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SECTION I

1A Differential Equations
Find two linearly independent solutions of

y′′ + 4y′ + 4y = 0 .

Find the solution in x > 0 of

y′′ + 4y′ + 4y = e−2x ,

subject to y = y′ = 0 at x = 0.

2A Differential Equations
Find the constant solutions (those with un+1 = un) of the discrete equation

un+1 =
1
2un (1 + un) ,

and determine their stability.

3F Probability
Given two events A and B with P (A) > 0 and P (B) > 0, define the conditional

probability P (A | B).

Show that

P (B | A) = P (A | B)
P (B)

P (A)
.

A random number N of fair coins are tossed, and the total number of heads is
denoted by H. If P (N = n) = 2−n for n = 1, 2, . . . , find P (N = n | H = 1).

4F Probability
Define the probability generating function G(s) of a random variable X taking values

in the non-negative integers.

A coin shows heads with probability p ∈ (0, 1) on each toss. Let N be the number
of tosses up to and including the first appearance of heads, and let k > 1. Find the
probability generating function of X = min{N, k}.

Show that E(X) = p−1(1− qk) where q = 1− p.
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SECTION II

5A Differential Equations
Find the first three non-zero terms in the series solutions y1(x) and y2(x) for the

differential equation
x2y′′ − 2xy′ + (2− x2)y = 0 ,

that satisfy

y′1(0) = a and y′′1 (0) = 0 ,

y′2(0) = 0 and y′′2 (0) = 2b .

Identify these solutions in closed form.

6A Differential Equations
Consider the function

V (x, y) = x4 − x2 + 2xy + y2.

Find the critical (stationary) points of V (x, y). Determine the type of each critical point.
Sketch the contours of V (x, y) = constant.

Now consider the coupled differential equations

dx

dt
= −∂V

∂x
,

dy

dt
= −∂V

∂y
.

Show that V (x(t), y(t)) is a non-increasing function of t. If x = 1 and y = −1
2 at t = 0,

where does the solution tend to as t → ∞?

7A Differential Equations
Find the solution to the system of equations

dx

dt
+

−4x+ 2y

t
= −9,

dy

dt
+

x− 5y

t
= 3

in t > 1 subject to
x = 0 and y = 0 at t = 1.

[Hint: powers of t.]
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8A Differential Equations
Consider the second-order differential equation for y(t) in t > 0

ÿ + 2kẏ + (k2 + ω2)y = f(t) . (∗)

(i) For f(t) = 0, find the general solution y1(t) of (∗).
(ii) For f(t) = δ(t − a) with a > 0, find the solution y2(t, a) of (∗) that satisfies

y = 0 and ẏ = 0 at t = 0.

(iii) For f(t) = H(t − b) with b > 0, find the solution y3(t, b) of (∗) that satisfies
y = 0 and ẏ = 0 at t = 0.

(iv) Show that

y2(t, b) = −∂y3
∂b

.

9F Probability
(i) Define the moment generating function MX(t) of a random variable X. If X, Y

are independent and a, b ∈ R, show that the moment generating function of Z = aX + bY
is MX(at)MY (bt).

(ii) Assume T > 0, and MX(t) <∞ for |t| < T . Explain the expansion

MX(t) = 1 + µt+ 1
2s

2t2 + o(t2)

where µ = E(X) and s2 = E(X2). [You may assume the validity of interchanging
expectation and differentiation.]

(iii) Let X, Y be independent, identically distributed random variables with mean
0 and variance 1, and assume their moment generating function M satisfies the condition
of part (ii) with T = ∞.

Suppose that X+Y and X−Y are independent. Show thatM(2t) =M(t)3M(−t),
and deduce that ψ(t) =M(t)/M(−t) satisfies ψ(t) = ψ(t/2)2.

Show that ψ(h) = 1 + o(h2) as h→ 0, and deduce that ψ(t) = 1 for all t.

Show that X and Y are normally distributed.
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10F Probability
(i) Define the distribution function F of a random variable X, and also its density

function f assuming F is differentiable. Show that

f(x) = − d

dx
P (X > x) .

(ii) Let U , V be independent random variables each with the uniform distribution
on [0, 1]. Show that

P (V 2 > U > x) = 1
3 − x+ 2

3x
3/2, x ∈ (0, 1) .

What is the probability that the random quadratic equation x2 +2V x+U = 0 has
real roots?

Given that the two roots R1, R2 of the above quadratic are real, what is the
probability that both |R1| 6 1 and |R2| 6 1 ?

11F Probability
(i) Let Xn be the size of the nth generation of a branching process with family-

size probability generating function G(s), and let X0 = 1. Show that the probability
generating function Gn(s) of Xn satisfies Gn+1(s) = G(Gn(s)) for n > 0.

(ii) Suppose the family-size mass function is P (X1 = k) = 2−k−1, k = 0, 1, 2, . . . .
Find G(s), and show that

Gn(s) =
n− (n − 1)s

n+ 1− ns
for |s| < 1 +

1

n
.

Deduce the value of P (Xn = 0).

(iii) Write down the moment generating function of Xn/n. Hence or otherwise show
that, for x > 0,

P (Xn/n > x | Xn > 0) → e−x as n → ∞ .

[You may use the continuity theorem but, if so, should give a clear statement of it.]
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12F Probability
Let X, Y be independent random variables with distribution functions FX , FY .

Show that U = min{X,Y }, V = max{X,Y } have distribution functions

FU (u) = 1− (1− FX(u))(1 − FY (u)) , FV (v) = FX(v)FY (v) .

Now let X, Y be independent random variables, each having the exponential
distribution with parameter 1. Show that U has the exponential distribution with
parameter 2, and that V − U is independent of U .

Hence or otherwise show that V has the same distribution as X + 1
2Y , and deduce

the mean and variance of V .

[You may use without proof that X has mean 1 and variance 1.]

END OF PAPER
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