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SECTION I

1E Groups
State Lagrange’s Theorem. Deduce that if G is a finite group of order n, then the

order of every element of G is a divisor of n.

Let G be a group such that, for every g ∈ G, g2 = e. Show that G is abelian. Give
an example of a non-abelian group in which every element g satisfies g4 = e.

2E Groups
What is a cycle in the symmetric group Sn? Show that a cycle of length p and a

cycle of length q in Sn are conjugate if and only if p = q.

Suppose that p is odd. Show that any two p-cycles in Ap+2 are conjugate. Are any
two 3-cycles in A4 conjugate? Justify your answer.

3C Vector Calculus
Define what it means for a differential P dx+Qdy to be exact, and derive a necessary

condition on P (x, y) and Q(x, y) for this to hold. Show that one of the following two
differentials is exact and the other is not:

y2 dx+ 2xy dy ,

y2 dx+ xy2 dy .

Show that the differential which is not exact can be written in the form g df for functions
f(x, y) and g(y), to be determined.

4C Vector Calculus
What does it mean for a second-rank tensor Tij to be isotropic? Show that δij is

isotropic. By considering rotations through π/2 about the coordinate axes, or otherwise,
show that the most general isotropic second-rank tensor in R3 has the form Tij = λδij , for
some scalar λ.
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SECTION II

5E Groups
(i) State and prove the Orbit-Stabilizer Theorem.

Show that if G is a finite group of order n, then G is isomorphic to a subgroup of
the symmetric group Sn.

(ii) Let G be a group acting on a set X with a single orbit, and let H be the stabilizer
of some element of X. Show that the homomorphism G → Sym(X) given by the action
is injective if and only if the intersection of all the conjugates of H equals {e}.

(iii) Let Q8 denote the quaternion group of order 8. Show that for every n < 8, Q8

is not isomorphic to a subgroup of Sn.

6E Groups
Let G be SL2(R), the groups of real 2 × 2 matrices of determinant 1, acting on

C ∪ {∞} by Möbius transformations.

For each of the points 0, i, −i, compute its stabilizer and its orbit under the action
of G. Show that G has exactly 3 orbits in all.

Compute the orbit of i under the subgroup

H =

{(
a b
0 d

) ∣∣∣ a, b, d ∈ R, ad = 1

}
⊂ G .

Deduce that every element g of G may be expressed in the form g = hk where h ∈ H and
for some θ ∈ R,

k =

(
cos θ − sin θ
sin θ cos θ

)
.

How many ways are there of writing g in this form?

Part IA, Paper 3 [TURN OVER



4

7E Groups
Let Fp be the set of (residue classes of) integers mod p, and let

G =

{(
a b
c d

)
: a, b, c, d ∈ Fp, ad− bc 6= 0

}

Show that G is a group under multiplication. [You may assume throughout this question
that multiplication of matrices is associative.]

Let X be the set of 2-dimensional column vectors with entries in Fp. Show that the
mapping G×X → X given by

((
a b
c d

)
,

(
x
y

))
7→

(
ax+ by
cx+ dy

)

is a group action.

Let g ∈ G be an element of order p. Use the orbit-stabilizer theorem to show that
there exist x, y ∈ Fp, not both zero, with

g

(
x
y

)
=

(
x
y

)
.

Deduce that g is conjugate in G to the matrix

(
1 1
0 1

)
.
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8E Groups
Let p be a prime number, and a an integer with 1 6 a 6 p − 1. Let G be the

Cartesian product

G = { (x, u) | x ∈ {0, 1, . . . , p− 2}, u ∈ {0, 1, . . . , p − 1} }

Show that the binary operation

(x, u) ∗ (y, v) = (z, w)

where

z ≡ x+ y (mod p− 1)

w ≡ ayu+ v (mod p)

makes G into a group. Show that G is abelian if and only if a = 1.

Let H and K be the subsets

H = { (x, 0) | x ∈ {0, 1, . . . , p − 2} }, K = { (0, u) | u ∈ {0, 1, . . . , p− 1} }

of G. Show that K is a normal subgroup of G, and that H is a subgroup which is normal
if and only if a = 1.

Find a homomorphism from G to another group whose kernel is K.

9C Vector Calculus
State Stokes’ Theorem for a vector field B(x) on R3.

Consider the surface S defined by

z = x2 + y2,
1

9
6 z 6 1.

Sketch the surface and calculate the area element dS in terms of suitable coordinates or
parameters. For the vector field

B = (−y3, x3, z3)

compute ∇×B and calculate I =
∫
S(∇×B) · dS.

Use Stokes’ Theorem to express I as an integral over ∂S and verify that this gives
the same result.
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10C Vector Calculus
Consider the transformation of variables

x = 1− u, y =
1− v

1− uv
.

Show that the interior of the unit square in the uv plane

{(u, v) : 0 < u < 1, 0 < v < 1}

is mapped to the interior of the unit square in the xy plane,

R = {(x, y) : 0 < x < 1, 0 < y < 1}.

[Hint: Consider the relation between v and y when u = α, for 0 < α < 1 constant.]

Show that
∂(x, y)

∂(u, v)
=

(1− (1− x)y)2

x
.

Now let

u =
1− t

1− wt
, v = 1− w.

By calculating
∂(x, y)

∂(t, w)
=

∂(x, y)

∂(u, v)

∂(u, v)

∂(t, w)

as a function of x and y, or otherwise, show that

∫

R

x(1− y)

(1− (1− x)y)(1− (1− x2)y)2
dx dy = 1.

11C Vector Calculus
(a) Prove the identity

∇(F ·G) = (F · ∇)G+ (G · ∇)F+ F× (∇×G) +G× (∇× F).

(b) If E is an irrotational vector field (i.e. ∇×E = 0 everywhere), prove that there
exists a scalar potential φ(x) such that E = −∇φ.

Show that the vector field

(xy2ze−x2z,−ye−x2z, 12x
2y2e−x2z)

is irrotational, and determine the corresponding potential φ.
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12C Vector Calculus
(i) Let V be a bounded region in R3 with smooth boundary S = ∂V . Show that

Poisson’s equation in V
∇2u = ρ

has at most one solution satisfying u = f on S, where ρ and f are given functions.

Consider the alternative boundary condition ∂u/∂n = g on S, for some given
function g, where n is the outward pointing normal on S. Derive a necessary condition in
terms of ρ and g for a solution u of Poisson’s equation to exist. Is such a solution unique?

(ii) Find the most general spherically symmetric function u(r) satisfying

∇2u = 1

in the region r = |r| 6 a for a > 0. Hence in each of the following cases find all possible
solutions satisfying the given boundary condition at r = a:

(a) u = 0 ,

(b) ∂u
∂n = 0 .

Compare these with your results in part (i).

END OF PAPER
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