PAPER 2

Before you begin read these instructions carefully.

Each question in Section II carries twice the credit of each question in Section I. Candidates may attempt at most four questions in Section I and at most six questions from Section II.

Complete answers are preferred to fragments.
Write on one side of the paper only and begin each answer on a separate sheet.
Write legibly; otherwise, you place yourself at a grave disadvantage.

At the end of the examination:
Answers must be tied up in separate bundles, marked $\boldsymbol{A}, \boldsymbol{B}, \ldots, \boldsymbol{G}$ according to the letter affixed to each question, and a blue cover sheet must be attached to each bundle.

A green master cover sheet listing all the questions attempted must be completed.
It is essential that every cover sheet bear the candidate's examination number and desk number.

SECTION I

1A Analysis II

State and prove the contraction mapping theorem.
Let $A=\{x, y, z\}$, let d be the discrete metric on A, and let d^{\prime} be the metric given by: d^{\prime} is symmetric and

$$
\begin{gathered}
d^{\prime}(x, y)=2, d^{\prime}(x, z)=2, d^{\prime}(y, z)=1, \\
d^{\prime}(x, x)=d^{\prime}(y, y)=d^{\prime}(z, z)=0 .
\end{gathered}
$$

Verify that d^{\prime} is a metric, and that it is Lipschitz equivalent to d.
Define an appropriate function $f: A \rightarrow A$ such that f is a contraction in the d^{\prime} metric, but not in the d metric.

2G Methods

Show that the symmetric and antisymmetric parts of a second-rank tensor are themselves tensors, and that the decomposition of a tensor into symmetric and antisymmetric parts is unique.

For the tensor A having components

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
1 & 2 & 3
\end{array}\right)
$$

find the scalar a, vector \mathbf{p} and symmetric traceless tensor B such that

$$
A \mathbf{x}=a \mathbf{x}+\mathbf{p} \wedge \mathbf{x}+B \mathbf{x}
$$

for every vector \mathbf{x}.

3D Statistics

Suppose the single random variable X has a uniform distribution on the interval $[0, \theta]$ and it is required to estimate θ with the loss function

$$
L(\theta, a)=c(\theta-a)^{2}
$$

where $c>0$.
Find the posterior distribution for θ and the optimal Bayes point estimate with respect to the prior distribution with density $p(\theta)=\theta e^{-\theta}, \theta>0$.

4B Further Analysis

Define the terms connected and path connected for a topological space. If a topological space X is path connected, prove that it is connected.

Consider the following subsets of \mathbb{R}^{2} :

$$
\begin{gathered}
I=\{(x, 0): 0 \leq x \leq 1\}, \quad A=\left\{(0, y): \frac{1}{2} \leq y \leq 1\right\}, \text { and } \\
J_{n}=\left\{\left(n^{-1}, y\right): 0 \leq y \leq 1\right\} \text { for } n \geq 1 .
\end{gathered}
$$

Let

$$
X=A \cup I \cup \bigcup_{n \geq 1} J_{n}
$$

with the subspace (metric) topology. Prove that X is connected.
[You may assume that any interval in \mathbb{R} (with the usual topology) is connected.]

5E Numerical Analysis

Find an LU factorization of the matrix

$$
A=\left(\begin{array}{rrrr}
2 & -1 & 3 & 2 \\
-4 & 3 & -4 & -2 \\
4 & -2 & 3 & 6 \\
-6 & 5 & -8 & 1
\end{array}\right)
$$

and use it to solve the linear system $A \mathbf{x}=\mathbf{b}$, where

$$
\mathbf{b}=\left(\begin{array}{r}
-2 \\
2 \\
4 \\
11
\end{array}\right)
$$

6C Linear Mathematics

Show that right multiplication by $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2 \times 2}(\mathbb{C})$ defines a linear transformation $\rho_{A}: M_{2 \times 2}(\mathbb{C}) \rightarrow M_{2 \times 2}(\mathbb{C})$. Find the matrix representing ρ_{A} with respect to the basis

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

of $M_{2 \times 2}(\mathbb{C})$. Prove that the characteristic polynomial of ρ_{A} is equal to the square of the characteristic polynomial of A, and that A and ρ_{A} have the same minimal polynomial.

7E Complex Methods

A complex function is defined for every $z \in V$, where V is a non-empty open subset of \mathbb{C}, and it possesses a derivative at every $z \in V$. Commencing from a formal definition of derivative, deduce the Cauchy-Riemann equations.

8B Quadratic Mathematics

Let V be a finite-dimensional vector space over a field k. Describe a bijective correspondence between the set of bilinear forms on V, and the set of linear maps of V to its dual space V^{*}. If ϕ_{1}, ϕ_{2} are non-degenerate bilinear forms on V, prove that there exists an isomorphism $\alpha: V \rightarrow V$ such that $\phi_{2}(u, v)=\phi_{1}(u, \alpha v)$ for all $u, v \in V$. If furthermore both ϕ_{1}, ϕ_{2} are symmetric, show that α is self-adjoint (i.e. equals its adjoint) with respect to ϕ_{1}.

9F Quantum Mechanics

Consider a solution $\psi(x, t)$ of the time-dependent Schrödinger equation for a particle of mass m in a potential $V(x)$. The expectation value of an operator \mathcal{O} is defined as

$$
\langle\mathcal{O}\rangle=\int d x \psi^{*}(x, t) \mathcal{O} \psi(x, t)
$$

Show that

$$
\frac{d}{d t}\langle x\rangle=\frac{\langle p\rangle}{m},
$$

where

$$
p=\frac{\hbar}{i} \frac{\partial}{\partial x}
$$

and that

$$
\frac{d}{d t}\langle p\rangle=\left\langle-\frac{\partial V}{\partial x}(x)\right\rangle
$$

[You may assume that $\psi(x, t)$ vanishes as $x \rightarrow \pm \infty$.]

SECTION II

10A Analysis II

Define total boundedness for metric spaces.
Prove that a metric space has the Bolzano-Weierstrass property if and only if it is complete and totally bounded.

11G Methods

Explain what is meant by an isotropic tensor.
Show that the fourth-rank tensor

$$
\begin{equation*}
A_{i j k l}=\alpha \delta_{i j} \delta_{k l}+\beta \delta_{i k} \delta_{j l}+\gamma \delta_{i l} \delta_{j k} \tag{*}
\end{equation*}
$$

is isotropic for arbitrary scalars α, β and γ.
Assuming that the most general isotropic tensor of rank 4 has the form (*), or otherwise, evaluate

$$
B_{i j k l}=\int_{r<a} x_{i} x_{j} \frac{\partial^{2}}{\partial x_{k} \partial x_{l}}\left(\frac{1}{r}\right) d V,
$$

where \mathbf{x} is the position vector and $r=|\mathbf{x}|$.

12D Statistics

What is meant by a generalized likelihood ratio test? Explain in detail how to perform such a test.

Let X_{1}, \ldots, X_{n} be independent random variables, and let X_{i} have a Poisson distribution with unknown mean $\lambda_{i}, i=1, \ldots, n$.

Find the form of the generalized likelihood ratio statistic for testing $H_{0}: \lambda_{1}=\ldots=\lambda_{n}$, and show that it may be approximated by

$$
\frac{1}{\bar{X}} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2},
$$

where $\bar{X}=n^{-1} \sum_{i=1}^{n} X_{i}$.
If, for $n=7$, you found that the value of this statistic was 27.3 , would you accept H_{0} ? Justify your answer.

13A Further Analysis

State Liouville's Theorem. Prove it by considering

$$
\int_{|z|=R} \frac{f(z) d z}{(z-a)(z-b)}
$$

and letting $R \rightarrow \infty$.
Prove that, if $g(z)$ is a function analytic on all of \mathbb{C} with real and imaginary parts $u(z)$ and $v(z)$, then either of the conditions:

$$
\text { (i) } u+v \geqslant 0 \text { for all } z ; \quad \text { or (ii) } u v \geqslant 0 \text { for all } z \text {, }
$$

implies that $g(z)$ is constant.

14E Numerical Analysis

(a) Let B be an $n \times n$ positive-definite, symmetric matrix. Define the Cholesky factorization of B and prove that it is unique.
(b) Let A be an $m \times n$ matrix, $m \geqslant n$, such that $\operatorname{rank} A=n$. Prove the uniqueness of the "skinny QR factorization"

$$
A=Q R
$$

where the matrix Q is $m \times n$ with orthonormal columns, while R is an $n \times n$ upper-triangular matrix with positive diagonal elements.
[Hint: Show that you may choose R as a matrix that features in the Cholesky factorization of $B=A^{T} A$.]

15C Linear Mathematics

Define the dual V^{*} of a vector space V. Given a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of V define its dual and show it is a basis of V^{*}. For a linear transformation $\alpha: V \rightarrow W$ define the dual $\alpha^{*}: W^{*} \rightarrow V^{*}$.

Explain (with proof) how the matrix representing $\alpha: V \rightarrow W$ with respect to given bases of V and W relates to the matrix representing $\alpha^{*}: W^{*} \rightarrow V^{*}$ with respect to the corresponding dual bases of V^{*} and W^{*}.

Prove that α and α^{*} have the same rank.
Suppose that α is an invertible endomorphism. Prove that $\left(\alpha^{*}\right)^{-1}=\left(\alpha^{-1}\right)^{*}$.

16E Complex Methods

Let R be a rational function such that $\lim _{z \rightarrow \infty}\{z R(z)\}=0$. Assuming that R has no real poles, use the residue calculus to evaluate

$$
\int_{-\infty}^{\infty} R(x) d x
$$

Given that $n \geqslant 1$ is an integer, evaluate

$$
\int_{0}^{\infty} \frac{d x}{1+x^{2 n}}
$$

17B Quadratic Mathematics

Suppose p is an odd prime and a an integer coprime to p. Define the Legendre symbol ($\frac{a}{p}$), and state (without proof) Euler's criterion for its calculation.

For j any positive integer, we denote by r_{j} the (unique) integer with $\left|r_{j}\right| \leq(p-1) / 2$ and $r_{j} \equiv a j \bmod p$. Let l be the number of integers $1 \leq j \leq(p-1) / 2$ for which r_{j} is negative. Prove that

$$
\left(\frac{a}{p}\right)=(-1)^{l} .
$$

Hence determine the odd primes for which 2 is a quadratic residue.
Suppose that p_{1}, \ldots, p_{m} are primes congruent to 7 modulo 8 , and let

$$
N=8\left(p_{1} \ldots p_{m}\right)^{2}-1
$$

Show that 2 is a quadratic residue for any prime dividing N. Prove that N is divisible by some prime $p \equiv 7 \bmod 8$. Hence deduce that there are infinitely many primes congruent to 7 modulo 8 .

18F Quantum Mechanics

(a) Write down the angular momentum operators L_{1}, L_{2}, L_{3} in terms of x_{i} and

$$
p_{i}=-i \hbar \frac{\partial}{\partial x_{i}}, i=1,2,3
$$

Verify the commutation relation

$$
\left[L_{1}, L_{2}\right]=i \hbar L_{3} .
$$

Show that this result and its cyclic permutations imply

$$
\begin{aligned}
{\left[L_{3}, L_{1} \pm i L_{2}\right] } & = \pm \hbar\left(L_{1} \pm i L_{2}\right) \\
{\left[\mathbf{L}^{2}, L_{1} \pm i L_{2}\right] } & =0
\end{aligned}
$$

(b) Consider a wavefunction of the form $\psi=\left(x_{3}^{2}+a r^{2}\right) f(r)$, where $r^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$. Show that for a particular value of a, ψ is an eigenfunction of both \mathbf{L}^{2} and L_{3}. What are the corresponding eigenvalues?

