

MATHEMATICAL TRIPOS Pa

Part IA 2012

List of Courses

Analysis I

Differential Equations

Dynamics and Relativity

Groups

Numbers and Sets

Probability

Vector Calculus

Vectors and Matrices

3E Analysis I

What does it mean to say that a function $f : \mathbb{R} \to \mathbb{R}$ is *continuous* at $x_0 \in \mathbb{R}$?

Give an example of a continuous function $f: (0, 1] \to \mathbb{R}$ which is bounded but attains neither its upper bound nor its lower bound.

The function $f: \mathbb{R} \to \mathbb{R}$ is continuous and non-negative, and satisfies $f(x) \to 0$ as $x \to \infty$ and $f(x) \to 0$ as $x \to -\infty$. Show that f is bounded above and attains its upper bound.

[Standard results about continuous functions on closed bounded intervals may be used without proof if clearly stated.]

Paper 1, Section I

4F Analysis I

Let $f, g: [0,1] \to \mathbb{R}$ be continuous functions with $g(x) \ge 0$ for $x \in [0,1]$. Show that

$$\int_0^1 f(x)g(x)\,dx \leqslant M \int_0^1 g(x)\,dx\,,$$

where $M = \sup\{|f(x)| : x \in [0,1]\}.$

Prove there exists $\alpha \in [0, 1]$ such that

$$\int_0^1 f(x)g(x) \, dx = f(\alpha) \int_0^1 g(x) \, dx \, .$$

[Standard results about continuous functions and their integrals may be used without proof, if clearly stated.]

2

9E Analysis I

(a) What does it mean to say that the sequence (x_n) of real numbers *converges* to $\ell \in \mathbb{R}$?

Suppose that $(y_n^{(1)}), (y_n^{(2)}), \ldots, (y_n^{(k)})$ are sequences of real numbers converging to the same limit ℓ . Let (x_n) be a sequence such that for every n,

$$x_n \in \{y_n^{(1)}, y_n^{(2)}, \dots, y_n^{(k)}\}.$$

Show that (x_n) also converges to ℓ .

Find a collection of sequences $(y_n^{(j)}), j = 1, 2, ...$ such that for every $j, (y_n^{(j)}) \to \ell$ but the sequence (x_n) defined by $x_n = y_n^{(n)}$ diverges.

(b) Let a, b be real numbers with 0 < a < b. Sequences $(a_n), (b_n)$ are defined by $a_1 = a, b_1 = b$ and

for all
$$n \ge 1$$
, $a_{n+1} = \sqrt{a_n b_n}$, $b_{n+1} = \frac{a_n + b_n}{2}$.

Show that (a_n) and (b_n) converge to the same limit.

Paper 1, Section II

10D Analysis I

Let (a_n) be a sequence of reals.

(i) Show that if the sequence $(a_{n+1} - a_n)$ is convergent then so is the sequence $(\frac{a_n}{n})$.

(ii) Give an example to show the sequence $\left(\frac{a_n}{n}\right)$ being convergent does not imply that the sequence $(a_{n+1} - a_n)$ is convergent.

(iii) If $a_{n+k} - a_n \to 0$ as $n \to \infty$ for each positive integer k, does it follow that (a_n) is convergent? Justify your answer.

(iv) If $a_{n+f(n)} - a_n \to 0$ as $n \to \infty$ for every function f from the positive integers to the positive integers, does it follow that (a_n) is convergent? Justify your answer.

11D Analysis I

Let f be a continuous function from (0,1) to (0,1) such that f(x) < x for every 0 < x < 1. We write f^n for the n-fold composition of f with itself (so for example $f^2(x) = f(f(x))$).

(i) Prove that for every 0 < x < 1 we have $f^n(x) \to 0$ as $n \to \infty$.

(ii) Must it be the case that for every $\epsilon > 0$ there exists n with the property that $f^n(x) < \epsilon$ for all 0 < x < 1? Justify your answer.

Now suppose that we remove the condition that f be continuous.

(iii) Give an example to show that it need not be the case that for every 0 < x < 1 we have $f^n(x) \to 0$ as $n \to \infty$.

(iv) Must it be the case that for some 0 < x < 1 we have $f^n(x) \to 0$ as $n \to \infty$? Justify your answer.

Paper 1, Section II

12F Analysis I

(a) (i) State the ratio test for the convergence of a real series with positive terms.

(ii) Define the radius of convergence of a real power series $\sum_{n=0}^{\infty} a_n x^n$.

(iii) Prove that the real power series $f(x) = \sum_n a_n x^n$ and $g(x) = \sum_n (n+1)a_{n+1}x^n$ have equal radii of convergence.

(iv) State the relationship between f(x) and g(x) within their interval of convergence.

(b) (i) Prove that the real series

$$f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, \quad g(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

have radius of convergence ∞ .

(ii) Show that they are differentiable on the real line \mathbb{R} , with f' = -g and g' = f, and deduce that $f(x)^2 + g(x)^2 = 1$.

[You may use, without proof, general theorems about differentiating within the interval of convergence, provided that you give a clear statement of any such theorem.]

1A Differential Equations

Find two linearly independent solutions of

$$y'' + 4y' + 4y = 0.$$

Find the solution in $x \ge 0$ of

$$y'' + 4y' + 4y = e^{-2x},$$

subject to y = y' = 0 at x = 0.

Paper 2, Section I

2A Differential Equations

Find the constant solutions (those with $u_{n+1} = u_n$) of the discrete equation

$$u_{n+1} = \frac{1}{2}u_n (1+u_n)$$
,

and determine their stability.

Paper 2, Section II

5A Differential Equations

Find the first three non-zero terms in the series solutions $y_1(x)$ and $y_2(x)$ for the differential equation

$$x^2y'' - 2xy' + (2 - x^2)y = 0,$$

that satisfy

$$\begin{aligned} y_1'(0) &= a \quad \text{and} \quad y_1''(0) = 0 \,, \\ y_2'(0) &= 0 \quad \text{and} \quad y_2''(0) = 2b \,. \end{aligned}$$

Identify these solutions in closed form.

5

Paper 2, Section II 6A Differential Equations Consider the function

$$V(x,y) = x^4 - x^2 + 2xy + y^2.$$

Find the critical (stationary) points of V(x, y). Determine the type of each critical point. Sketch the contours of V(x, y) = constant.

Now consider the coupled differential equations

$$\frac{dx}{dt} = -\frac{\partial V}{\partial x}, \qquad \frac{dy}{dt} = -\frac{\partial V}{\partial y}.$$

Show that V(x(t), y(t)) is a non-increasing function of t. If x = 1 and $y = -\frac{1}{2}$ at t = 0, where does the solution tend to as $t \to \infty$?

Paper 2, Section II

7A Differential Equations

Find the solution to the system of equations

$$\frac{dx}{dt} + \frac{-4x + 2y}{t} = -9,$$
$$\frac{dy}{dt} + \frac{x - 5y}{t} = 3$$

in $t \ge 1$ subject to

$$x = 0$$
 and $y = 0$ at $t = 1$.

[Hint: powers of t.]

8A Differential Equations

Consider the second-order differential equation for y(t) in $t \ge 0$

$$\ddot{y} + 2k\dot{y} + (k^2 + \omega^2)y = f(t).$$
 (*)

(i) For f(t) = 0, find the general solution $y_1(t)$ of (*).

(ii) For $f(t) = \delta(t - a)$ with a > 0, find the solution $y_2(t, a)$ of (*) that satisfies y = 0 and $\dot{y} = 0$ at t = 0.

7

(iii) For f(t) = H(t - b) with b > 0, find the solution $y_3(t, b)$ of (*) that satisfies y = 0 and $\dot{y} = 0$ at t = 0.

(iv) Show that

$$y_2(t,b) = -\frac{\partial y_3}{\partial b}.$$

3B Dynamics and Relativity

Two particles of masses m_1 and m_2 have position vectors \mathbf{r}_1 and \mathbf{r}_2 respectively. Particle 2 exerts a force $\mathbf{F}_{12}(\mathbf{r})$ on particle 1 (where $\mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2$) and there are no external forces.

Prove that the centre of mass of the two-particle system will move at constant speed along a straight line.

Explain how the two-body problem of determining the motion of the system may be reduced to that of a single particle moving under the force \mathbf{F}_{12} .

Suppose now that $m_1 = m_2 = m$ and that

$$\mathbf{F}_{12} = -\frac{Gm^2}{r^3}\mathbf{r}$$

is gravitational attraction. Let C be a circle fixed in space. Is it possible (by suitable choice of initial conditions) for the two particles to be traversing C at the same constant angular speed? Give a brief reason for your answer.

Paper 4, Section I

4B Dynamics and Relativity

Let S and S' be inertial frames in 2-dimensional spacetime with coordinate systems (t, x) and (t', x') respectively. Suppose that S' moves with positive velocity v relative to S and the spacetime origins of S and S' coincide. Write down the Lorentz transformation relating the coordinates of any event relative to the two frames.

Show that events which occur simultaneously in S are not generally seen to be simultaneous when viewed in S'.

In S two light sources A and B are at rest and placed a distance d apart. They simultaneously each emit a photon in the positive x direction. Show that in S' the photons are separated by a constant distance $d\sqrt{\frac{c+v}{c-v}}$.

9B Dynamics and Relativity

Let (r, θ) be polar coordinates in the plane. A particle of mass m moves in the plane under an attractive force of mf(r) towards the origin O. You may assume that the acceleration **a** is given by

$$\mathbf{a} = (\ddot{r} - r\dot{ heta}^2)\hat{\mathbf{r}} + rac{1}{r}rac{d}{dt}(r^2\dot{ heta})\hat{ heta}$$

where $\hat{\mathbf{r}}$ and $\hat{\theta}$ are the unit vectors in the directions of increasing r and θ respectively, and the dot denotes d/dt.

(a) Show that $l = r^2 \dot{\theta}$ is a constant of the motion. Introducing u = 1/r show that $\dot{r} = -l \frac{du}{d\theta}$ and derive the geometric orbit equation

$$l^2 u^2 \left(\frac{d^2 u}{d\theta^2} + u \right) = f\left(\frac{1}{u}\right).$$

(b) Suppose now that

$$f(r) = \frac{3r+9}{r^3}$$

and that initially the particle is at distance $r_0 = 1$ from O, moving with speed $v_0 = 4$ in a direction making angle $\pi/3$ with the radial vector pointing towards O.

Show that $l = 2\sqrt{3}$ and find u as a function of θ . Hence or otherwise show that the particle returns to its original position after one revolution about O and then flies off to infinity.

10B Dynamics and Relativity

For any frame S and vector \mathbf{A} , let $\left[\frac{d\mathbf{A}}{dt}\right]_{S}$ denote the derivative of \mathbf{A} relative to S. A frame of reference S' rotates with constant angular velocity $\boldsymbol{\omega}$ with respect to an inertial frame S and the two frames have a common origin O. [You may assume that for any vector \mathbf{A} , $\left[\frac{d\mathbf{A}}{dt}\right]_{S} = \left[\frac{d\mathbf{A}}{dt}\right]_{S'} + \boldsymbol{\omega} \times \mathbf{A}$.]

(a) If $\mathbf{r}(t)$ is the position vector of a point P from O, show that

$$\left[\frac{d^{2}\mathbf{r}}{dt^{2}}\right]_{S} = \left[\frac{d^{2}\mathbf{r}}{dt^{2}}\right]_{S'} + 2\boldsymbol{\omega} \times \mathbf{v}' + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r})$$

where $\mathbf{v}' = \left[\frac{d\mathbf{r}}{dt}\right]_{S'}$ is the velocity in S'.

Suppose now that $\mathbf{r}(t)$ is the position vector of a particle of mass m moving under a conservative force $\mathbf{F} = -\nabla \phi$ and a force \mathbf{G} that is always orthogonal to the velocity \mathbf{v}' in S'. Show that the quantity

$$E = \frac{1}{2}m\mathbf{v}'.\mathbf{v}' + \phi - \frac{m}{2}(\boldsymbol{\omega} \times \mathbf{r}).(\boldsymbol{\omega} \times \mathbf{r})$$

is a constant of the motion. [You may assume that $\nabla [(\boldsymbol{\omega} \times \mathbf{r}).(\boldsymbol{\omega} \times \mathbf{r})] = -2\boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}).$]

(b) A bead slides on a frictionless circular hoop of radius a which is forced to rotate with constant angular speed ω about a vertical diameter. Let $\theta(t)$ denote the angle between the line from the centre of the hoop to the bead and the downward vertical. Using the results of (a), or otherwise, show that

$$\ddot{\theta} + \left(\frac{g}{a} - \omega^2 \cos\theta\right) \sin\theta = 0.$$

Deduce that if $\omega^2 > g/a$ there are two equilibrium positions $\theta = \theta_0$ off the axis of rotation, and show that these are stable equilibria.

11B Dynamics and Relativity

(a) State the parallel axis theorem for moments of inertia.

(b) A uniform circular disc D of radius a and total mass m can turn frictionlessly about a fixed horizontal axis that passes through a point A on its circumference and is perpendicular to its plane. Initially the disc hangs at rest (in constant gravity g) with its centre O being vertically below A. Suppose the disc is disturbed and executes free oscillations. Show that the period of small oscillations is $2\pi \sqrt{\frac{3a}{2g}}$.

(c) Suppose now that the disc is released from rest when the radius OA is vertical with O directly above A. Find the angular velocity and angular acceleration of O about A when the disc has turned through angle θ . Let \mathbf{R} denote the reaction force at A on the disc. Find the acceleration of the centre of mass of the disc. Hence, or otherwise, show that the component of \mathbf{R} parallel to OA is $mg(7 \cos \theta - 4)/3$.

Paper 4, Section II

12B Dynamics and Relativity

(a) Define the 4-momentum **P** of a particle of rest mass m and 3-velocity **v**, and the 4-momentum of a photon of frequency ν (having zero rest mass) moving in the direction of the unit vector **e**.

Show that if \mathbf{P}_1 and \mathbf{P}_2 are timelike future-pointing 4-vectors then $\mathbf{P}_1.\mathbf{P}_2 \ge 0$ (where the dot denotes the Lorentz-invariant scalar product). Hence or otherwise show that the law of conservation of 4-momentum forbids a photon to spontaneously decay into an electron-positron pair. [Electrons and positrons have equal rest masses m > 0.]

(b) In the laboratory frame an electron travelling with velocity **u** collides with a positron at rest. They annihilate, producing two photons of frequencies ν_1 and ν_2 that move off at angles θ_1 and θ_2 to **u**, in the directions of the unit vectors \mathbf{e}_1 and \mathbf{e}_2 respectively. By considering 4-momenta in the laboratory frame, or otherwise, show that

$$\frac{1+\cos(\theta_1+\theta_2)}{\cos\theta_1+\cos\theta_2} = \sqrt{\frac{\gamma-1}{\gamma+1}}$$

where $\gamma = \left(1 - \frac{u^2}{c^2}\right)^{-1/2}$.

Part IA, 2012

List of Questions

1E Groups

State Lagrange's Theorem. Deduce that if G is a finite group of order n, then the order of every element of G is a divisor of n.

Let G be a group such that, for every $g \in G$, $g^2 = e$. Show that G is abelian. Give an example of a non-abelian group in which every element g satisfies $g^4 = e$.

Paper 3, Section I

2E Groups

What is a *cycle* in the symmetric group S_n ? Show that a cycle of length p and a cycle of length q in S_n are conjugate if and only if p = q.

Suppose that p is odd. Show that any two p-cycles in A_{p+2} are conjugate. Are any two 3-cycles in A_4 conjugate? Justify your answer.

Paper 3, Section II

5E Groups

(i) State and prove the Orbit-Stabilizer Theorem.

Show that if G is a finite group of order n, then G is isomorphic to a subgroup of the symmetric group S_n .

(ii) Let G be a group acting on a set X with a single orbit, and let H be the stabilizer of some element of X. Show that the homomorphism $G \to \text{Sym}(X)$ given by the action is injective if and only if the intersection of all the conjugates of H equals $\{e\}$.

(iii) Let Q_8 denote the quaternion group of order 8. Show that for every n < 8, Q_8 is not isomorphic to a subgroup of S_n .

6E Groups

Let G be $SL_2(\mathbb{R})$, the groups of real 2×2 matrices of determinant 1, acting on $\mathbb{C} \cup \{\infty\}$ by Möbius transformations.

For each of the points 0, i, -i, compute its stabilizer and its orbit under the action of G. Show that G has exactly 3 orbits in all.

Compute the orbit of i under the subgroup

$$H = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mid a, \ b, \ d \in \mathbb{R}, \ ad = 1 \right\} \subset G.$$

Deduce that every element g of G may be expressed in the form g = hk where $h \in H$ and for some $\theta \in \mathbb{R}$,

$$k = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

How many ways are there of writing g in this form?

7E Groups

Let \mathbb{F}_p be the set of (residue classes of) integers mod p, and let

$$G = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{F}_p, ad - bc \neq 0 \right\}$$

14

Show that G is a group under multiplication. [You may assume throughout this question that multiplication of matrices is associative.]

Let X be the set of 2-dimensional column vectors with entries in \mathbb{F}_p . Show that the mapping $G \times X \to X$ given by

$$\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} x \\ y \end{pmatrix} \right) \mapsto \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$$

is a group action.

Let $g \in G$ be an element of order p. Use the orbit-stabilizer theorem to show that there exist $x, y \in \mathbb{F}_p$, not both zero, with

$$g\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}x\\y\end{pmatrix}$$

Deduce that g is conjugate in G to the matrix

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} +$$

8E Groups

Let p be a prime number, and a an integer with $1 \leq a \leq p-1$. Let G be the Cartesian product

$$G = \{ (x, u) \mid x \in \{0, 1, \dots, p-2\}, u \in \{0, 1, \dots, p-1\} \}$$

Show that the binary operation

$$(x,u)*(y,v) = (z,w)$$

where

$$z \equiv x + y \pmod{p-1}$$
$$w \equiv a^y u + v \pmod{p}$$

makes G into a group. Show that G is abelian if and only if a = 1.

Let H and K be the subsets

$$H = \{ (x,0) \mid x \in \{0,1,\ldots,p-2\} \}, \qquad K = \{ (0,u) \mid u \in \{0,1,\ldots,p-1\} \}$$

of G. Show that K is a normal subgroup of G, and that H is a subgroup which is normal if and only if a = 1.

Find a homomorphism from G to another group whose kernel is K.

1D Numbers and Sets

- (i) Find integers x and y such that 18x + 23y = 101.
- (ii) Find an integer x such that $x \equiv 3 \pmod{18}$ and $x \equiv 2 \pmod{23}$.

Paper 4, Section I

2D Numbers and Sets

What is an *equivalence relation* on a set X? If R is an equivalence relation on X, what is an *equivalence class* of R? Prove that the equivalence classes of R form a partition of X.

Let R and S be equivalence relations on a set X. Which of the following are always equivalence relations? Give proofs or counterexamples as appropriate.

(i) The relation V on X given by xVy if both xRy and xSy.

(ii) The relation W on X given by xWy if xRy or xSy.

Paper 4, Section II

5D Numbers and Sets

Let X be a set, and let f and g be functions from X to X. Which of the following are always true and which can be false? Give proofs or counterexamples as appropriate.

- (i) If fg is the identity map then gf is the identity map.
- (ii) If fg = g then f is the identity map.
- (iii) If fg = f then g is the identity map.

How (if at all) do your answers change if we are given that X is finite?

Determine which sets X have the following property: if f is a function from X to X such that for every $x \in X$ there exists a positive integer n with $f^n(x) = x$, then there exists a positive integer n such that f^n is the identity map. [Here f^n denotes the n-fold composition of f with itself.]

6D Numbers and Sets

State Fermat's Theorem and Wilson's Theorem.

For which prime numbers p does the equation $x^2 \equiv -1 \pmod{p}$ have a solution? Justify your answer.

For a prime number p, and an integer x that is not a multiple of p, the *order* of $x \pmod{p}$ is the least positive integer d such that $x^d \equiv 1 \pmod{p}$. Show that if x has order d and also $x^k \equiv 1 \pmod{p}$ then d must divide k.

For a positive integer n, let $F_n = 2^{2^n} + 1$. If p is a prime factor of F_n , determine the order of 2 (mod p). Hence show that the F_n are pairwise coprime.

Show that if p is a prime of the form 4k + 3 then p cannot be a factor of any F_n . Give, with justification, a prime p of the form 4k + 1 such that p is not a factor of any F_n .

Paper 4, Section II

7D Numbers and Sets

Prove that each of the following numbers is irrational:

- (i) $\sqrt{2} + \sqrt{3}$
- (ii) e

(iii) The real root of the equation $x^3 + 4x - 7 = 0$

(iv) $\log_2 3$.

Paper 4, Section II

8D Numbers and Sets

Show that there is no injection from the power-set of \mathbb{R} to \mathbb{R} . Show also that there is an injection from \mathbb{R}^2 to \mathbb{R} .

Let X be the set of all functions f from \mathbb{R} to \mathbb{R} such that f(x) = x for all but finitely many x. Determine whether or not there exists an injection from X to \mathbb{R} .

3F Probability

Given two events A and B with P(A) > 0 and P(B) > 0, define the conditional probability $P(A \mid B)$.

Show that

$$P(B \mid A) = P(A \mid B) \frac{P(B)}{P(A)}.$$

A random number N of fair coins are tossed, and the total number of heads is denoted by H. If $P(N = n) = 2^{-n}$ for n = 1, 2, ..., find $P(N = n \mid H = 1)$.

Paper 2, Section I

4F Probability

Define the probability generating function G(s) of a random variable X taking values in the non-negative integers.

A coin shows heads with probability $p \in (0, 1)$ on each toss. Let N be the number of tosses up to and including the first appearance of heads, and let $k \ge 1$. Find the probability generating function of $X = \min\{N, k\}$.

Show that $E(X) = p^{-1}(1 - q^k)$ where q = 1 - p.

9F Probability

(i) Define the moment generating function $M_X(t)$ of a random variable X. If X, Y are independent and $a, b \in \mathbb{R}$, show that the moment generating function of Z = aX + bY is $M_X(at)M_Y(bt)$.

(ii) Assume T > 0, and $M_X(t) < \infty$ for |t| < T. Explain the expansion

$$M_X(t) = 1 + \mu t + \frac{1}{2}s^2t^2 + o(t^2)$$

where $\mu = E(X)$ and $s^2 = E(X^2)$. [You may assume the validity of interchanging expectation and differentiation.]

(iii) Let X, Y be independent, identically distributed random variables with mean 0 and variance 1, and assume their moment generating function M satisfies the condition of part (ii) with $T = \infty$.

Suppose that X + Y and X - Y are independent. Show that $M(2t) = M(t)^3 M(-t)$, and deduce that $\psi(t) = M(t)/M(-t)$ satisfies $\psi(t) = \psi(t/2)^2$.

Show that $\psi(h) = 1 + o(h^2)$ as $h \to 0$, and deduce that $\psi(t) = 1$ for all t.

Show that X and Y are normally distributed.

Paper 2, Section II

10F Probability

(i) Define the distribution function F of a random variable X, and also its density function f assuming F is differentiable. Show that

$$f(x) = -\frac{d}{dx}P(X > x).$$

(ii) Let U, V be independent random variables each with the uniform distribution on [0, 1]. Show that

$$P(V^2 > U > x) = \frac{1}{3} - x + \frac{2}{3}x^{3/2}, \qquad x \in (0,1).$$

What is the probability that the random quadratic equation $x^2 + 2Vx + U = 0$ has real roots?

Given that the two roots R_1 , R_2 of the above quadratic are real, what is the probability that both $|R_1| \leq 1$ and $|R_2| \leq 1$?

CAMBRIDGE

Paper 2, Section II

11F Probability

(i) Let X_n be the size of the n^{th} generation of a branching process with familysize probability generating function G(s), and let $X_0 = 1$. Show that the probability generating function $G_n(s)$ of X_n satisfies $G_{n+1}(s) = G(G_n(s))$ for $n \ge 0$.

(ii) Suppose the family-size mass function is $P(X_1 = k) = 2^{-k-1}, k = 0, 1, 2, ...$ Find G(s), and show that

$$G_n(s) = \frac{n - (n - 1)s}{n + 1 - ns}$$
 for $|s| < 1 + \frac{1}{n}$.

Deduce the value of $P(X_n = 0)$.

(iii) Write down the moment generating function of X_n/n . Hence or otherwise show that, for $x \ge 0$,

$$P(X_n/n > x \mid X_n > 0) \to e^{-x}$$
 as $n \to \infty$.

[You may use the continuity theorem but, if so, should give a clear statement of it.]

Paper 2, Section II

12F Probability

Let X, Y be independent random variables with distribution functions F_X , F_Y . Show that $U = \min\{X, Y\}$, $V = \max\{X, Y\}$ have distribution functions

$$F_U(u) = 1 - (1 - F_X(u))(1 - F_Y(u)), \quad F_V(v) = F_X(v)F_Y(v).$$

Now let X, Y be independent random variables, each having the exponential distribution with parameter 1. Show that U has the exponential distribution with parameter 2, and that V - U is independent of U.

Hence or otherwise show that V has the same distribution as $X + \frac{1}{2}Y$, and deduce the mean and variance of V.

[You may use without proof that X has mean 1 and variance 1.]

3C Vector Calculus

Define what it means for a differential P dx + Q dy to be exact, and derive a necessary condition on P(x, y) and Q(x, y) for this to hold. Show that one of the following two differentials is exact and the other is not:

$$y^2 dx + 2xy dy,$$
$$y^2 dx + xy^2 dy.$$

Show that the differential which is not exact can be written in the form g df for functions f(x, y) and g(y), to be determined.

Paper 3, Section I 4C Vector Calculus

What does it mean for a second-rank tensor T_{ij} to be *isotropic*? Show that δ_{ij} is isotropic. By considering rotations through $\pi/2$ about the coordinate axes, or otherwise, show that the most general isotropic second-rank tensor in \mathbb{R}^3 has the form $T_{ij} = \lambda \delta_{ij}$, for some scalar λ .

Paper 3, Section II

9C Vector Calculus

State Stokes' Theorem for a vector field $\mathbf{B}(\mathbf{x})$ on \mathbb{R}^3 .

Consider the surface S defined by

$$z = x^2 + y^2, \qquad \frac{1}{9} \leqslant z \leqslant 1.$$

Sketch the surface and calculate the area element $d\mathbf{S}$ in terms of suitable coordinates or parameters. For the vector field

$$\mathbf{B} = (-y^3, x^3, z^3)$$

compute $\nabla \times \mathbf{B}$ and calculate $I = \int_{S} (\nabla \times \mathbf{B}) \cdot d\mathbf{S}$.

Use Stokes' Theorem to express I as an integral over ∂S and verify that this gives the same result.

10C Vector Calculus

Consider the transformation of variables

$$x = 1 - u, \quad y = \frac{1 - v}{1 - uv}$$

Show that the interior of the unit square in the uv plane

$$\{(u,v): 0 < u < 1, 0 < v < 1\}$$

is mapped to the interior of the unit square in the xy plane,

$$R = \{ (x, y) : 0 < x < 1, 0 < y < 1 \}.$$

[*Hint: Consider the relation between* v and y when $u = \alpha$, for $0 < \alpha < 1$ constant.] Show that

$$\frac{\partial(x,y)}{\partial(u,v)} = \frac{(1-(1-x)y)^2}{x}.$$

Now let

$$u = \frac{1-t}{1-wt}, \quad v = 1-w.$$

By calculating

$$\frac{\partial(x,y)}{\partial(t,w)} = \frac{\partial(x,y)}{\partial(u,v)} \frac{\partial(u,v)}{\partial(t,w)}$$

as a function of x and y, or otherwise, show that

$$\int_{R} \frac{x(1-y)}{(1-(1-x)y)(1-(1-x^{2})y)^{2}} \, dx \, dy = 1.$$

11C Vector Calculus

(a) Prove the identity

$$\nabla(\mathbf{F} \cdot \mathbf{G}) = (\mathbf{F} \cdot \nabla)\mathbf{G} + (\mathbf{G} \cdot \nabla)\mathbf{F} + \mathbf{F} \times (\nabla \times \mathbf{G}) + \mathbf{G} \times (\nabla \times \mathbf{F}).$$

(b) If **E** is an irrotational vector field (i.e. $\nabla \times \mathbf{E} = \mathbf{0}$ everywhere), prove that there exists a scalar potential $\phi(\mathbf{x})$ such that $\mathbf{E} = -\nabla \phi$.

Show that the vector field

$$(xy^2ze^{-x^2z}, -ye^{-x^2z}, \frac{1}{2}x^2y^2e^{-x^2z})$$

is irrotational, and determine the corresponding potential ϕ .

Paper 3, Section II

12C Vector Calculus

(i) Let V be a bounded region in \mathbb{R}^3 with smooth boundary $S = \partial V$. Show that Poisson's equation in V

$$\nabla^2 u = \rho$$

has at most one solution satisfying u = f on S, where ρ and f are given functions.

Consider the alternative boundary condition $\partial u/\partial n = g$ on S, for some given function g, where n is the outward pointing normal on S. Derive a necessary condition in terms of ρ and g for a solution u of Poisson's equation to exist. Is such a solution unique?

(ii) Find the most general spherically symmetric function u(r) satisfying

$$\nabla^2 u = 1$$

in the region $r = |\mathbf{r}| \leq a$ for a > 0. Hence in each of the following cases find all possible solutions satisfying the given boundary condition at r = a:

(a) u = 0,

(b)
$$\frac{\partial u}{\partial n} = 0$$
.

Compare these with your results in part (i).

1C Vectors and Matrices

(a) Let R be the set of all $z \in \mathbb{C}$ with real part 1. Draw a picture of R and the image of R under the map $z \mapsto e^z$ in the complex plane.

(b) For each of the following equations, find all complex numbers z which satisfy it:

(i)
$$e^z = e$$
,
(ii) $(\log z)^2 = -\frac{\pi^2}{4}$.

(c) Prove that there is no complex number z satisfying |z| - z = i.

Paper 1, Section I

2A Vectors and Matrices

Define what is meant by the terms *rotation*, *reflection*, *dilation* and *shear*. Give examples of real 2×2 matrices representing each of these.

Consider the three 2×2 matrices

$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$
, $B = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix}$ and $C = AB$.

Identify the three matrices in terms of your definitions above.

5C Vectors and Matrices

The equation of a plane Π in \mathbb{R}^3 is

 $\mathbf{x} \cdot \mathbf{n} = d$,

where d is a constant scalar and **n** is a unit vector normal to Π . What is the distance of the plane from the origin O?

A sphere S with centre \mathbf{p} and radius r satisfies the equation

$$|\mathbf{x} - \mathbf{p}|^2 = r^2.$$

Show that the intersection of Π and S contains exactly one point if $|\mathbf{p} \cdot \mathbf{n} - d| = r$.

The tetrahedron OABC is defined by the vectors $\mathbf{a} = \vec{OA}$, $\mathbf{b} = \vec{OB}$, and $\mathbf{c} = \vec{OC}$ with $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) > 0$. What does the condition $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) > 0$ imply about the set of vectors $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$? A sphere T_r with radius r > 0 lies inside the tetrahedron and intersects each of the three faces OAB, OBC, and OCA in exactly one point. Show that the centre P of T_r satisfies

$$\vec{OP} = r \frac{|\mathbf{b} \times \mathbf{c}|\mathbf{a} + |\mathbf{c} \times \mathbf{a}|\mathbf{b} + |\mathbf{a} \times \mathbf{b}|\mathbf{c}}{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}$$

Given that the vector $\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a}$ is orthogonal to the plane Ψ of the face *ABC*, obtain an equation for Ψ . What is the distance of Ψ from the origin?

Paper 1, Section II

6A Vectors and Matrices

Explain why the number of solutions \mathbf{x} of the simultaneous linear equations $A\mathbf{x} = \mathbf{b}$ is 0, 1 or infinity, where A is a real 3×3 matrix and \mathbf{x} and \mathbf{b} are vectors in \mathbb{R}^3 . State necessary and sufficient conditions on A and \mathbf{b} for each of these possibilities to hold.

Let A and B be real 3×3 matrices. Give necessary and sufficient conditions on A for there to exist a unique real 3×3 matrix X satisfying AX = B.

Find X when

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & 2 & 0 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 4 & 0 & 1 \\ 2 & 1 & 0 \\ 3 & -1 & -1 \end{pmatrix}$$

7B Vectors and Matrices

(a) Consider the matrix

$$M = \left(\begin{array}{rrrr} 2 & 1 & 0\\ 0 & 1 & -1\\ 0 & 2 & 4 \end{array}\right)$$

Determine whether or not M is diagonalisable.

(b) Prove that if A and B are similar matrices then A and B have the same eigenvalues with the same corresponding algebraic multiplicities.

Is the converse true? Give either a proof (if true) or a counterexample with a brief reason (if false).

(c) State the Cayley-Hamilton theorem for a complex matrix A and prove it in the case when A is a 2×2 diagonalisable matrix.

Suppose that an $n \times n$ matrix B has $B^k = \mathbf{0}$ for some k > n (where $\mathbf{0}$ denotes the zero matrix). Show that $B^n = \mathbf{0}$.

Paper 1, Section II

8B Vectors and Matrices

(a) (i) Find the eigenvalues and eigenvectors of the matrix

$$A = \left(\begin{array}{rrrr} 3 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{array}\right) \ .$$

(ii) Show that the quadric \mathcal{Q} in \mathbb{R}^3 defined by

$$3x^2 + 2xy + 2y^2 + 2xz + 2z^2 = 1$$

is an ellipsoid. Find the matrix B of a linear transformation of \mathbb{R}^3 that will map \mathcal{Q} onto the unit sphere $x^2 + y^2 + z^2 = 1$.

- (b) Let P be a real orthogonal matrix. Prove that:
 - (i) as a mapping of vectors, P preserves inner products;
 - (ii) if λ is an eigenvalue of P then $|\lambda| = 1$ and λ^* is also an eigenvalue of P.

Now let Q be a real orthogonal 3×3 matrix having $\lambda = 1$ as an eigenvalue of algebraic multiplicity 2. Give a geometrical description of the action of Q on \mathbb{R}^3 , giving a reason for your answer. [You may assume that orthogonal matrices are always diagonalisable.]