PAPER 3

Before you begin read these instructions carefully.

The examination paper is divided into two sections. Each question in Section $I I$ carries twice the number of marks of each question in Section I. Candidates may attempt all four questions from Section I and at most five questions from Section II. In Section II, no more than three questions on each course may be attempted.

Complete answers are preferred to fragments.
Write on one side of the paper only and begin each answer on a separate sheet.
Write legibly; otherwise you place yourself at a grave disadvantage.

At the end of the examination:

Tie up your answers in separate bundles, marked $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D}, \boldsymbol{E}$ and \boldsymbol{F} according to the code letter affixed to each question. Include in the same bundle all questions from Section I and II with the same code letter.

Attach a completed gold cover sheet to each bundle.
You must also complete a green master cover sheet listing all the questions you have attempted.

Every cover sheet must bear your examination number and desk number.

STATIONERY REQUIREMENTS
Gold Cover sheets
Green master cover sheet

SPECIAL REQUIREMENTS
None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

SECTION I

1D Groups

Write down the matrix representing the following transformations of \mathbb{R}^{3} :
(i) clockwise rotation of 45° around the x axis,
(ii) reflection in the plane $x=y$,
(iii) the result of first doing (i) and then (ii).

2D Groups

Express the element (123)(234) in S_{5} as a product of disjoint cycles. Show that it is in A_{5}. Write down the elements of its conjugacy class in A_{5}.

3C Vector Calculus

Consider the vector field

$$
\mathbf{F}=\left(-y /\left(x^{2}+y^{2}\right), x /\left(x^{2}+y^{2}\right), 0\right)
$$

defined on all of \mathbb{R}^{3} except the z axis. Compute $\boldsymbol{\nabla} \times \mathbf{F}$ on the region where it is defined.
Let γ_{1} be the closed curve defined by the circle in the $x y$-plane with centre $(2,2,0)$ and radius 1 , and γ_{2} be the closed curve defined by the circle in the $x y$-plane with centre $(0,0,0)$ and radius 1 .

By using your earlier result, or otherwise, evaluate the line integral $\oint_{\gamma_{1}} \mathbf{F} \cdot \mathrm{~d} \mathbf{x}$.
By explicit computation, evaluate the line integral $\oint_{\gamma_{2}} \mathbf{F} \cdot \mathrm{dx}$. Is your result consistent with Stokes' theorem? Explain your answer briefly.

4C Vector Calculus

A curve in two dimensions is defined by the parameterised Cartesian coordinates

$$
x(u)=a e^{b u} \cos u, \quad y(u)=a e^{b u} \sin u,
$$

where the constants $a, b>0$. Sketch the curve segment corresponding to the range $0 \leqslant u \leqslant 3 \pi$. What is the length of the curve segment between the points $(x(0), y(0))$ and $(x(U), y(U))$, as a function of U ?

A geometrically sensitive ant walks along the curve with varying speed $\kappa(u)^{-1}$, where $\kappa(u)$ is the curvature at the point corresponding to parameter u. Find the time taken by the ant to walk from $(x(2 n \pi), y(2 n \pi))$ to $(x(2(n+1) \pi), y(2(n+1) \pi))$, where n is a positive integer, and hence verify that this time is independent of n.
[You may quote without proof the formula $\quad \kappa(u)=\frac{\left|x^{\prime}(u) y^{\prime \prime}(u)-y^{\prime}(u) x^{\prime \prime}(u)\right|}{\left(\left(x^{\prime}(u)\right)^{2}+\left(y^{\prime}(u)\right)^{2}\right)^{3 / 2}}$.]

SECTION II

5D Groups

(i) State the orbit-stabilizer theorem.

Let G be the group of rotations of the cube, X the set of faces. Identify the stabilizer of a face, and hence compute the order of G.

Describe the orbits of G on the set $X \times X$ of pairs of faces.
(ii) Define what it means for a subgroup N of G to be normal. Show that G has a normal subgroup of order 4.

6D Groups

State Lagrange's theorem. Let p be a prime number. Prove that every group of order p is cyclic. Prove that every abelian group of order p^{2} is isomorphic to either $C_{p} \times C_{p}$ or $C_{p^{2}}$.

Show that D_{12}, the dihedral group of order 12, is not isomorphic to the alternating group A_{4}.

7D Groups

Let G be a group, X a set on which G acts transitively, B the stabilizer of a point $x \in X$.

Show that if $g \in G$ stabilizes the point $y \in X$, then there exists an $h \in G$ with $h g h^{-1} \in B$.

Let $G=S L_{2}(\mathbb{C})$, acting on $\mathbb{C} \cup\{\infty\}$ by Möbius transformations. Compute $B=G_{\infty}$, the stabilizer of ∞. Given

$$
g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G
$$

compute the set of fixed points $\{x \in \mathbb{C} \cup\{\infty\} \mid g x=x\}$.
Show that every element of G is conjugate to an element of B.

8D Groups

Let G be a finite group, X the set of proper subgroups of G. Show that conjugation defines an action of G on X.

Let B be a proper subgroup of G. Show that the orbit of G on X containing B has size at most the index $|G: B|$. Show that there exists a $g \in G$ which is not conjugate to an element of B.

9C Vector Calculus

(a) Define a rank two tensor and show that if two rank two tensors $A_{i j}$ and $B_{i j}$ are the same in one Cartesian coordinate system, then they are the same in all Cartesian coordinate systems.

The quantity $C_{i j}$ has the property that, for every rank two tensor $A_{i j}$, the quantity $C_{i j} A_{i j}$ is a scalar. Is $C_{i j}$ necessarily a rank two tensor? Justify your answer with a proof from first principles, or give a counterexample.
(b) Show that, if a tensor $T_{i j}$ is invariant under rotations about the x_{3}-axis, then it has the form

$$
\left(\begin{array}{ccc}
\alpha & \omega & 0 \\
-\omega & \alpha & 0 \\
0 & 0 & \beta
\end{array}\right)
$$

(c) The inertia tensor about the origin of a rigid body occupying volume V and with variable mass density $\rho(\mathbf{x})$ is defined to be

$$
I_{i j}=\int_{V} \rho(\mathbf{x})\left(x_{k} x_{k} \delta_{i j}-x_{i} x_{j}\right) \mathrm{d} V
$$

The rigid body B has uniform density ρ and occupies the cylinder

$$
\left\{\left(x_{1}, x_{2}, x_{3}\right):-2 \leqslant x_{3} \leqslant 2, x_{1}^{2}+x_{2}^{2} \leqslant 1\right\}
$$

Show that the inertia tensor of B about the origin is diagonal in the $\left(x_{1}, x_{2}, x_{3}\right)$ coordinate system, and calculate its diagonal elements.

10C Vector Calculus

Let $f(x, y)$ be a function of two variables, and R a region in the $x y$-plane. State the rule for evaluating $\int_{R} f(x, y) \mathrm{d} x \mathrm{~d} y$ as an integral with respect to new variables $u(x, y)$ and $v(x, y)$.

Sketch the region R in the $x y$-plane defined by

$$
R=\left\{(x, y): x^{2}+y^{2} \leqslant 2, x^{2}-y^{2} \geqslant 1, x \geqslant 0, y \geqslant 0\right\} .
$$

Sketch the corresponding region in the $u v$-plane, where

$$
u=x^{2}+y^{2}, \quad v=x^{2}-y^{2} .
$$

Express the integral

$$
I=\int_{R}\left(x^{5} y-x y^{5}\right) \exp \left(4 x^{2} y^{2}\right) \mathrm{d} x \mathrm{~d} y
$$

as an integral with respect to u and v. Hence, or otherwise, calculate I.

11C Vector Calculus

State the divergence theorem (also known as Gauss' theorem) relating the surface and volume integrals of appropriate fields.

The surface S_{1} is defined by the equation $z=3-2 x^{2}-2 y^{2}$ for $1 \leqslant z \leqslant 3$; the surface S_{2} is defined by the equation $x^{2}+y^{2}=1$ for $0 \leqslant z \leqslant 1$; the surface S_{3} is defined by the equation $z=0$ for x, y satisfying $x^{2}+y^{2} \leqslant 1$. The surface S is defined to be the union of the surfaces S_{1}, S_{2} and S_{3}. Sketch the surfaces S_{1}, S_{2}, S_{3} and (hence) S.

The vector field \mathbf{F} is defined by

$$
\mathbf{F}(x, y, z)=\left(x y+x^{6},-\frac{1}{2} y^{2}+y^{8}, z\right) .
$$

Evaluate the integral

$$
\oint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S},
$$

where the surface element $\mathrm{d} \mathbf{S}$ points in the direction of the outward normal to S.

12C Vector Calculus

Given a spherically symmetric mass distribution with density ρ, explain how to obtain the gravitational field $\mathbf{g}=-\boldsymbol{\nabla} \phi$, where the potential ϕ satisfies Poisson's equation

$$
\nabla^{2} \phi=4 \pi G \rho .
$$

The remarkable planet Geometria has radius 1 and is composed of an infinite number of stratified spherical shells S_{n} labelled by integers $n \geqslant 1$. The shell S_{n} has uniform density $2^{n-1} \rho_{0}$, where ρ_{0} is a constant, and occupies the volume between radius 2^{-n+1} and 2^{-n}.

Obtain a closed form expression for the mass of Geometria.
Obtain a closed form expression for the gravitational field \mathbf{g} due to Geometria at a distance $r=2^{-N}$ from its centre of mass, for each positive integer $N \geqslant 1$. What is the potential $\phi(r)$ due to Geometria for $r>1$?

END OF PAPER

