Friday 8 June 20019 to 12

PAPER 3

Before you begin read these instructions carefully.

Each question in Section II carries twice the credit of each question in Section I. Candidates may attempt at most four questions in Section I and at most six questions from Section II.

Complete answers are preferred to fragments.
Write on one side of the paper only and begin each answer on a separate sheet.
Write legibly; otherwise, you place yourself at a grave disadvantage.

At the end of the examination:
Answers must be tied up in separate bundles, marked $\boldsymbol{A}, \boldsymbol{B}, \ldots, \boldsymbol{H}$ according to the letter affixed to each question, and a blue cover sheet must be attached to each bundle.

A green master cover sheet listing all the questions attempted must be completed.
It is essential that every cover sheet bear the candidate's examination number and desk number.

SECTION I

1A Analysis II

Define what is meant by a norm on a real vector space.
(a) Prove that two norms on a vector space (not necessarily finite-dimensional) give rise to equivalent metrics if and only if they are Lipschitz equivalent.
(b) Prove that if the vector space V has an inner product, then for all $x, y \in V$,

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2},
$$

in the induced norm.
Hence show that the norm on \mathbb{R}^{2} defined by $\|x\|=\max \left(\left|x_{1}\right|,\left|x_{2}\right|\right)$, where $x=\left(x_{1}, x_{2}\right) \in$ \mathbb{R}^{2}, cannot be induced by an inner product.

2G Methods

Laplace's equation in the plane is given in terms of plane polar coordinates r and θ in the form

$$
\nabla^{2} \phi \equiv \frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \phi}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} \phi}{\partial \theta^{2}}=0
$$

In each of the cases

$$
\text { (i) } 0 \leqslant r \leqslant 1, \quad \text { and } \quad \text { (ii) } \quad 1 \leqslant r<\infty \text {, }
$$

find the general solution of Laplace's equation which is single-valued and finite.
Solve also Laplace's equation in the annulus $a \leqslant r \leqslant b$ with the boundary conditions

$$
\begin{aligned}
& \phi=1 \quad \text { on } r=a \text { for all } \theta, \\
& \phi=2 \quad \text { on } r=b \text { for all } \theta .
\end{aligned}
$$

3B Further Analysis

State a version of Rouché's Theorem. Find the number of solutions (counted with multiplicity) of the equation

$$
z^{4}=a(z-1)\left(z^{2}-1\right)+\frac{1}{2}
$$

inside the open disc $\{z:|z|<\sqrt{2}\}$, for the cases $a=\frac{1}{3}, 12$ and 5 .
[Hint: For the case $a=5$, you may find it helpful to consider the function $\left(z^{2}-1\right)(z-$ $2)(z-3)$.]

4B Geometry

State and prove the Gauss-Bonnet theorem for the area of a spherical triangle.
Suppose \mathbf{D} is a regular dodecahedron, with centre the origin. Explain how each face of \mathbf{D} gives rise to a spherical pentagon on the 2-sphere S^{2}. For each such spherical pentagon, calculate its angles and area.

5D Optimization

Let a_{1}, \ldots, a_{n} be given constants, not all equal.
Use the Lagrangian sufficiency theorem, which you should state clearly, without proof, to minimize $\sum_{i=1}^{n} x_{i}^{2}$ subject to the two constraints $\sum_{i=1}^{n} x_{i}=1, \sum_{i=1}^{n} a_{i} x_{i}=0$.

6E Numerical Analysis

Given $f \in C^{n+1}[a, b]$, let the n th-degree polynomial p interpolate the values $f\left(x_{i}\right)$, $i=0,1, \ldots, n$, where $x_{0}, x_{1}, \ldots, x_{n} \in[a, b]$ are distinct. Given $x \in[a, b]$, find the error $f(x)-p(x)$ in terms of a derivative of f.

7C Linear Mathematics

Determine the dimension of the subspace W of \mathbb{R}^{5} spanned by the vectors

$$
\left(\begin{array}{r}
1 \\
2 \\
2 \\
-1 \\
1
\end{array}\right),\left(\begin{array}{r}
4 \\
2 \\
-2 \\
6 \\
-2
\end{array}\right),\left(\begin{array}{l}
4 \\
5 \\
3 \\
1 \\
1
\end{array}\right),\left(\begin{array}{r}
5 \\
4 \\
0 \\
5 \\
-1
\end{array}\right) .
$$

Write down a 5×5 matrix M which defines a linear map $\mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$ whose image is W and which contains $(1,1,1,1,1)^{T}$ in its kernel. What is the dimension of the space of all linear maps $\mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$ with $(1,1,1,1,1)^{T}$ in the kernel, and image contained in W ?

8G Fluid Dynamics

Inviscid incompressible fluid occupies the region $y>0$, which is bounded by a rigid barrier along $y=0$. At time $t=0$, a line vortex of strength κ is placed at position (a, b). By considering the flow due to an image vortex at $(a,-b)$, or otherwise, determine the velocity potential in the fluid.

Derive the position of the original vortex at time $t>0$.

9B Quadratic Mathematics

Let A be the Hermitian matrix

$$
\left(\begin{array}{rrr}
1 & i & 2 i \\
-i & 3 & -i \\
-2 i & i & 5
\end{array}\right) .
$$

Explaining carefully the method you use, find a diagonal matrix D with rational entries, and an invertible (complex) matrix T such that $T^{*} D T=A$, where T^{*} here denotes the conjugated transpose of T.

Explain briefly why we cannot find T, D as above with T unitary.
[You may assume that if a monic polynomial $t^{3}+a_{2} t^{2}+a_{1} t+a_{0}$ with integer coefficients has all its roots rational, then all its roots are in fact integers.]

10F Special Relativity

A particle of rest mass m and four-momentum $P=(E / c, \mathbf{p})$ is detected by an observer with four-velocity U, satisfying $U \cdot U=c^{2}$, where the product of two four-vectors $P=\left(p^{0}, \mathbf{p}\right)$ and $Q=\left(q^{0}, \mathbf{q}\right)$ is $P \cdot Q=p^{0} q^{0}-\mathbf{p} \cdot \mathbf{q}$.

Show that the speed of the detected particle in the observer's rest frame is

$$
v=c \sqrt{1-\frac{P \cdot P c^{2}}{(P \cdot U)^{2}}}
$$

SECTION II

11A Analysis II

Prove that if all the partial derivatives of $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ (with $p \geqslant 2$) exist in an open set containing $(0,0, \ldots, 0)$ and are continuous at this point, then f is differentiable at $(0,0, \ldots, 0)$.

Let

$$
g(x)= \begin{cases}x^{2} \sin (1 / x), & x \neq 0 \\ 0, & x=0\end{cases}
$$

and

$$
f(x, y)=g(x)+g(y)
$$

At which points of the plane is the partial derivative f_{x} continuous?
At which points is the function $f(x, y)$ differentiable? Justify your answers.

12H Methods

Find the Fourier sine series representation on the interval $0 \leqslant x \leqslant l$ of the function

$$
f(x)= \begin{cases}0, & 0 \leqslant x<a \\ 1, & a \leqslant x \leqslant b \\ 0, & b<x \leqslant l\end{cases}
$$

The motion of a struck string is governed by the equation

$$
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}, \quad \text { for } \quad 0 \leqslant x \leqslant l \quad \text { and } \quad t \geqslant 0
$$

subject to boundary conditions $y=0$ at $x=0$ and $x=l$ for $t \geqslant 0$, and to the initial conditions $y=0$ and $\frac{\partial y}{\partial t}=\delta\left(x-\frac{1}{4} l\right)$ at $t=0$.

Obtain the solution $y(x, t)$ for this motion. Evaluate $y(x, t)$ for $t=\frac{1}{2} l / c$, and sketch it clearly.

13B Further Analysis

If X and Y are topological spaces, describe the open sets in the product topology on $X \times Y$. If the topologies on X and Y are induced from metrics, prove that the same is true for the product.

What does it mean to say that a topological space is compact? If the topologies on X and Y are compact, prove that the same is true for the product.

14B Geometry

Describe the hyperbolic lines in the upper half-plane model H of the hyperbolic plane. The group $G=\operatorname{SL}(2, \mathbb{R}) /\{ \pm I\}$ acts on H via Möbius transformations, which you may assume are isometries of H. Show that G acts transitively on the hyperbolic lines. Find explicit formulae for the reflection in the hyperbolic line L in the cases (i) L is a vertical line $x=a$, and (ii) L is the unit semi-circle with centre the origin. Verify that the composite T of a reflection of type (ii) followed afterwards by one of type (i) is given by $T(z)=-z^{-1}+2 a$.

Suppose now that L_{1} and L_{2} are distinct hyperbolic lines in the hyperbolic plane, with R_{1}, R_{2} denoting the corresponding reflections. By considering different models of the hyperbolic plane, or otherwise, show that
(a) $R_{1} R_{2}$ has infinite order if L_{1} and L_{2} are parallel or ultraparallel, and
(b) $R_{1} R_{2}$ has finite order if and only if L_{1} and L_{2} meet at an angle which is a rational multiple of π.

15D Optimization

Consider the following linear programming problem,

minimize $\quad(3-p) x_{1}+p x_{2}$	
subject to	$2 x_{1}+x_{2}$

Formulate the problem in a suitable way for solution by the two-phase simplex method.
Using the two-phase simplex method, show that if $2 \leqslant p \leqslant \frac{9}{4}$ then the optimal solution has objective function value $9-p$, while if $\frac{9}{4}<p \leqslant 3$ the optimal objective function value is $18-5 p$.

16E Numerical Analysis

Let the monic polynomials $p_{n}, n \geqslant 0$, be orthogonal with respect to the weight function $w(x)>0, a<x<b$, where the degree of each p_{n} is exactly n.
(a) Prove that each $p_{n}, n \geqslant 1$, has n distinct zeros in the interval (a, b).
(b) Suppose that the p_{n} satisfy the three-term recurrence relation

$$
p_{n}(x)=\left(x-a_{n}\right) p_{n-1}(x)-b_{n}^{2} p_{n-2}(x), \quad n \geqslant 2
$$

where $p_{0}(x) \equiv 1, p_{1}(x)=x-a_{1}$. Set

$$
A_{n}=\left(\begin{array}{ccccc}
a_{1} & b_{2} & 0 & \cdots & 0 \\
b_{2} & a_{2} & b_{3} & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & b_{n-1} & a_{n-1} & b_{n} \\
0 & \cdots & 0 & b_{n} & a_{n}
\end{array}\right), \quad n \geqslant 2
$$

Prove that $p_{n}(x)=\operatorname{det}\left(x I-A_{n}\right), n \geqslant 2$, and deduce that all the eigenvalues of A_{n} reside in (a, b).

17C Linear Mathematics

Let V be a vector space over \mathbb{R}. Let $\alpha: V \rightarrow V$ be a nilpotent endomorphism of V, i.e. $\alpha^{m}=0$ for some positive integer m. Prove that α can be represented by a strictly upper-triangular matrix (with zeros along the diagonal). [You may wish to consider the subspaces $\operatorname{ker}\left(\alpha^{j}\right)$ for $j=1, \ldots, m$.]

Show that if α is nilpotent, then $\alpha^{n}=0$ where n is the dimension of V. Give an example of a 4×4 matrix M such that $M^{4}=0$ but $M^{3} \neq 0$.

Let A be a nilpotent matrix and I the identity matrix. Prove that $I+A$ has all eigenvalues equal to 1 . Is the same true of $(I+A)(I+B)$ if A and B are nilpotent? Justify your answer.

18G Fluid Dynamics

State the form of Bernoulli's theorem appropriate for an unsteady irrotational motion of an inviscid incompressible fluid.

A circular cylinder of radius a is immersed in unbounded inviscid fluid of uniform density ρ. The cylinder moves in a prescribed direction perpendicular to its axis, with speed U. Use cylindrical polar coordinates, with the direction $\theta=0$ parallel to the direction of the motion, to find the velocity potential in the fluid.

If U depends on time t and gravity is negligible, determine the pressure field in the fluid at time t. Deduce the fluid force per unit length on the cylinder.
[In cylindrical polar coordinates, $\nabla \phi=\frac{\partial \phi}{\partial r} \mathbf{e}_{r}+\frac{1}{r} \frac{\partial \phi}{\partial \theta} \mathbf{e}_{\theta}$.]

19B Quadratic Mathematics

Let J_{1} denote the 2×2 matrix $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. Suppose that T is a 2×2 uppertriangular real matrix with strictly positive diagonal entries and that $J_{1}{ }^{-1} T J_{1} T^{-1}$ is orthogonal. Verify that $J_{1} T=T J_{1}$.

Prove that any real invertible matrix A has a decomposition $A=B C$, where B is an orthogonal matrix and C is an upper-triangular matrix with strictly positive diagonal entries.

Let A now denote a $2 n \times 2 n$ real matrix, and $A=B C$ be the decomposition of the previous paragraph. Let K denote the $2 n \times 2 n$ matrix with n copies of J_{1} on the diagonal, and zeros elsewhere, and suppose that $K A=A K$. Prove that $K^{-1} C K C^{-1}$ is orthogonal. From this, deduce that the entries of $K^{-1} C K C^{-1}$ are zero, apart from n orthogonal 2×2 blocks E_{1}, \ldots, E_{n} along the diagonal. Show that each E_{i} has the form $J_{1}{ }^{-1} C_{i} J_{1} C_{i}{ }^{-1}$, for some 2×2 upper-triangular matrix C_{i} with strictly positive diagonal entries. Deduce that $K C=C K$ and $K B=B K$.
[Hint: The invertible $2 n \times 2 n$ matrices S with 2×2 blocks S_{1}, \ldots, S_{n} along the diagonal, but with all other entries below the diagonal zero, form a group under matrix multiplication.]

20F
 Quantum Mechanics

A quantum system has a complete set of orthonormalised energy eigenfunctions $\psi_{n}(x)$ with corresponding energy eigenvalues $E_{n}, n=1,2,3, \ldots$.
(a) If the time-dependent wavefunction $\psi(x, t)$ is, at $t=0$,

$$
\psi(x, 0)=\sum_{n=1}^{\infty} a_{n} \psi_{n}(x),
$$

determine $\psi(x, t)$ for all $t>0$.
(b) A linear operator \mathcal{S} acts on the energy eigenfunctions as follows:

$$
\begin{aligned}
& \mathcal{S} \psi_{1}=7 \psi_{1}+24 \psi_{2}, \\
& \mathcal{S} \psi_{2}=24 \psi_{1}-7 \psi_{2}, \\
& \mathcal{S} \psi_{n}=0, \quad n \geqslant 3 .
\end{aligned}
$$

Find the eigenvalues of \mathcal{S}. At time $t=0, \mathcal{S}$ is measured and its lowest eigenvalue is found At time $t>0, \mathcal{S}$ is measured again. Show that the probability for obtaining the lowest eigenvalue again is

$$
\frac{1}{625}(337+288 \cos (\omega t))
$$

where $\omega=\left(E_{1}-E_{2}\right) / \hbar$.

END OF PAPER

