MATHEMATICAL TRIPOS Part IB

Friday 8 June 2001 9 to 12

PAPER 3

Before you begin read these instructions carefully.

Each question in Section II carries twice the credit of each question in Section I. Candidates may attempt at most **four** questions in Section I and at most **six** questions from Section II.

Complete answers are preferred to fragments.

Write on one side of the paper only and begin each answer on a separate sheet.

Write legibly; otherwise, you place yourself at a grave disadvantage.

At the end of the examination:

Answers must be tied up in separate bundles, marked A, B, \ldots, H according to the letter affixed to each question, and a blue cover sheet must be attached to each bundle.

A green master cover sheet listing all the questions attempted must be completed.

It is essential that every cover sheet bear the candidate's examination number and desk number.

SECTION I

1A Analysis II

Define what is meant by a norm on a real vector space.

(a) Prove that two norms on a vector space (not necessarily finite-dimensional) give rise to equivalent metrics if and only if they are Lipschitz equivalent.

(b) Prove that if the vector space V has an inner product, then for all $x, y \in V$,

$$||x + y||^{2} + ||x - y||^{2} = 2||x||^{2} + 2||y||^{2},$$

in the induced norm.

Hence show that the norm on \mathbb{R}^2 defined by $||x|| = \max(|x_1|, |x_2|)$, where $x = (x_1, x_2) \in \mathbb{R}^2$, cannot be induced by an inner product.

2G Methods

Laplace's equation in the plane is given in terms of plane polar coordinates r and θ in the form

$$\nabla^2 \phi \equiv \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \phi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} = 0.$$

In each of the cases

(i)
$$0 \leq r \leq 1$$
, and (ii) $1 \leq r < \infty$,

find the general solution of Laplace's equation which is single-valued and finite.

Solve also Laplace's equation in the annulus $a \leq r \leq b$ with the boundary conditions

$$\phi = 1$$
 on $r = a$ for all θ ,
 $\phi = 2$ on $r = b$ for all θ .

3B Further Analysis

State a version of Rouché's Theorem. Find the number of solutions (counted with multiplicity) of the equation

$$z^4 = a(z-1)(z^2-1) + \frac{1}{2}$$

inside the open disc $\{z : |z| < \sqrt{2}\}$, for the cases $a = \frac{1}{3}$, 12 and 5.

[Hint: For the case a = 5, you may find it helpful to consider the function $(z^2 - 1)(z - 2)(z - 3)$.]

Paper 3

4B Geometry

State and prove the Gauss–Bonnet theorem for the area of a spherical triangle.

Suppose **D** is a regular dodecahedron, with centre the origin. Explain how each face of **D** gives rise to a spherical pentagon on the 2-sphere S^2 . For each such spherical pentagon, calculate its angles and area.

5D Optimization

Let a_1, \ldots, a_n be given constants, not all equal.

Use the Lagrangian sufficiency theorem, which you should state clearly, without proof, to minimize $\sum_{i=1}^{n} x_i^2$ subject to the two constraints $\sum_{i=1}^{n} x_i = 1, \sum_{i=1}^{n} a_i x_i = 0.$

6E Numerical Analysis

Given $f \in C^{n+1}[a, b]$, let the *n*th-degree polynomial p interpolate the values $f(x_i)$, $i = 0, 1, \ldots, n$, where $x_0, x_1, \ldots, x_n \in [a, b]$ are distinct. Given $x \in [a, b]$, find the error f(x) - p(x) in terms of a derivative of f.

7C Linear Mathematics

Determine the dimension of the subspace W of \mathbb{R}^5 spanned by the vectors

1	1		1	4		(4)		/	5	
	2		(2		5		[4	
	2	,		-2	,	3	,		0	
-	-1	ŕ		6	Ĺ	1	Ĺ		5	
	$_{1}/$		/-	-2/		\backslash_1		/_	-1/	

Write down a 5×5 matrix M which defines a linear map $\mathbb{R}^5 \to \mathbb{R}^5$ whose image is W and which contains $(1, 1, 1, 1, 1)^T$ in its kernel. What is the dimension of the space of all linear maps $\mathbb{R}^5 \to \mathbb{R}^5$ with $(1, 1, 1, 1, 1)^T$ in the kernel, and image contained in W?

8G Fluid Dynamics

Inviscid incompressible fluid occupies the region y > 0, which is bounded by a rigid barrier along y = 0. At time t = 0, a line vortex of strength κ is placed at position (a, b). By considering the flow due to an image vortex at (a, -b), or otherwise, determine the velocity potential in the fluid.

Derive the position of the original vortex at time t > 0.

[TURN OVER

Paper 3

9B Quadratic Mathematics

Let A be the Hermitian matrix

$$\begin{pmatrix} 1 & i & 2i \\ -i & 3 & -i \\ -2i & i & 5 \end{pmatrix}.$$

Explaining carefully the method you use, find a diagonal matrix D with **rational** entries, and an invertible (complex) matrix T such that $T^*DT = A$, where T^* here denotes the conjugated transpose of T.

Explain briefly why we cannot find T, D as above with T unitary.

[You may assume that if a monic polynomial $t^3 + a_2t^2 + a_1t + a_0$ with integer coefficients has all its roots rational, then all its roots are in fact integers.]

10F Special Relativity

A particle of rest mass m and four-momentum $P = (E/c, \mathbf{p})$ is detected by an observer with four-velocity U, satisfying $U \cdot U = c^2$, where the product of two four-vectors $P = (p^0, \mathbf{p})$ and $Q = (q^0, \mathbf{q})$ is $P \cdot Q = p^0 q^0 - \mathbf{p} \cdot \mathbf{q}$.

Show that the speed of the detected particle in the observer's rest frame is

$$v = c \sqrt{1 - \frac{P \cdot P c^2}{(P \cdot U)^2}}.$$

SECTION II

11A Analysis II

Prove that if all the partial derivatives of $f : \mathbb{R}^p \to \mathbb{R}$ (with $p \ge 2$) exist in an open set containing $(0, 0, \ldots, 0)$ and are continuous at this point, then f is differentiable at $(0, 0, \ldots, 0)$.

Let

$$g(x) = \begin{cases} x^2 \sin(1/x), & x \neq 0, \\ 0, & x = 0, \end{cases}$$

and

$$f(x,y) = g(x) + g(y).$$

At which points of the plane is the partial derivative f_x continuous?

At which points is the function f(x, y) differentiable? Justify your answers.

12H Methods

Find the Fourier sine series representation on the interval $0 \leq x \leq l$ of the function

$$f(x) = \begin{cases} 0, & 0 \le x < a, \\ 1, & a \le x \le b, \\ 0, & b < x \le l. \end{cases}$$

The motion of a struck string is governed by the equation

$$\frac{\partial^2 y}{\partial t^2} = c^2 \ \frac{\partial^2 y}{\partial x^2}, \quad \text{for} \quad 0 \leqslant x \leqslant l \quad \text{ and } \quad t \geqslant 0,$$

subject to boundary conditions y = 0 at x = 0 and x = l for $t \ge 0$, and to the initial conditions y = 0 and $\frac{\partial y}{\partial t} = \delta(x - \frac{1}{4}l)$ at t = 0.

Obtain the solution y(x,t) for this motion. Evaluate y(x,t) for $t = \frac{1}{2}l/c$, and sketch it clearly.

13B Further Analysis

If X and Y are topological spaces, describe the open sets in the *product topology* on $X \times Y$. If the topologies on X and Y are induced from metrics, prove that the same is true for the product.

What does it mean to say that a topological space is *compact*? If the topologies on X and Y are compact, prove that the same is true for the product.

[TURN OVER

Paper 3

14B Geometry

Describe the hyperbolic lines in the upper half-plane model H of the hyperbolic plane. The group $G = \operatorname{SL}(2, \mathbb{R})/\{\pm I\}$ acts on H via Möbius transformations, which you may assume are isometries of H. Show that G acts transitively on the hyperbolic lines. Find explicit formulae for the reflection in the hyperbolic line L in the cases (i) L is a vertical line x = a, and (ii) L is the unit semi-circle with centre the origin. Verify that the composite T of a reflection of type (ii) followed afterwards by one of type (i) is given by $T(z) = -z^{-1} + 2a$.

Suppose now that L_1 and L_2 are distinct hyperbolic lines in the hyperbolic plane, with R_1, R_2 denoting the corresponding reflections. By considering different models of the hyperbolic plane, or otherwise, show that

- (a) R_1R_2 has infinite order if L_1 and L_2 are parallel or ultraparallel, and
- (b) R_1R_2 has finite order if and only if L_1 and L_2 meet at an angle which is a rational multiple of π .

15D Optimization

Consider the following linear programming problem,

minimize
$$(3-p)x_1 + px_2$$

subject to $2x_1 + x_2 \ge 8$
 $x_1 + 3x_2 \ge 9$
 $x_1 \le 6$
 $x_1, x_2 \ge 0.$

Formulate the problem in a suitable way for solution by the two-phase simplex method.

Using the two-phase simplex method, show that if $2 \leq p \leq \frac{9}{4}$ then the optimal solution has objective function value 9 - p, while if $\frac{9}{4} the optimal objective function value is <math>18 - 5p$.

16E Numerical Analysis

Let the monic polynomials p_n , $n \ge 0$, be orthogonal with respect to the weight function w(x) > 0, a < x < b, where the degree of each p_n is exactly n.

- (a) Prove that each p_n , $n \ge 1$, has n distinct zeros in the interval (a, b).
- (b) Suppose that the p_n satisfy the three-term recurrence relation

$$p_n(x) = (x - a_n)p_{n-1}(x) - b_n^2 p_{n-2}(x), \quad n \ge 2,$$

where $p_0(x) \equiv 1, p_1(x) = x - a_1$. Set

$$A_{n} = \begin{pmatrix} a_{1} & b_{2} & 0 & \cdots & 0 \\ b_{2} & a_{2} & b_{3} & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & b_{n-1} & a_{n-1} & b_{n} \\ 0 & \cdots & 0 & b_{n} & a_{n} \end{pmatrix}, \quad n \ge 2.$$

Prove that $p_n(x) = \det(xI - A_n), n \ge 2$, and deduce that all the eigenvalues of A_n reside in (a, b).

17C Linear Mathematics

Let V be a vector space over \mathbb{R} . Let $\alpha : V \to V$ be a nilpotent endomorphism of V, i.e. $\alpha^m = 0$ for some positive integer m. Prove that α can be represented by a strictly upper-triangular matrix (with zeros along the diagonal). [You may wish to consider the subspaces ker(α^j) for $j = 1, \ldots, m$.]

Show that if α is nilpotent, then $\alpha^n = 0$ where *n* is the dimension of *V*. Give an example of a 4×4 matrix *M* such that $M^4 = 0$ but $M^3 \neq 0$.

Let A be a nilpotent matrix and I the identity matrix. Prove that I + A has all eigenvalues equal to 1. Is the same true of (I+A)(I+B) if A and B are nilpotent? Justify your answer.

[TURN OVER

18G Fluid Dynamics

State the form of Bernoulli's theorem appropriate for an unsteady irrotational motion of an inviscid incompressible fluid.

A circular cylinder of radius a is immersed in unbounded inviscid fluid of uniform density ρ . The cylinder moves in a prescribed direction perpendicular to its axis, with speed U. Use cylindrical polar coordinates, with the direction $\theta = 0$ parallel to the direction of the motion, to find the velocity potential in the fluid.

If U depends on time t and gravity is negligible, determine the pressure field in the fluid at time t. Deduce the fluid force per unit length on the cylinder.

[In cylindrical polar coordinates, $\nabla \phi = \frac{\partial \phi}{\partial r} \mathbf{e}_r + \frac{1}{r} \frac{\partial \phi}{\partial \theta} \mathbf{e}_{\theta}$.]

19B Quadratic Mathematics

Let J_1 denote the 2 × 2 matrix $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Suppose that T is a 2 × 2 uppertriangular real matrix with strictly positive diagonal entries and that $J_1^{-1}TJ_1T^{-1}$ is orthogonal. Verify that $J_1T = TJ_1$.

Prove that any real invertible matrix A has a decomposition A = BC, where B is an orthogonal matrix and C is an upper-triangular matrix with strictly positive diagonal entries.

Let A now denote a $2n \times 2n$ real matrix, and A = BC be the decomposition of the previous paragraph. Let K denote the $2n \times 2n$ matrix with n copies of J_1 on the diagonal, and zeros elsewhere, and suppose that KA = AK. Prove that $K^{-1}CKC^{-1}$ is orthogonal. From this, deduce that the entries of $K^{-1}CKC^{-1}$ are zero, apart from n orthogonal 2×2 blocks E_1, \ldots, E_n along the diagonal. Show that each E_i has the form $J_1^{-1}C_iJ_1C_i^{-1}$, for some 2×2 upper-triangular matrix C_i with strictly positive diagonal entries. Deduce that KC = CK and KB = BK.

[*Hint:* The invertible $2n \times 2n$ matrices S with 2×2 blocks S_1, \ldots, S_n along the diagonal, but with all other entries below the diagonal zero, form a group under matrix multiplication.]

20F Quantum Mechanics

A quantum system has a complete set of orthonormalised energy eigenfunctions $\psi_n(x)$ with corresponding energy eigenvalues E_n , n = 1, 2, 3, ...

(a) If the time-dependent wavefunction $\psi(x,t)$ is, at t = 0,

$$\psi(x,0) = \sum_{n=1}^{\infty} a_n \psi_n(x),$$

determine $\psi(x,t)$ for all t > 0.

(b) A linear operator \mathcal{S} acts on the energy eigenfunctions as follows:

$$S\psi_1 = 7\psi_1 + 24\psi_2,$$

$$S\psi_2 = 24\psi_1 - 7\psi_2,$$

$$S\psi_n = 0, \quad n \ge 3.$$

Find the eigenvalues of S. At time t = 0, S is measured and its lowest eigenvalue is found. At time t > 0, S is measured again. Show that the probability for obtaining the lowest eigenvalue again is

$$\frac{1}{625} \bigg(337 + 288 \cos(\omega t) \bigg),$$

where $\omega = (E_1 - E_2)/\hbar$.

END OF PAPER