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SECTION I

1A Differential Equations

Find the general solutions to the following difference equations for yn, n ∈ N .

(i) yn+3 − 3 yn+1 + 2 yn = 0,

(ii) yn+3 − 3 yn+1 + 2 yn = 2n

,

(iii) yn+3 − 3 yn+1 + 2 yn = (−2)n,

(iv) yn+3 − 3 yn+1 + 2 yn = (−2)n + 2n
.

2A Differential Equations

Let f(x, y) = g(u, v) where the variables {x, y} and {u, v} are related by a smooth,

invertible transformation. State the chain rule expressing the derivatives
∂g

∂u
and

∂g

∂v
in

terms of
∂f

∂x
and

∂f

∂y
and use this to deduce that

∂2g

∂u ∂v
=

∂x

∂u

∂x

∂v

∂2f

∂x2
+

(

∂x

∂u

∂y

∂v
+

∂x

∂v

∂y

∂u

)

∂2f

∂x ∂y
+

∂y

∂u

∂y

∂v

∂2f

∂y2
+ H

∂f

∂x
+ K

∂f

∂y

where H and K are second-order partial derivatives, to be determined.

Using the transformation x = uv and y = u/v in the above identity, or otherwise,
find the general solution of

x
∂2f

∂x2
−

y2

x

∂2f

∂y2
+

∂f

∂x
−

y

x

∂f

∂y
= 0 .
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3F Probability

Jensen’s inequality states that for a convex function f and a random variable X

with a finite mean, Ef(X) > f
(

EX
)

.

(a) Suppose that f(x) = xm where m is a positive integer, and X is a random
variable taking values x1, . . . , xN > 0 with equal probabilities, and where the sum
x1 + . . . + xN = 1. Deduce from Jensen’s inequality that

N
∑

i=1

f(xi) > Nf

(

1

N

)

. (1)

(b) N horses take part in m races. The results of different races are independent.
The probability for horse i to win any given race is pi > 0, with p1 + . . . + pN = 1.

Let Q be the probability that a single horse wins all m races. Express Q as a
polynomial of degree m in the variables p1, . . ., pN .

By using (1) or otherwise, prove that Q > N1−m.

4F Probability

Let X and Y be two non-constant random variables with finite variances. The
correlation coefficient ρ(X,Y ) is defined by

ρ(X,Y ) =
E

[

(X − EX)(Y − EY )
]

(

Var X
)1/2(

Var Y
)1/2

.

(a) Using the Cauchy–Schwarz inequality or otherwise, prove that

−1 6 ρ(X,Y ) 6 1 .

(b) What can be said about the relationship between X and Y when either
(i) ρ(X,Y ) = 0 or (ii) |ρ(X,Y )| = 1. [Proofs are not required.]

(c) Take 0 6 r 6 1 and let X, X ′ be independent random variables taking values
±1 with probabilities 1/2. Set

Y =

{

X, with probability r,

X ′, with probability 1 − r.

Find ρ(X,Y ).
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SECTION II

5A Differential Equations

(a) Consider the differential equation

an
dny

dxn
+ an−1

dn−1y

dxn−1
+ . . . + a2

d2y

dx2
+ a1

dy

dx
+ a0y = 0 , (1)

with n ∈ N and a0, . . . , an ∈ R . Show that y(x) = eλx is a solution if and only if p(λ) = 0
where

p(λ) = anλn + an−1λ
n−1 + . . . + a2λ

2 + a1λ + a0 .

Show further that y(x) = xeµx is also a solution of (1) if µ is a root of the polynomial p(λ)
of multiplicity at least 2 .

(b) By considering v(t) =
d2u

dt2
, or otherwise, find the general real solution for u(t)

satisfying

d4u

dt4
+ 2

d2u

dt2
= 4t2 . (2)

By using a substitution of the form u(t) = y(t2) in (2), or otherwise, find the general
real solution for y(x), with x positive, where

4x2
d4y

dx4
+ 12x

d3y

dx3
+ (3 + 2x)

d2y

dx2
+

dy

dx
= x .
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6A Differential Equations

(a) By using a power series of the form

y(x) =
∞∑

k=0

ak xk

or otherwise, find the general solution of the differential equation

xy′′ − (1 − x)y′ − y = 0. (1)

(b) Define the Wronskian W (x) for a second order linear differential equation

y′′ + p(x)y′ + q(x)y = 0 (2)

and show that W ′ + p(x)W = 0. Given a non-trivial solution y1(x) of (2) show that W (x)
can be used to find a second solution y2(x) of (2) and give an expression for y2(x) in the
form of an integral.

(c) Consider the equation (2) with

p(x) = −

P (x)

x
and q(x) = −

Q(x)

x

where P and Q have Taylor expansions

P (x) = P0 + P1x + . . . , Q(x) = Q0 + Q1x + . . .

with P0 a positive integer. Find the roots of the indicial equation for (2) with these
assumptions. If y1(x) = 1 + βx + . . . is a solution, use the method of part (b) to find
the first two terms in a power series expansion of a linearly independent solution y2(x),
expressing the coefficients in terms of P0, P1 and β.
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7A Differential Equations

(a) Find the general solution of the system of differential equations





ẋ

ẏ

ż



 =





−1 2 −1
1 0 −1
1 −2 1









x

y

z



 . (1)

(b) Depending on the parameter λ ∈ R, find the general solution of the system of
differential equations





ẋ

ẏ

ż



 =





−1 2 −1
1 0 −1
1 −2 1









x

y

z



 + 2





−λ

1
λ



 e 2t, (2)

and explain why (2) has a particular solution of the form ce2t with constant vector c ∈ R
3

for λ = 1 but not for λ 6= 1.

[Hint: decompose





−λ

1
λ



 in terms of the eigenbasis of the matrix in (1).]

(c) For λ = −1, find the solution of (2) which goes through the point (0, 1, 0) at
t = 0 .

8A Differential Equations

(a) State how the nature of a critical (or stationary) point of a function f(x) with
x ∈ R

n can be determined by consideration of the eigenvalues of the Hessian matrix H of
f(x), assuming H is non-singular.

(b) Let f(x, y) = xy(1 − x − y). Find all the critical points of the function f(x, y)
and determine their nature. Determine the zero contour of f(x, y) and sketch a contour
plot showing the behaviour of the contours in the neighbourhood of the critical points.

(c) Now let g(x, y) = x3y2(1− x− y) . Show that (0, 1) is a critical point of g(x, y)
for which the Hessian matrix of g is singular. Find an approximation for g(x, y) to lowest
non-trivial order in the neighbourhood of the point (0, 1). Does g have a maximum or a
minimum at (0, 1)? Justify your answer.

Part IA, Paper 2



7

9F Probability

(a) What does it mean to say that a random variable X with values n = 1, 2, . . .
has a geometric distribution with a parameter p where p ∈ (0, 1)?

An expedition is sent to the Himalayas with the objective of catching a pair of wild
yaks for breeding. Assume yaks are loners and roam about the Himalayas at random. The
probability p ∈ (0, 1) that a given trapped yak is male is independent of prior outcomes.
Let N be the number of yaks that must be caught until a breeding pair is obtained.

(b) Find the expected value of N .

(c) Find the variance of N .

10F Probability

The yearly levels of water in the river Camse are independent random variables
X1, X2, . . ., with a given continuous distribution function F (x) = P(Xi 6 x), x > 0 and
F (0) = 0. The levels have been observed in years 1, . . ., n and their values X1, . . ., Xn

recorded. The local council has decided to construct a dam of height

Yn = max
[

X1, . . . ,Xn

]

.

Let τ be the subsequent time that elapses before the dam overflows:

τ = min
[

t > 1 : Xn+t > Yn

]

.

(a) Find the distribution function P(Yn 6 z), z > 0, and show that the mean value

EYn =

∫

∞

0

[1 − F (z)n]dz.

(b) Express the conditional probability P(τ = k |Yn = z), where k = 1, 2, . . . and
z > 0, in terms of F .

(c) Show that the unconditional probability

P(τ = k) =
n

(k + n − 1)(k + n)
, k = 1, 2, . . . .

(d) Determine the mean value E τ .
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11F Probability

In a branching process every individual has probability pk of producing exactly
k offspring, k = 0, 1, . . ., and the individuals of each generation produce offspring
independently of each other and of individuals in preceding generations. Let Xn represent
the size of the nth generation. Assume that X0 = 1 and p0 > 0 and let Fn(s) be the
generating function of Xn. Thus

F1(s) = EsX1 =

∞∑

k=0

pks
k, |s| 6 1.

(a) Prove that
Fn+1(s) = Fn(F1(s)).

(b) State a result in terms of F1(s) about the probability of eventual extinction.
[No proofs are required.]

(c) Suppose the probability that an individual leaves k descendants in the next
generation is pk = 1/2k+1, for k > 0. Show from the result you state in (b) that extinction
is certain. Prove further that in this case

Fn(s) =
n − (n − 1)s

(n + 1) − ns
, n > 1 ,

and deduce the probability that the nth generation is empty.
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12F Probability

Let X1, X2 be bivariate normal random variables, with the joint probability density
function

fX1,X2
(x1, x2) =

1

2πσ1σ2

√

1 − ρ2
exp

[

−
ϕ(x1, x2)

2(1 − ρ2)

]

,

where

ϕ(x1, x2) =

(

x1 − µ1

σ1

)

2

− 2ρ

(

x1 − µ1

σ1

)(

x2 − µ2

σ2

)

+

(

x2 − µ2

σ2

)

2

and x1, x2 ∈ R .

(a) Deduce that the marginal probability density function

fX1
(x1) =

1
√

2πσ1

exp

[

−
(x1 − µ1)

2

2σ2

1

]

.

(b) Write down the moment-generating function of X2 in terms of µ2 and σ2. [No

proofs are required.]

(c) By considering the ratio fX1,X2
(x1, x2)

/

fX2
(x2) prove that, conditional on

X2 = x2, the distribution of X1 is normal, with mean and variance µ1 + ρσ1(x2 − µ2)
/

σ2

and σ2

1
(1 − ρ2), respectively.

END OF PAPER
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