N(0, σ2), with σ2 unknown.

Find the least squares estimator β̂ of β. State, without proof, the distribution of β̂
and describe how you would test H0 : β = β0 against H1 : β 6= β0, where β0 is given.

4/II/12D Statistics

Let X1, . . . , Xn be independent, identically distributed N(µ, σ2) random variables,
where µ and σ2 are unknown.

Derive the maximum likelihood estimators µ̂, σ̂2 of µ, σ2, based on X1, . . . , Xn.
Show that µ̂ and σ̂2 are independent, and derive their distributions.

Suppose now it is intended to construct a “prediction interval” I(X1, . . . , Xn) for
a future, independent, N(µ, σ2) random variable X0. We require

P

{
X0 ∈ I(X1, . . . , Xn)

}
= 1− α,

with the probability over the joint distribution of X0, X1, . . . , Xn.

Let

Iγ(X1, . . . , Xn) =
(
µ̂− γσ̂

√
1 +

1
n
, µ̂+ γσ̂

√
1 +

1
n

)
.

By considering the distribution of (X0− µ̂)/(σ̂
√

n+1
n−1 ), find the value of γ for which

P{X0 ∈ Iγ(X1, . . . , Xn)} = 1− α.
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3/I/5D Optimization

Let a1, . . . , an be given constants, not all equal.

Use the Lagrangian sufficiency theorem, which you should state clearly, without
proof, to minimize

∑n
i=1 x

2
i subject to the two constraints∑n

i=1 xi = 1,
∑n
i=1 aixi = 0.

3/II/15D Optimization

Consider the following linear programming problem,

minimize (3− p)x1 + px2

subject to 2x1 + x2 > 8
x1 + 3x2 > 9
x1 6 6
x1, x2 > 0.

Formulate the problem in a suitable way for solution by the two-phase simplex method.

Using the two-phase simplex method, show that if 2 6 p 6 9
4 then the optimal

solution has objective function value 9 − p, while if 9
4 < p 6 3 the optimal objective

function value is 18− 5p.

4/I/5D Optimization

Explain what is meant by a two-person zero-sum game with payoff matrix A = [aij ].
Write down a set of sufficient conditions for a pair of strategies to be optimal for such a
game.

A fair coin is tossed and the result is shown to player I, who must then decide to
‘pass’ or ‘bet’. If he passes, he must pay player II £1. If he bets, player II, who does not
know the result of the coin toss, may either ‘fold’ or ‘call the bet’. If player II folds, she
pays player I £1. If she calls the bet and the toss was a head, she pays player I £2; if she
calls the bet and the toss was a tail, player I must pay her £2.

Formulate this as a two-person zero-sum game and find optimal strategies for the two
players. Show that the game has value 1

3 .

[Hint: Player I has four possible moves and player II two.]
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4/II/14D Optimization

Dumbledore Publishers must decide how many copies of the best-selling “History of
Hogwarts” to print in the next two months to meet demand. It is known that the demands
will be for 40 thousand and 60 thousand copies in the first and second months respectively,
and these demands must be met on time. At the beginning of the first month, a supply
of 10 thousand copies is available, from existing stock. During each month, Dumbledore
can produce up to 40 thousand copies, at a cost of 400 galleons per thousand copies. By
having employees work overtime, up to 150 thousand additional copies can be printed
each month, at a cost of 450 galleons per thousand copies. At the end of each month,
after production and the current month’s demand has been satisfied, a holding cost of 20
galleons per thousand copies is incurred.

Formulate a transportation problem, with 5 supply points and 3 demand points, to
minimize the sum of production and holding costs during the two month period, and
solve it.

[You may assume that copies produced during a month can be used to meet demand in that
month.]
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1/I/8B Quadratic Mathematics

Let q(x, y) = ax2 + bxy + cy2 be a binary quadratic form with integer coefficients.
Define what is meant by the discriminant d of q, and show that q is positive-definite if
and only if a > 0 > d. Define what it means for the form q to be reduced. For any integer
d < 0, we define the class number h(d) to be the number of positive-definite reduced
binary quadratic forms (with integer coefficients) with discriminant d. Show that h(d) is
always finite (for negative d). Find h(−39), and exhibit the corresponding reduced forms.

1/II/17B Quadratic Mathematics

Let φ be a symmetric bilinear form on a finite dimensional vector space V over a
field k of characteristic 6= 2. Prove that the form φ may be diagonalized, and interpret
the rank r of φ in terms of the resulting diagonal form.

For φ a symmetric bilinear form on a real vector space V of finite dimension n,
define the signature σ of φ, proving that it is well-defined. A subspace U of V is called
null if φ|U ≡ 0; show that V has a null subspace of dimension n− 1

2 (r + |σ|), but no null
subspace of higher dimension.

Consider now the quadratic form q on R5 given by

2(x1x2 + x2x3 + x3x4 + x4x5 + x5x1).

Write down the matrix A for the corresponding symmetric bilinear form, and calculate
detA. Hence, or otherwise, find the rank and signature of q.

2/I/8B Quadratic Mathematics

Let V be a finite-dimensional vector space over a field k. Describe a bijective
correspondence between the set of bilinear forms on V , and the set of linear maps of V to
its dual space V ∗. If φ1, φ2 are non-degenerate bilinear forms on V , prove that there exists
an isomorphism α : V → V such that φ2(u, v) = φ1(u, αv) for all u, v ∈ V . If furthermore
both φ1, φ2 are symmetric, show that α is self-adjoint (i.e. equals its adjoint) with respect
to φ1.
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2/II/17B Quadratic Mathematics

Suppose p is an odd prime and a an integer coprime to p. Define the Legendre
symbol (ap ), and state (without proof) Euler’s criterion for its calculation.

For j any positive integer, we denote by rj the (unique) integer with |rj | ≤ (p−1)/2
and rj ≡ aj mod p. Let l be the number of integers 1 ≤ j ≤ (p − 1)/2 for which rj is
negative. Prove that (

a

p

)
= (−1)l.

Hence determine the odd primes for which 2 is a quadratic residue.

Suppose that p1, . . . , pm are primes congruent to 7 modulo 8, and let

N = 8(p1 . . . pm)2 − 1.

Show that 2 is a quadratic residue for any prime dividing N . Prove that N is divisible by
some prime p ≡ 7 mod 8. Hence deduce that there are infinitely many primes congruent
to 7 modulo 8.

3/I/9B Quadratic Mathematics

Let A be the Hermitian matrix 1 i 2i
−i 3 −i
−2i i 5

 .

Explaining carefully the method you use, find a diagonal matrix D with rational entries,
and an invertible (complex) matrix T such that T ∗DT = A, where T ∗ here denotes the
conjugated transpose of T .

Explain briefly why we cannot find T,D as above with T unitary.

[You may assume that if a monic polynomial t3 + a2t
2 + a1t+ a0 with integer coefficients

has all its roots rational, then all its roots are in fact integers.]
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3/II/19B Quadratic Mathematics

Let J1 denote the 2 × 2 matrix
(

0 1
−1 0

)
. Suppose that T is a 2 × 2 upper-

triangular real matrix with strictly positive diagonal entries and that J1
−1TJ1T

−1 is
orthogonal. Verify that J1T = TJ1.

Prove that any real invertible matrix A has a decomposition A = BC, where B is
an orthogonal matrix and C is an upper-triangular matrix with strictly positive diagonal
entries.

Let A now denote a 2n× 2n real matrix, and A = BC be the decomposition of the
previous paragraph. Let K denote the 2n×2n matrix with n copies of J1 on the diagonal,
and zeros elsewhere, and suppose that KA = AK. Prove that K−1CKC−1 is orthogonal.
From this, deduce that the entries of K−1CKC−1 are zero, apart from n orthogonal 2× 2
blocks E1, . . . , En along the diagonal. Show that each Ei has the form J1

−1CiJ1Ci
−1, for

some 2×2 upper-triangular matrix Ci with strictly positive diagonal entries. Deduce that
KC = CK and KB = BK.

[Hint: The invertible 2n×2n matrices S with 2×2 blocks S1, . . . , Sn along the diagonal, but
with all other entries below the diagonal zero, form a group under matrix multiplication.]
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2/I/4B Further Analysis

Define the terms connected and path connected for a topological space. If a
topological space X is path connected, prove that it is connected.

Consider the following subsets of R2:

I = {(x, 0) : 0 ≤ x ≤ 1}, A = {(0, y) : 1
2 ≤ y ≤ 1}, and

Jn = {(n−1, y) : 0 ≤ y ≤ 1} for n ≥ 1.

Let
X = A ∪ I ∪

⋃
n≥1

Jn

with the subspace (metric) topology. Prove that X is connected.

[You may assume that any interval in R (with the usual topology) is connected.]

2/II/13A Further Analysis

State Liouville’s Theorem. Prove it by considering∫
|z|=R

f(z) dz
(z − a)(z − b)

and letting R→∞.

Prove that, if g(z) is a function analytic on all of C with real and imaginary parts
u(z) and v(z), then either of the conditions:

(i) u+ v > 0 for all z; or (ii) uv > 0 for all z,

implies that g(z) is constant.

3/I/3B Further Analysis

State a version of Rouché’s Theorem. Find the number of solutions (counted with
multiplicity) of the equation

z4 = a(z − 1)(z2 − 1) + 1
2

inside the open disc {z : |z| <
√

2}, for the cases a = 1
3 , 12 and 5.

[Hint: For the case a = 5, you may find it helpful to consider the function (z2 − 1)(z −
2)(z − 3).]
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3/II/13B Further Analysis

If X and Y are topological spaces, describe the open sets in the product topology
on X × Y . If the topologies on X and Y are induced from metrics, prove that the same
is true for the product.

What does it mean to say that a topological space is compact? If the topologies on
X and Y are compact, prove that the same is true for the product.

4/I/4A Further Analysis

Let f(z) be analytic in the disc |z| < R. Assume the formula

f ′(z0) =
1

2πi

∫
|z|=r

f(z) dz
(z − z0)2

, 0 6 |z0| < r < R.

By combining this formula with a complex conjugate version of Cauchy’s Theorem, namely

0 =
∫

|z|=r

f(z) dz̄,

prove that

f ′(0) =
1
πr

∫ 2π

0

u(θ)e−iθdθ,

where u(θ) is the real part of f(reiθ).

4/II/13B Further Analysis

Let ∆∗ = {z : 0 < |z| < r} be a punctured disc, and f an analytic function on ∆∗.
What does it mean to say that f has the origin as (i) a removable singularity, (ii) a pole,
and (iii) an essential singularity? State criteria for (i), (ii), (iii) to occur, in terms of the
Laurent series for f at 0.

Suppose now that the origin is an essential singularity for f . Given any w ∈ C, show
that there exists a sequence (zn) of points in ∆∗ such that zn → 0 and f(zn) → w. [You
may assume the fact that an isolated singularity is removable if the function is bounded in
some open neighbourhood of the singularity.]

State the Open Mapping Theorem. Prove that if f is analytic and injective on ∆∗,
then the origin cannot be an essential singularity. By applying this to the function g(1/z),
or otherwise, deduce that if g is an injective analytic function on C, then g is linear of the
form az+ b, for some non-zero complex number a. [Here, you may assume that g injective
implies that its derivative g′ is nowhere vanishing.]
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