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Paper 1, Section I

3F Analysis I
Determine the limits as n → ∞ of the following sequences:

(a) an = n−
√
n2 − n ;

(b) bn = cos2
(
π
√
n2 + n

)
.

Paper 1, Section I

4E Analysis I

Let a0, a1, a2, . . . be a sequence of complex numbers. Prove that there exists

R ∈ [0,∞] such that the power series
∑∞

n=0 anz
n converges whenever |z| < R and diverges

whenever |z| > R.

Give an example of a power series
∑∞

n=0 anz
n that diverges if z = ±1 and converges

if z = ±i.

Paper 1, Section II

9F Analysis I
For each of the following series, determine for which real numbers x it diverges, for

which it converges, and for which it converges absolutely. Justify your answers briefly.

(a)
∑
n>1

3 +
(
sinx

)n

n

(
sinx

)n
,

(b)
∑
n>1

∣∣ sinx
∣∣n (−1)n√

n
,

(c)
∑
n>1

sin (0.99 sin (0.99 . . . sin (0.99 x) . . .))︸ ︷︷ ︸
n times

.
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Paper 1, Section II

10D Analysis I

State and prove the intermediate value theorem.

Let f : R → R be a continuous function and let P = (a, b) be a point of the plane

R2. Show that the set of distances from points (x, f(x)) on the graph of f to the point P

is an interval [A,∞) for some value A > 0.

Paper 1, Section II

11D Analysis I

State and prove Rolle’s theorem.

Let f and g be two continuous, real-valued functions on a closed, bounded interval

[a, b] that are differentiable on the open interval (a, b). By considering the determinant

φ(x) =

∣∣∣∣∣∣

1 1 0

f(a) f(b) f(x)

g(a) g(b) g(x)

∣∣∣∣∣∣
= g(x) (f(b)− f(a))− f(x) (g(b) − g(a)) ,

or otherwise, show that there is a point c ∈ (a, b) with

f ′(c)(g(b) − g(a)) = g′(c)(f(b)− f(a)) .

Suppose that f, g : (0,∞) → R are differentiable functions with f(x) → 0 and

g(x) → 0 as x → 0. Prove carefully that if the limit lim
x→0

f ′(x)
g′(x)

= ℓ exists and is finite,

then the limit lim
x→0

f(x)

g(x)
also exists and equals ℓ.
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Paper 1, Section II

12E Analysis I

(a) What does it mean for a function f : [a, b] → R to be Riemann integrable?

(b) Let f : [0, 1] → R be a bounded function. Suppose that for every δ > 0 there is a

sequence

0 6 a1 < b1 6 a2 < b2 6 . . . 6 an < bn 6 1

such that for each i the function f is Riemann integrable on the closed interval

[ai, bi], and such that
∑n

i=1(bi − ai) > 1− δ. Prove that f is Riemann integrable on

[0, 1].

(c) Let f : [0, 1] → R be defined as follows. We set f(x) = 1 if x has an infinite decimal

expansion that consists of 2s and 7s only, and otherwise we set f(x) = 0. Prove

that f is Riemann integrable and determine
∫ 1
0 f(x) dx.
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Paper 2, Section I

1C Differential Equations
The size of the population of ducks living on the pond of a certain Cambridge college

is governed by the equation
dN

dt
= αN −N2,

where N = N(t) is the number of ducks at time t and α is a positive constant. Given that
N(0) = 2α, find N(t). What happens as t → ∞?

Paper 2, Section I

2C Differential Equations
Solve the differential equation

d2y

dx2
− 5

dy

dx
+ 6y = e3x

subject to the conditions y = dy/dx = 0 when x = 0.

Paper 2, Section II

5C Differential Equations
Consider the first-order ordinary differential equation

dy

dx
= f1(x)y + f2(x)y

p, (∗)

where y > 0 and p is a positive constant with p 6= 1. Let u = y1−p. Show that u satisfies

du

dx
= (1− p)[f1(x)u+ f2(x)].

Hence, find the general solution of equation (∗) when f1(x) = 1, f2(x) = x.

Now consider the case f1(x) = 1, f2(x) = −α2, where α is a non-zero constant. For
p > 1 find the two equilibrium points of equation (∗), and determine their stability. What
happens when 0 < p < 1?

Part IA, 2009 List of Questions [TURN OVER



6

Paper 2, Section II

6C Differential Equations
Consider the second-order ordinary differential equation

ẍ+ 2kẋ+ ω2x = 0 ,

where x = x(t) and k and ω are constants with k > 0. Calculate the general solution in
the cases (i) k < ω, (ii) k = ω, (iii) k > ω.

Now consider the system

ẍ+ 2kẋ+ ω2x =

{
a when ẋ > 0

0 when ẋ 6 0

with x(0) = x1, ẋ(0) = 0, where a and x1 are positive constants. In the case k < ω
find x(t) in the ranges 0 6 t 6 π/p and π/p 6 t 6 2π/p, where p =

√
ω2 − k2. Hence,

determine the value of x1 for which x(t) is periodic. For k > ω can x(t) ever be periodic?
Justify your answer.

Paper 2, Section II

7C Differential Equations
Consider the differential equation

x
d2y

dx2
+ (c− x)

dy

dx
− y = 0 ,

where c is a constant with 0 < c < 1. Determine two linearly independent series solutions
about x = 0, giving an explicit expression for the coefficient of the general term in each
series.

Determine the solution of

x
d2y

dx2
+ (c− x)

dy

dx
− y = x

for which y(0) = 0 and dy/dx is finite at x = 0.
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Paper 2, Section II

8C Differential Equations
(a) The function y(x, t) satisfies the forced wave equation

∂2y

∂x2
− ∂2y

∂t2
= 4

with initial conditions y(x, 0) = sinx and ∂y/∂t(x, 0) = 0. By making the change of
variables u = x+ t and v = x− t, show that

∂2y

∂u∂v
= 1 .

Hence, find y(x, t).

(b) The thickness of an axisymmetric drop of liquid spreading on a flat surface satisfies

∂h

∂t
=

1

r

∂

∂r

(
rh3

∂h

∂r

)
,

where h = h(r, t) is the thickness of the drop, r is the radial coordinate on the surface
and t is time. The drop has radius R(t). The boundary conditions are that ∂h/∂r = 0 at
r = 0 and h(r, t) ∝ (R(t)− r)1/3 as r → R(t).

Show that

M =

∫ R(t)

0
rhdr

is independent of time. Given that h(r, t) = f(r/tα)t−1/4 for some function f (which need
not be determined) and that R(t) is proportional to tα, find α.
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Paper 4, Section I

3A Dynamics and Relativity
A rocket moves vertically upwards in a uniform gravitational field and emits exhaust

gas downwards with time-dependent speed U(t) relative to the rocket. Derive the rocket
equation

m(t)
dv

dt
+ U(t)

dm

dt
= −m(t)g ,

wherem(t) and v(t) are respectively the rocket’s mass and upward vertical speed at time t.
Suppose now that m(t) = m0−αt, U(t) = U0m0/m(t) and v(0) = 0. What is the condition
for the rocket to lift off at t = 0? Assuming that this condition is satisfied, find v(t).

State the dimensions of all the quantities involved in your expression for v(t), and
verify that the expression is dimensionally consistent.

[ You may assume that all speeds are small compared with the speed of light and neg-
lect any relativistic effects. ]

Paper 4, Section I

4A Dynamics and Relativity

(a) Explain what is meant by a central force acting on a particle moving in three
dimensions.

(b) Show that the orbit of a particle experiencing a central force lies in a plane.

(c) Show that, in the approximation in which the Sun is regarded as fixed and only
its gravitational field is considered, a straight line joining the Sun and an orbiting
planet sweeps out equal areas in equal times (Kepler’s second law).

[With respect to the basis vectors (er, eθ) of plane polar coordinates, the velocity ẋ and
acceleration ẍ of a particle are given by ẋ = (ṙ, rθ̇) and ẍ = (r̈ − rθ̇2, rθ̈ + 2ṙθ̇).]
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Paper 4, Section II

9A Dynamics and Relativity
Davros departs on a rocket voyage from the planet Skaro, travelling at speed u

(where 0 < u < c) in the positive x direction in Skaro’s rest frame. After travelling a
distance L in Skaro’s rest frame, he jumps onto another rocket travelling at speed v′ (where
0 < v′ < c) in the positive x direction in the first rocket’s rest frame. After travelling a
further distance L in Skaro’s rest frame, he jumps onto a third rocket, travelling at speed
w′′ (where 0 < w′′ < c) in the negative x direction in the second rocket’s rest frame.

Let v and w be Davros’ speed on the second and third rockets, respectively, in
Skaro’s rest frame. Show that

v = (u+ v′)
(
1 +

uv′

c2

)−1

.

Express w in terms of u, v′, w′′ and c.

How large must w′′ be, expressed in terms of u, v′ and c, to ensure that Davros
eventually returns to Skaro?

Supposing that w′′ satisfies this condition, draw a spacetime diagram illustrating
Davros’ journey. Label clearly each point where he boards a rocket and the point of his
return to Skaro, and give the coordinates of each point in Skaro’s rest frame, expressed in
terms of u, v, w, c and L.

Hence, or otherwise, calculate how much older Davros will be on his return, and
how much time will have elapsed on Skaro during his voyage, giving your answers in terms
of u, v, w, c and L.

[ You may neglect any effects due to gravity and any corrections arising from Davros’
brief accelerations when getting onto or leaving rockets. ]
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Paper 4, Section II

10A Dynamics and Relativity

(a) Write down expressions for the relativistic 3-momentum p and energy E of a particle
of rest mass m and velocity v. Show that these expressions are consistent with

E2 = p.p c2 +m2c4 . (∗)

Define the 4-momentum P for such a particle and obtain (∗) by considering the
invariance properties of P.

(b) Two particles, each with rest mass m and energy E, moving in opposite directions,
collide head on. Show that it is consistent with the conservation of 4-momentum
for the collision to result in a set of n particles of rest masses µi (for 1 6 i 6 n) only
if

E > 1

2

(
n∑

i=1

µi

)
c2 .

(c) A particle of rest mass m1 and energy E1 is fired at a stationary particle of rest
mass m2. Show that it is consistent with the conservation of 4-momentum for the
collision to result in a set of n particles of rest masses µi (for 1 6 i 6 n) only if

E1 >
(
∑n

i=1 µi)
2 −m2

1 −m2
2

2m2
c2 .

Deduce the minimum frequency required for a photon fired at a stationary particle of
rest mass m2 to result in the same set of n particles, assuming that the conservation
of 4-momentum is the only relevant constraint.

Paper 4, Section II

11A Dynamics and Relativity
Obtain the moment of inertia of a uniform disc of radius a and mass M about its

axis of rotational symmetry. A uniform rigid body of mass 3M/4 takes the form of a disc
of radius a with a concentric circular hole of radius a/2 cut out. Calculate the body’s
moment of inertia about its axis of rotational symmetry.

The body rolls without slipping, with its axis of symmetry horizontal, down a plane
inclined at angle α to the horizontal. Determine its acceleration and the frictional and
normal-reaction forces resulting from contact with the plane.
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Paper 4, Section II

12A Dynamics and Relativity

(a) A particle of charge q moves with velocity v in a constant magnetic field B. Give
an expression for the Lorentz force F experienced by the particle. If no other forces
act on the particle, show that its kinetic energy is independent of time.

(b) Four point particles, each of positive charge Q, are fixed at the four corners of
a square with sides of length 2a. Another point particle, of positive charge q, is
constrained to move in the plane of the square but is otherwise free.

By considering the form of the electrostatic potential near the centre of the square,
show that the state in which the particle of charge q is stationary at the centre of
the square is a stable equilibrium. Obtain the frequency of small oscillations about
this equilibrium.

[The Coulomb potential for two point particles of charges Q and q separated by distance r is
Qq/4πǫ0r.]
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Paper 3, Section I

1D Groups

Show that every orthogonal 2×2 matrix R is the product of at most two reflections

in lines through the origin.

Every isometry of the Euclidean plane R2 can be written as the composition of

an orthogonal matrix and a translation. Deduce from this that every isometry of the

Euclidean plane R2 is a product of reflections.

Give an example of an isometry of R2 that is not the product of fewer than three

reflections. Justify your answer.

Paper 3, Section I

2D Groups

State and prove Lagrange’s theorem. Give an example to show that an integer k

may divide the order of a group G without there being a subgroup of order k.

Paper 3, Section II

5D Groups

State and prove the orbit–stabilizer theorem.

Let G be the group of all symmetries of a regular octahedron, including both

orientation-preserving and orientation-reversing symmetries. How many symmetries are

there in the group G? Let D be the set of straight lines that join a vertex of the octahedron

to the opposite vertex. How many lines are there in the set D? Identify the stabilizer in

G of one of the lines in D.

Paper 3, Section II

6D Groups

Let S(X) denote the group of permutations of a finite set X. Show that every

permutation σ ∈ S(X) can be written as a product of disjoint cycles. Explain briefly

why two permutations in S(X) are conjugate if and only if, when they are written as

the product of disjoint cycles, they have the same number of cycles of length n for each

possible value of n.

Let ℓ(σ) denote the number of disjoint cycles, including 1-cycles, required when σ

is written as a product of disjoint cycles. Let τ be a transposition in S(X) and σ any

permutation in S(X). Prove that ℓ(τσ) = ℓ(σ)± 1.
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Paper 3, Section II

7D Groups

Define the cross-ratio [a0, a1, a2, z] of four points a0, a1, a2, z in C ∪ {∞}, with

a0, a1, a2 distinct.

Let a0, a1, a2 be three distinct points. Show that, for every value w ∈ C ∪ {∞},
there is a unique point z ∈ C ∪ {∞} with [a0, a1, a2, z] = w. Let S be the set of points z

for which the cross-ratio [a0, a1, a2, z] is in R ∪ {∞}. Show that S is either a circle or else

a straight line together with ∞.

A map J : C ∪ {∞} → C ∪ {∞} satisfies

[a0, a1, a2, J(z)] = [a0, a1, a2, z]

for each value of z. Show that this gives a well-defined map J with J2 equal to the identity.

When the three points a0, a1, a2 all lie on the real line, show that J must be the

conjugation map J : z 7→ z. Deduce from this that, for any three distinct points a0, a1, a2,

the map J depends only on the circle (or straight line) through a0, a1, a2 and not on their

particular values.

Paper 3, Section II

8D Groups

What does it mean to say that a subgroup K of a group G is normal?

Let φ : G → H be a group homomorphism. Is the kernel of φ always a subgroup

of G? Is it always a normal subgroup? Is the image of φ always a subgroup of H? Is it

always a normal subgroup? Justify your answers.

Let SL(2,Z) denote the set of 2 × 2 matrices

(
a b

c d

)
with a, b, c, d ∈ Z and

ad − bc = 1. Show that SL(2,Z) is a group under matrix multiplication. Similarly,

when Z2 denotes the integers modulo 2, let SL(2,Z2) denote the set of 2 × 2 matrices(
a b

c d

)
with a, b, c, d ∈ Z2 and ad − bc = 1. Show that SL(2,Z2) is also a group under

matrix multiplication.

Let f : Z → Z2 send each integer to its residue modulo 2. Show that

φ : SL(2,Z) → SL(2,Z2) ;

(
a b

c d

)
7→

(
f(a) f(b)

f(c) f(d)

)

is a group homomorphism. Show that the image of φ is isomorphic to a permutation

group.
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Paper 4, Section I

1E Numbers and Sets

Let R1 and R2 be relations on a set A. Let us say that R2 extends R1 if xR1y

implies that xR2y. If R2 extends R1, then let us call R2 an extension of R1.

Let Q be a relation on a set A. Let R be the extension of Q defined by taking xRy

if and only if xQy or x = y. Let S be the extension of R defined by taking xSy if and

only if xRy or yRx. Finally, let T be the extension of S defined by taking xTy if and only

if there is a positive integer n and a sequence (x0, x1, . . . , xn) such that x0 = x, xn = y,

and xi−1Sxi for each i from 1 to n.

Prove that R is reflexive, S is reflexive and symmetric, and T is an equivalence

relation.

Let E be any equivalence relation that extends Q. Prove that E extends T .

Paper 4, Section I

2E Numbers and Sets

(a) Find integers x and y such that

9x+ 12y ≡ 4 (mod 47) and 6x+ 7y ≡ 14 (mod 47).

(b) Calculate 43135 (mod 137).

Paper 4, Section II

5E Numbers and Sets

(a) Let A and B be non-empty sets and let f : A → B.

Prove that f is an injection if and only if f has a left inverse.

Prove that f is a surjection if and only if f has a right inverse.

(b) Let A, B and C be sets and let f : B → A and g : B → C be functions. Suppose

that f is a surjection. Prove that there is a function h : A → C such that for every

a ∈ A there exists b ∈ B with f(b) = a and g(b) = h(a).

Prove that h is unique if and only if g(b) = g(b′) whenever f(b) = f(b′).
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Paper 4, Section II

6E Numbers and Sets

(a) State and prove the inclusion–exclusion formula.

(b) Let k and m be positive integers, let n = km, let A1, . . . , Ak be disjoint sets of size

m, and let A = A1 ∪ . . .∪Ak. Let B be the collection of all subsets B ⊂ A with the

following two properties:

(i) |B| = k;

(ii) there is at least one i such that |B ∩Ai| = 3.

Prove that the number of sets in B is given by the formula

⌊k/3⌋∑

r=1

(−1)r−1

(
k

r

)(
m

3

)r(n− rm

k − 3r

)
.

Paper 4, Section II

7E Numbers and Sets

Let p be a prime number and let Zp denote the set of integers modulo p. Let k be

an integer with 0 6 k 6 p and let A be a subset of Zp of size k.

Let t be a non-zero element of Zp. Show that if a + t ∈ A whenever a ∈ A then

k = 0 or k = p. Deduce that if 1 6 k 6 p − 1, then the sets A,A + 1, . . . , A + p − 1 are

all distinct, where A + t denotes the set {a + t : a ∈ A}. Deduce from this that
(p
k

)
is a

multiple of p whenever 1 6 k 6 p− 1.

Now prove that (a + 1)p = ap + 1 for any a ∈ Zp, and use this to prove Fermat’s

little theorem. Prove further that if Q(x) = anx
n + an−1x

n−1 + . . . + a1x + a0 is

a polynomial in x with coefficients in Zp, then the polynomial (Q(x))p is equal to

anx
pn + an−1x

p(n−1) + . . . + a1x
p + a0.

Paper 4, Section II

8E Numbers and Sets

Prove that the set of all infinite sequences (ǫ1, ǫ2, . . .) with every ǫi equal to 0 or 1

is uncountable. Deduce that the closed interval [0, 1] is uncountable.

For an ordered set X let Σ(X) denote the set of increasing (but not necessarily

strictly increasing) sequences in X that are bounded above. For each of Σ(Z), Σ(Q) and
Σ(R), determine (with proof) whether it is uncountable.
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Paper 2, Section I

3F Probability
Consider a pair of jointly normal random variables X1, X2, with mean values µ1,

µ2, variances σ
2
1 , σ

2
2 and correlation coefficient ρ with |ρ| < 1.

(a) Write down the joint probability density function for (X1,X2).

(b) Prove that X1, X2 are independent if and only if ρ = 0.

Paper 2, Section I

4F Probability
Prove the law of total probability: if A1, . . ., An are pairwise disjoint events with

P(Ai) > 0, and B ⊆ A1 ∪ . . . ∪An then P(B) =
n∑

i=1
P(Ai)P(B|Ai).

There are n people in a lecture room. Their birthdays are independent random
variables, and each person’s birthday is equally likely to be any of the 365 days of the
year. By using the bound 1 − x 6 e−x for 0 6 x 6 1, prove that if n > 29 then the
probability that at least two people have the same birthday is at least 2/3.

[In calculations, you may take
√
1 + 8× 365 ln 3 = 56.6.]

Paper 2, Section II

9F Probability
I throw two dice and record the scores S1 and S2. Let X be the sum S1 + S2 and

Y the difference S1 − S2.

(a) Suppose that the dice are fair, so the values 1, . . . , 6 are equally likely. Calculate
the mean and variance of both X and Y . Find all the values of x and y at which
the probabilities P(X = x), P(Y = y) are each either greatest or least. Determine
whether the random variables X and Y are independent.

(b) Now suppose that the dice are unfair, and that they give the values 1, . . . , 6 with
probabilities p1, . . . , p6 and q1, . . . , q6, respectively. Write down the values of P(X =
2), P(X = 7) and P(X = 12). By comparing P(X = 7) with

√
P(X = 2)P(X = 12)

and applying the arithmetic-mean–geometric-mean inequality, or otherwise, show
that the probabilities P(X = 2), P(X = 3), . . ., P(X = 12) cannot all be equal.
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Paper 2, Section II

10F Probability
No-one in their right mind would wish to be a guest at the Virtual Reality Hotel.

See the diagram below showing a part of the floor plan of the hotel where rooms are
represented by black or white circles. The hotel is built in a shape of a tree: there is one
room (reception) situated at level 0, three rooms at level 1, nine at level 2, and so on.
The rooms are joined by corridors to their neighbours: each room has four neighbours,
apart from the reception, which has three neighbours. Each corridor is blocked with
probability 1/3 and open for passage in both directions with probability 2/3, independently
for different corridors. Every room at level N , whereN is a given very large number, has an
open window through which a guest can (and should) escape into the street. An arriving
guest is placed in the reception and then wanders freely, insofar as the blocked corridors
allow.

. . .

. . .

. . .

.
 
.
 
.

reception

0 1 2 N

. . .

. . .

. . .

level:

(a) Prove that the probability that the guest will not escape is close to a solution of the
equation φ(t) = t, where φ(t) is a probability-generating function that you should
specify.

(b) Hence show that the guest’s chance of escape is approximately (9− 3
√
3)/4.
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Paper 2, Section II

11F Probability
Let X and Y be two independent uniformly distributed random variables on [0, 1].

Prove that EXk =
1

k + 1
and E(XY )k =

1

(k + 1)2
, and find E(1 − XY )k, where k is a

non-negative integer.

Let (X1, Y1), . . . , (Xn, Yn) be n independent random points of the unit square
S = {(x, y) : 0 6 x, y 6 1}. We say that (Xi, Yi) is a maximal external point if, for each
j = 1, . . . , n, either Xj 6 Xi or Yj 6 Yi. (For example, in the figure below there are three
maximal external points.) Determine the expected number of maximal external points.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
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Paper 2, Section II

12F Probability
Let A1, A2 and A3 be three pairwise disjoint events such that the union A1∪A2∪A3

is the full event and P(A1),P(A2),P(A3) > 0. Let E be any event with P(E) > 0. Prove
the formula

P(Ai|E) =
P(Ai)P(E|Ai)∑

j=1,2,3
P(Aj)P(E|Aj)

.

A Royal Navy speedboat has intercepted an abandoned cargo of packets of the
deadly narcotic spitamin. This sophisticated chemical can be manufactured in only three
places in the world: a plant in Authoristan (A), a factory in Bolimbia (B) and the
ultramodern laboratory on board of a pirate submarine Crash (C) cruising ocean waters.
The investigators wish to determine where this particular cargo comes from, but in the
absence of prior knowledge they have to assume that each of the possibilities A, B and C
is equally likely.

It is known that a packet from A contains pure spitamin in 95% of cases and is
contaminated in 5% of cases. For B the corresponding figures are 97% and 3%, and for C
they are 99% and 1%.

Analysis of the captured cargo showed that out of 10000 packets checked, 9800
contained the pure drug and the remaining 200 were contaminated. On the basis of this
analysis, the Royal Navy captain estimated that 98% of the packets contain pure spitamin
and reported his opinion that with probability roughly 0.5 the cargo was produced in B
and with probability roughly 0.5 it was produced in C.

Assume that the number of contaminated packets follows the binomial distribution
Bin(10000, δ/100) where δ equals 5 for A, 3 for B and 1 for C. Prove that the captain’s
opinion is wrong: there is an overwhelming chance that the cargo comes from B.

[Hint: Let E be the event that 200 out of 10000 packets are contaminated. Compare
the ratios of the conditional probabilities P(E|A), P(E|B) and P(E|C). You may find it
helpful that ln 3 ≈ 1.09861 and ln 5 ≈ 1.60944. You may also take ln(1−δ/100) ≈ −δ/100.]
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Paper 3, Section I

3B Vector Calculus

What does it mean for a vector field F to be irrotational ?

The field F is irrotational and x0 is a given point. Write down a scalar potential

V (x) with F = −∇V and V (x0) = 0. Show that this potential is well defined.

For what value of m is the field
cos θ cosφ

r
eθ+

m sinφ

r
eφ irrotational, where (r, θ, φ)

are spherical polar coordinates? What is the corresponding potential V (x) when x0 is the

point r = 1, θ = 0?


In spherical polar coordinates ∇× F =

1

r2 sin θ

∣∣∣∣∣∣

er reθ r sin θeφ
∂/∂r ∂/∂θ ∂/∂φ

Fr rFθ r sin θFφ

∣∣∣∣∣∣
.




Paper 3, Section I

4B Vector Calculus

State the value of ∂xi/∂xj and find ∂r/∂xj , where r = |x|.
A vector field u is given by

u =
k

r
+

(k · x)x
r3

,

where k is a constant vector. Calculate the second-rank tensor dij = ∂ui/∂xj using suffix

notation, and show that dij splits naturally into symmetric and antisymmetric parts.

Deduce that ∇ · u = 0 and that

∇× u =
2k× x

r3
.
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Paper 3, Section II

9B Vector Calculus

Let S be a bounded region of R2 and ∂S be its boundary. Let u be the unique

solution to Laplace’s equation in S, subject to the boundary condition u = f on ∂S,

where f is a specified function. Let w be any smooth function with w = f on ∂S. By

writing w = u+ δ, or otherwise, show that

∫

S
|∇w|2 dA >

∫

S
|∇u|2 dA . (∗)

Let S be the unit disc in R2. By considering functions of the form g(r) cos θ on both

sides of (∗), where r and θ are polar coordinates, deduce that

∫ 1

0

(
r
(dg
dr

)2
+

g2

r

)
dr > 1

for any differentiable function g(r) satisfying g(1) = 1 and for which the integral converges

at r = 0.

[
∇f(r, θ) =

(
∂f

∂r
,
1

r

∂f

∂θ

)
, ∇2f(r, θ) =

1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2f

∂θ2
.

]

Paper 3, Section II

10B Vector Calculus

Give a necessary condition for a given vector field J to be the curl of another vector

field B. Is the vector field B unique? If not, explain why not.

State Stokes’ theorem and use it to evaluate the area integral

∫

S

(
y2, z2, x2

)
· dA ,

where S is the half of the ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1

that lies in z > 0, and the area element dA points out of the ellipsoid.
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Paper 3, Section II

11B Vector Calculus

A second-rank tensor T (y) is defined by

Tij(y) =

∫

S
(yi − xi)(yj − xj)|y − x|2n−2 dA(x) ,

where y is a fixed vector with |y| = a, n > −1, and the integration is over all points x

lying on the surface S of the sphere of radius a, centred on the origin. Explain briefly why

T might be expected to have the form

Tij = αδij + βyi yj ,

where α and β are scalar constants.

Show that y · (y − x) = a2(1 − cos θ) , where θ is the angle between y and x, and

find a similar expression for |y − x|2. Using suitably chosen spherical polar coordinates,

show that

yiTij yj =
πa2(2a)2n+2

n+ 2
.

Hence, by evaluating another scalar integral, determine α and β, and find the value

of n for which T is isotropic.

Paper 3, Section II

12B Vector Calculus

State the divergence theorem for a vector field u(x) in a region V of R3 bounded

by a smooth surface S.

Let f(x, y, z) be a homogeneous function of degree n, that is, f(kx, ky, kz) =

knf(x, y, z) for any real number k. By differentiating with respect to k, show that

x · ∇f = nf .

Deduce that ∫

V
f dV =

1

n+ 3

∫

S
f x · dA . (†)

Let V be the cone 0 6 z 6 α, α
√

x2 + y2 6 z, where α is a positive constant. Verify

that (†) holds for the case f = z4 + α4(x2 + y2)2.
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Paper 1, Section I

1C Vectors and Matrices
Describe geometrically the three sets of points defined by the following equations in

the complex z plane:

(a) zα+ zα = 0, where α is non-zero;

(b) 2|z − a| = z + z + 2a, where a is real and non-zero;

(c) log z = i log z.

Paper 1, Section I

2B Vectors and Matrices

Define the Hermitian conjugate A† of an n × n complex matrix A. State the

conditions (i) for A to be Hermitian (ii) for A to be unitary.

In the following, A,B,C and D are n × n complex matrices and x is a complex

n-vector. A matrix N is defined to be normal if N †N = NN †.

(a) Let A be nonsingular. Show that B = A−1A† is unitary if and only if A is normal.

(b) Let C be normal. Show that |Cx| = 0 if and only if |C†x| = 0.

(c) Let D be normal. Deduce from (b) that if e is an eigenvector of D with eigenvalue

λ then e is also an eigenvector of D† and find the corresponding eigenvalue.
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Paper 1, Section II

5C Vectors and Matrices
Let a, b, c be unit vectors. By using suffix notation, prove that

(a× b) · (a× c) = b · c− (a · b)(a · c) (1)

and
(a× b)× (a× c) = [a · (b× c)]a . (2)

The three distinct points A, B, C with position vectors a, b, c lie on the surface of
the unit sphere centred on the origin O. The spherical distance between the points A and
B, denoted δ(A,B), is the length of the (shorter) arc of the circle with centre O passing
through A and B. Show that

cos δ(A,B) = a · b .

A spherical triangle with vertices A, B, C is a region on the sphere bounded by the three
circular arcs AB, BC, CA. The interior angles of a spherical triangle at the vertices
A,B,C are denoted α, β, γ, respectively.

By considering the normals to the planes OAB and OAC, or otherwise, show that

cosα =
(a× b) · (a× c)

|a× b||a× c| .

Using identities (1) and (2), prove that

cos δ(B,C) = cos δ(A,B) cos δ(A,C) + sin δ(A,B) sin δ(A,C) cos α

and
sinα

sin δ(B,C)
=

sin β

sin δ(A,C)
=

sin γ

sin δ(A,B)
.

For an equilateral spherical triangle show that α > π/3.
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Paper 1, Section II

6B Vectors and Matrices

Explain why the number of solutions x ∈ R3 of the matrix equation Ax = c is 0, 1

or infinity, where A is a real 3 × 3 matrix and c ∈ R3. State conditions on A and c that

distinguish between these possibilities, and state the relationship that holds between any

two solutions when there are infinitely many.

Consider the case

A =




a a b

b a a

a b a


 and c =




1

c

1


 .

Use row and column operations to find and factorize the determinant of A.

Find the kernel and image of the linear map represented by A for all values of a

and b. Find the general solution to Ax = c for all values of a, b and c for which a solution

exists.
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Paper 1, Section II

7A Vectors and Matrices
Let A be an n× n Hermitian matrix. Show that all the eigenvalues of A are real.

Suppose now that A has n distinct eigenvalues.

(a) Show that the eigenvectors of A are orthogonal.

(b) Define the characteristic polynomial PA(t) of A. Let

PA(t) =

n∑

r=0

art
r .

Prove the matrix identity
n∑

r=0

arA
r = 0 .

(c) What is the range of possible values of

x†Ax
x†x

for non-zero vectors x ∈ Cn? Justify your answer.

(d) For any (not necessarily symmetric) real 2 × 2 matrix B with real eigenvalues, let
λmax(B) denote its maximum eigenvalue. Is it possible to find a constant C such
that

x†Bx

x†x
6 C λmax(B)

for all non-zero vectors x ∈ R2 and all such matrices B? Justify your answer.

Part IA, 2009 List of Questions



27

Paper 1, Section II

8A Vectors and Matrices

(a) Explain what is meant by saying that a 2× 2 real transformation matrix

A =

(
a b
c d

)
preserves the scalar product with respect to the Euclidean metric

I =

(
1 0
0 1

)
on R2.

Derive a description of all such matrices that uses a single real parameter together
with choices of sign (±1). Show that these matrices form a group.

(b) Explain what is meant by saying that a 2× 2 real transformation matrix

A =

(
a b
c d

)
preserves the scalar product with respect to the Minkowski metric

J =

(
1 0
0 −1

)
on R2.

Consider now the set of such matrices with a > 0. Derive a description of all
matrices in this set that uses a single real parameter together with choices of sign
(±1). Show that these matrices form a group.

(c) What is the intersection of these two groups?
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