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1/I/1B Vectors and Matrices

State de Moivre’s Theorem. By evaluating

n∑
r=1

e irθ ,

or otherwise, show that

n∑
r=1

cos (rθ) =
cos (nθ)− cos ((n+ 1)θ)

2 (1− cos θ)
− 1

2
.

Hence show that
n∑
r=1

cos
(

2 p π r
n+ 1

)
= −1 ,

where p is an integer in the range 1 6 p 6 n .

1/I/2A Vectors and Matrices

Let U be an n × n unitary matrix (U†U = UU† = I). Suppose that A and B are
n× n Hermitian matrices such that U = A+ iB .

Show that

(i) A and B commute,

(ii) A2 +B2 = I .

Find A and B in terms of U and U†, and hence show that A and B are uniquely
determined for a given U .
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1/II/5B Vectors and Matrices

(a) Use suffix notation to prove that

a× (b× c) = (a · c) b− (a · b) c .

Hence, or otherwise, expand

(i) (a× b) · (c× d) ,

(ii) (a× b) · [(b× c)× (c× a)] .

(b) Write down the equation of the line that passes through the point a and is
parallel to the unit vector t̂ .

The lines L1 and L2 in three dimensions pass through a1 and a2 respectively and
are parallel to the unit vectors t̂1 and t̂2 respectively. Show that a necessary condition for
L1 and L2 to intersect is

(a1 − a2) ·
(
t̂1 × t̂2

)
= 0 .

Why is this condition not sufficient?

In the case in which L1 and L2 are non-parallel and non-intersecting, find an
expression for the shortest distance between them.
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1/II/6A Vectors and Matrices

A real 3 × 3 matrix A with elements Aij is said to be upper triangular if Aij = 0
whenever i > j . Prove that if A and B are upper triangular 3 × 3 real matrices then so
is the matrix product AB .

Consider the matrix

A =

 1 2 0
0 −1 1
0 0 −1

 .

Show that A3 + A2 − A = I . Write A−1 as a linear combination of A2, A and I
and hence compute A−1 explicitly.

For all integers n (including negative integers), prove that there exist coefficients
αn , βn and γn such that

An = αnA
2 + βnA+ γn I .

For all integers n (including negative integers), show that

(An)11 = 1 , (An)22 = (−1)n , and (An)23 = n (−1)n−1.

Hence derive a set of 3 simultaneous equations for {αn, βn, γn} and find their
solution.
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1/II/7C Vectors and Matrices

Prove that any n orthonormal vectors in Rn form a basis for Rn.

Let A be a real symmetric n × n matrix with n orthonormal eigenvectors ei and
corresponding eigenvalues λi . Obtain coefficients ai such that

x =
∑
i

ai ei

is a solution to the equation
Ax− µx = f ,

where f is a given vector and µ is a given scalar that is not an eigenvalue of A .

How would your answer differ if µ = λ1 ?

Find ai and hence x when

A =

 2 1 0
1 2 0
0 0 3

 and f =

 1
2
3


in the cases (i) µ = 2 and (ii) µ = 1 .

1/II/8C Vectors and Matrices

Prove that the eigenvalues of a Hermitian matrix are real and that eigenvectors
corresponding to distinct eigenvalues are orthogonal (i.e. e∗i · ej = 0).

Let A be a real 3× 3 non-zero antisymmetric matrix. Show that iA is Hermitian.
Hence show that there exists a (complex) eigenvector e1 such Ae1 = λe1 , where λ is
imaginary.

Show further that there exist real vectors u and v and a real number θ such that

Au = θv and Av = −θu .

Show also that A has a real eigenvector e3 such that Ae3 = 0 .

Let R = I +
∞∑
n=1

An

n!
. By considering the action of R on u , v and e3 , show that

R is a rotation matrix.
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3/I/1E Groups

Define the signature ε(σ) of a permutation σ ∈ Sn , and show that the map
ε : Sn → {−1, 1} is a homomorphism.

Define the alternating group An , and prove that it is a subgroup of Sn. Is An a
normal subgroup of Sn? Justify your answer.

3/I/2E Groups

What is the orthogonal group O(n)? What is the special orthogonal group SO(n)?

Show that every element of the special orthogonal group SO(3) has an eigenvector
with eigenvalue 1. Is this also true for every element of the orthogonal group O(3)? Justify
your answer.

3/II/5E Groups

For a normal subgroup H of a group G , explain carefully how to make the set of
(left) cosets of H into a group.

For a subgroup H of a group G , show that the following are equivalent:

(i) H is a normal subgroup of G ;

(ii) there exist a group K and a homomorphism θ : G → K such that H is the
kernel of θ .

Let G be a finite group that has a proper subgroup H of index n (in other words,
|H| = |G|/n). Show that if |G| > n! then G cannot be simple. [Hint: Let G act on the
set of left cosets of H by left multiplication.]
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3/II/6E Groups

Prove that two elements of Sn are conjugate if and only if they have the same cycle
type.

Describe (without proof) a necessary and sufficient condition for a permutation
σ ∈ An to have the same conjugacy class in An as it has in Sn .

For which σ ∈ Sn is σ conjugate (in Sn) to σ 2 ?

For every σ ∈ A5 , show that σ is conjugate to σ−1 (in A5). Exhibit a positive
integer n and a σ ∈ An such that σ is not conjugate to σ−1 (in An).

3/II/7E Groups

Show that every Möbius map may be expressed as a composition of maps of the
form z 7→ z + a, z 7→ λz and z 7→ 1/z (where a and λ are complex numbers).

Which of the following statements are true and which are false? Justify your
answers.

(i) Every Möbius map that fixes ∞ may be expressed as a composition of maps of
the form z 7→ z + a and z 7→ λz (where a and λ are complex numbers).

(ii) Every Möbius map that fixes 0 may be expressed as a composition of maps of
the form z 7→ λz and z 7→ 1/z (where λ is a complex number).

(iii) Every Möbius map may be expressed as a composition of maps of the form
z 7→ z + a and z 7→ 1/z (where a is a complex number).

3/II/8E Groups

State and prove the orbit–stabilizer theorem. Deduce that if x is an element of a
finite group G then the order of x divides the order of G .

Prove Cauchy’s theorem, that if p is a prime dividing the order of a finite group G
then G contains an element of order p .

For which positive integers n does there exist a group of order n in which every
element (apart from the identity) has order 2?

Give an example of an infinite group in which every element (apart from the
identity) has order 2.
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1/I/3F Analysis I

State the ratio test for the convergence of a series.

Find all real numbers x such that the series

∞∑
n=1

xn − 1
n

converges.

1/I/4E Analysis I

Let f : [0, 1]→ R be Riemann integrable, and for 0 6 x 6 1 set F (x) =
∫ x
0
f(t) dt .

Assuming that f is continuous, prove that for every 0 < x < 1 the function F is
differentiable at x , with F ′(x) = f(x).

If we do not assume that f is continuous, must it still be true that F is differentiable
at every 0 < x < 1? Justify your answer.

1/II/9F Analysis I

Investigate the convergence of the series

(i)
∞∑
n=2

1
np(log n)q

(ii)
∞∑
n=3

1
n (log log n)r

for positive real values of p, q and r .

[You may assume that for any positive real value of α, log n < nα for n sufficiently large.
You may assume standard tests for convergence, provided that they are clearly stated.]
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1/II/10D Analysis I

(a) State and prove the intermediate value theorem.

(b) An interval is a subset I of R with the property that if x and y belong to I and
x < z < y then z also belongs to I . Prove that if I is an interval and f is a continuous
function from I to R then f(I) is an interval.

(c) For each of the following three pairs (I, J) of intervals, either exhibit a
continuous function f from I to R such that f(I) = J or explain briefly why no such
continuous function exists:

(i) I = [0, 1] , J = [0,∞) ;

(ii) I = (0, 1] , J = [0,∞) ;

(iii) I = (0, 1] , J = (−∞,∞) .

1/II/11D Analysis I

(a) Let f and g be functions from R to R and suppose that both f and g are
differentiable at the real number x . Prove that the product fg is also differentiable at x .

(b) Let f be a continuous function from R to R and let g(x) = x2f(x) for every x .
Prove that g is differentiable at x if and only if either x = 0 or f is differentiable at x .

(c) Now let f be any continuous function from R to R and let g(x) = f(x)2 for
every x . Prove that g is differentiable at x if and only if at least one of the following two
possibilities occurs:

(i) f is differentiable at x;

(ii) f(x) = 0 and
f(x+ h)
|h|1/2

−→ 0 as h→ 0 .
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1/II/12E Analysis I

Let
∑∞
n=0 anz

n be a complex power series. Prove that there exists an R ∈ [0,∞]
such that the series converges for every z with |z| < R and diverges for every z with
|z| > R .

Find the value of R for each of the following power series:

(i)
∞∑
n=1

1
n2

zn ;

(ii)
∞∑
n=0

zn! .

In each case, determine at which points on the circle |z| = R the series converges.
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2/I/1A Differential Equations

Let a be a positive constant. Find the solution to the differential equation

d4y

dx4
− a4y = e−ax

that satisfies y(0) = 1 and y → 0 as x→∞ .

2/I/2A Differential Equations

Find the fixed points of the difference equation

un+1 = λun(1− u2
n) .

Show that a stable fixed point exists when −1 < λ < 1 and also when 1 < λ < 2 .
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2/II/5A Differential Equations

Two cups of hot tea at temperatures T1(t) and T2(t) cool in a room at ambient
constant temperature T∞ . Initially T1(0) = T2(0) = T0 > T∞ .

Cup 1 has cool milk added instantaneously at t = 1; in contrast, cup 2 has cool
milk added at a constant rate for 1 6 t 6 2 . Briefly explain the use of the differential
equations

dT1

dt
= −a (T1 − T∞)− δ (t− 1) ,

dT2

dt
= −a (T2 − T∞)−H(t− 1) +H(t− 2) ,

where δ(t) and H(t) are the Dirac delta and Heaviside functions respectively, and a is a
positive constant.

(i) Show that for 0 6 t < 1

T1(t) = T2(t) = T∞ + (T0 − T∞) e−at.

(ii) Determine the jump (discontinuity) condition for T1 at t = 1 and hence find T1(t)
for t > 1 .

(iii) Using continuity of T2(t) at t = 1 show that for 1 < t < 2

T2(t) = T∞ −
1
a

+ e−at
(
T0 − T∞ +

1
a

ea
)
.

(iv) Compute T2(t) for t > 2 and show that for t > 2

T1(t)− T2(t) =
(

1
a

ea − 1− 1
a

)
e (1−t)a.

(v) Find the time t∗, after t = 1 , at which T1 = T2 .
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2/II/6A Differential Equations

The linear second-order differential equation

d2y

dx2
+ p(x)

dy

dx
+ q(x) y = 0

has linearly independent solutions y1(x) and y2(x). Define the Wronskian W of y1(x)
and y2(x).

Suppose that y1(x) is known. Use the Wronskian to write down a first-order
differential equation for y2(x). Hence express y2(x) in terms of y1(x) and W .

Show further that W satisfies the differential equation

dW

dx
+ p(x)W = 0 .

Verify that y1(x) = x2 − 2x+ 1 is a solution of

(x− 1)2
d2y

dx2
+ (x− 1)

dy

dx
− 4y = 0 . (∗)

Compute the Wronskian and hence determine a second, linearly independent,
solution of (∗).

2/II/7A Differential Equations

Find the first three non-zero terms in series solutions y1(x) and y2(x) for the
differential equation

x
d2y

dx2
− dy

dx
+ 4x3y = 0 , (∗)

that satisfy the boundary conditions

y1(0) = a , y′′1 (0) = 0 ,
y2(0) = 0 , y′′2 (0) = b ,

where a and b are constants.

Determine the value of α such that the change of variable u = xα transforms (∗)
into a differential equation with constant coefficients. Hence find the general solution
of (∗).
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2/II/8A Differential Equations

Consider the function

f(x, y) = x2 + y2 − 1
2
x4 − b x2y2 − 1

2
y4 ,

where b is a positive constant.

Find the critical points of f(x, y) , assuming b 6= 1 . Determine the type of each critical
point and sketch contours of constant f(x, y) in the two cases (i) b < 1 and (ii) b > 1 .

For b = 1 describe the subset of the (x, y) plane on which f(x, y) attains its
maximum value.

Part IA 2008



15

4/I/3B Dynamics

Two particles of masses m1 and m2 have position vectors r1(t) and r2(t) at time t.
The particle of mass m1 experiences a force f and the particle of mass m2 experiences
a force −f . Show that the centre of mass moves at a constant velocity, and derive an
equation of motion for the relative separation r = r1 − r2.

Now suppose that f = −kr, where k is a positive constant. The particles are
initially at rest a distance d apart. Calculate how long it takes before they collide.

4/I/4B Dynamics

A damped pendulum is described by the equation

ẍ+ 2kẋ+ ω2 sinx = 0 ,

where k and ω are real positive constants. Determine the location of all the equilibrium
points of the system. Classify the equilibrium points in the two cases k > ω and k < ω.

4/II/9B Dynamics

An octopus of mass mo swims horizontally in a straight line by jet propulsion. At
time t = 0 the octopus is at rest, and its internal cavity contains a mass mw of water (so
that the mass of the octopus plus water is mo + mw). It then starts to move by ejecting
the water backwards at a constant rate Q units of mass per unit time and at a constant
speed V relative to itself. The speed of the octopus at time t is u(t), and the mass of the
octopus plus remaining water is m(t). The drag force exerted by the surrounding water
on the octopus is αu2, where α is a positive constant.

Show that, during ejection of water, the equation of motion is

m
du

dt
= QV − αu2 . (1)

Once all the water has been ejected, at time t = tc, the octopus has attained a
velocity uc. Use dimensional analysis to show that

uc = V f(λ, µ) , (2)

where λ and µ are two dimensionless quantities and f is an unknown function. Solve
equation (1) to find an explicit expression for uc, and verify that your answer is of the
form given in equation (2).
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4/II/10B Dynamics

A body of mass m moves in the gravitational field of a much larger spherical object
of mass M located at the origin. Starting from the equations of motion

r̈ − rθ̇2 = −GM
r2

,

rθ̈ + 2ṙθ̇ = 0,

show that:

(i) the body moves in an orbit of the form

h2u

GM
= 1 + e cos(θ − θ0) , (∗)

where u = 1/r, h is the constant angular momentum per unit mass, and e and θ0
are constants;

(ii) the total energy of the body is

E =
mG2M2

2h2

(
e2 − 1

)
.

A meteorite is moving very far from the Earth with speed V , and in the absence of
the effect of the Earth’s gravitational field would miss the Earth by a shortest distance b
(measured from the Earth’s centre). Show that in the subsequent motion

h = bV,

and

e =
[
1 +

b2V 4

G2M2

] 1
2

.

Use equation (∗) to find the distance of closest approach, and show that the meteorite will
collide with the Earth if

b <

[
R2 +

2GMR

V 2

] 1
2

,

where R is the radius of the Earth.
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4/II/11B Dynamics

An inertial reference frame S and another reference frame S′ have a common
origin O, and S′ rotates with angular velocity ω(t) with respect to S. Show the following:

(i) the rates of change of an arbitrary vector a(t) in frames S and S′ are related by(
da
dt

)
S

=
(
da
dt

)
S′

+ ω × a ;

(ii) the accelerations in S and S′ are related by(
d2r
dt2

)
S

=
(
d2r
dt2

)
S′

+ 2ω ×
(
dr
dt

)
S′

+
(
dω

dt

)
S′
× r + ω × (ω × r) ,

where r(t) is the position vector relative to O.

A train of mass m at latitude λ in the Northern hemisphere travels North with
constant speed V along a track which runs North–South. Find the magnitude and direction
of the sideways force exerted on the train by the track.
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4/II/12B Dynamics

A uniform solid sphere has mass m and radius R0. Calculate the moment of inertia
of the sphere about an axis through its centre.

A long hollow circular cylinder of radius R1 (where R1 > 2R0) is held fixed with its
axis horizontal. The sphere is held initially at rest in contact with the inner surface of the
cylinder at θ = α, where α < π/2 and θ is the angle between the line joining the centre of
the sphere to the cylinder axis and the downward vertical, as shown in the figure.

R1

R0

θ

The sphere is then released, and rolls without slipping. Show that the angular
velocity of the sphere is (

R1 −R0

R0

)
θ̇.

Show further that the time, TR, it takes the sphere to reach θ = 0 is

TR =

√
7 (R1 −R0)

10g

∫ α

0

dθ

(cos θ − cosα)
1
2
.

If, instead, the cylinder and sphere surfaces are highly polished, so that the sphere
now slides without rolling, find the time, TS , it takes to reach θ = 0.

Without further calculation, explain qualitatively how your answers for TR and TS
would be affected if the solid sphere were replaced by a hollow spherical shell of the same
radius and mass.
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4/I/1D Numbers and Sets

Let A, B and C be non-empty sets and let f : A → B and g : B → C be
two functions. For each of the following statements, give either a brief justification or a
counterexample.

(i) If f is an injection and g is a surjection, then g ◦ f is a surjection.

(ii) If f is an injection and g is an injection, then there exists a function h : C → A
such that h ◦ g ◦ f is equal to the identity function on A.

(iii) If X and Y are subsets of A then f(X ∩ Y ) = f(X) ∩ f(Y ).

(iv) If Z and W are subsets of B then f−1(Z ∩W ) = f−1(Z) ∩ f−1(W ).

4/I/2D Numbers and Sets

(a) Let ∼ be an equivalence relation on a set X. What is an equivalence class of ∼?
Prove that the equivalence classes of ∼ form a partition of X.

(b) Let Z+ be the set of all positive integers. Let a relation ∼ be defined on Z+ by
setting m ∼ n if and only if m/n = 2k for some (not necessarily positive) integer k. Prove
that ∼ is an equivalence relation, and give an example of a set A ⊂ Z+ that contains
precisely one element of each equivalence class.

4/II/5D Numbers and Sets

(a) Define the notion of a countable set, and prove that the set N×N is countable.
Deduce that if X and Y are countable sets then X × Y is countable, and also that a
countable union of countable sets is countable.

(b) If A is any set of real numbers, define φ(A) to be the set of all real roots of
non-zero polynomials that have coefficients in A. Now suppose that A0 is a countable
set of real numbers and define a sequence A1, A2, A3, . . . by letting each An be equal to
φ(An−1). Prove that the union

⋃∞
n=1An is countable.

(c) Deduce that there is a countable set X that contains the real numbers 1 and π
and has the further property that if P is any non-zero polynomial with coefficients in X,
then all real roots of P belong to X.
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4/II/6D Numbers and Sets

(a) Let a and m be integers with 1 6 a < m and let d = (a,m) be their highest
common factor. For any integer b, prove that b is a multiple of d if and only if there exists
an integer r satisfying the equation ar ≡ b (mod m), and show that in this case there are
exactly d solutions to the equation that are distinct mod m.

Deduce that the equation ar ≡ b (mod m) has a solution if and only if b(m/d) ≡ 0
(mod m).

(b) Let p be a prime and let Z∗p be the multiplicative group of non-zero integers
mod p. An element x of Z∗p is called a kth power (mod p) if x ≡ yk (mod p) for some
integer y. It can be shown that Z∗p has a generator : that is, an element u such that every
element of Z∗p is a power of u. Assuming this result, deduce that an element x of Z∗p is a
kth power (mod p) if and only if x(p−1)/d ≡ 1 (mod p), where d is now the highest common
factor of k and p− 1.

(c) How many 437th powers are there mod 1013? [You may assume that 1013 is a
prime number.]

4/II/7D Numbers and Sets

(a) Let F be a field such that the equation x2 = −1 has no solution in F. Prove
that if x and y are elements of F such that x2 + y2 = 0 , then both x and y must equal 0.

Prove that F2 can be made into a field, with operations

(x, y) + (z, w) = (x+ z, y + w)

and
(x, y) · (z, w) = (xz − yw, xw + yz) .

(b) Let p be a prime of the form 4m + 3. Prove that −1 is not a square (mod p),
and deduce that there exists a field with exactly p2 elements.
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4/II/8D Numbers and Sets

Let q be a positive integer. For every positive integer k , define a number ck by the
formula

ck = (q + k − 1)
q!

(q + k)!
.

Prove by induction that
n∑
k=1

ck = 1− q!
(q + n)!

for every n > 1 , and hence evaluate the infinite sum
∑∞
k=1 ck .

Let a1, a2, a3, . . . be a sequence of integers satisfying the inequality 0 6 an < n
for every n. Prove that the series

∑∞
n=1 an/n! is convergent. Prove also that its limit is

irrational if and only if an 6 n−2 for infinitely many n and am > 0 for infinitely many m.
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2/I/3F Probability

There are n socks in a drawer, three of which are red and the rest black. John
chooses his socks by selecting two at random from the drawer and puts them on. He is
three times more likely to wear socks of different colours than to wear matching red socks.
Find n .

For this value of n , what is the probability that John wears matching black socks?

2/I/4F Probability

A standard six-sided die is thrown. Calculate the mean and variance of the number
shown.

The die is thrown n times. By using Chebyshev’s inequality, find an n such that

P
( ∣∣∣∣ Ynn − 3.5

∣∣∣∣ > 1.5
)

6 0.1

where Yn is the total of the numbers shown over the n throws.

2/II/9F Probability

A population evolves in generations. Let Zn be the number of members in the
nth generation, with Z0 = 1 . Each member of the nth generation gives birth to a
family, possibly empty, of members of the (n + 1)th generation; the size of this family is
a random variable and we assume that the family sizes of all individuals form a collection
of independent identically distributed random variables each with generating function G.

Let Gn be the generating function of Zn . State and prove a formula for Gn in
terms of G. Determine the mean of Zn in terms of the mean of Z1 .

Suppose that Z1 has a Poisson distribution with mean λ . Find an expression for
xn+1 in terms of xn , where xn = P {Zn = 0} is the probability that the population
becomes extinct by the nth generation.
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2/II/10F Probability

A and B play a series of games. The games are independent, and each is won by A
with probability p and by B with probability 1 − p . The players stop when the number
of wins by one player is three greater than the number of wins by the other player. The
player with the greater number of wins is then declared overall winner.

(i) Find the probability that exactly 5 games are played.

(ii) Find the probability that A is the overall winner.

2/II/11F Probability

Let X and Y have the bivariate normal density function

f(x, y) =
1

2π
√

1− ρ2
exp

{
− 1

2(1− ρ2)
(x2 − 2ρxy + y2)

}
, x, y ∈ R ,

for fixed ρ ∈ (−1, 1). Let Z = (Y − ρX)/
√

1− ρ2 . Show that X and Z are independent
N(0, 1) variables. Hence, or otherwise, determine

P (X > 0, Y > 0 ) .

2/II/12F Probability

The discrete random variable Y has distribution given by

P (Y = k) = (1− p)k−1 p , k = 1, 2, . . . ,

where p ∈ (0, 1). Determine the mean and variance of Y .

A fair die is rolled until all 6 scores have occurred. Find the mean and standard
deviation of the number of rolls required.

[
Hint:

6∑
i=1

(
6
i

)2

= 53.7
]
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3/I/3C Vector Calculus

A curve is given in terms of a parameter t by

x(t) = (t− 1
3 t

3 , t2 , t+ 1
3 t

3) .

(i) Find the arc length of the curve between the points with t = 0 and t = 1 .

(ii) Find the unit tangent vector at the point with parameter t, and show that the
principal normal is orthogonal to the z direction at each point on the curve.

3/I/4C Vector Calculus

What does it mean to say that Tij transforms as a second rank tensor?

If Tij transforms as a second rank tensor, show that
∂Tij
∂xj

transforms as a vector.

3/II/9C Vector Calculus

Let F = ω× (ω×x), where x is the position vector and ω is a uniform vector field.

(i) Use the divergence theorem to evaluate the surface integral
∫
S

F · dS , where S

is the closed surface of the cube with vertices (±1,±1,±1).

(ii) Show that ∇× F = 0 . Show further that the scalar field φ given by

φ = 1
2 (ω · x)2 − 1

2 (ω · ω)(x · x)

satisfies F = ∇φ. Describe geometrically the surfaces of constant φ.
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3/II/10C Vector Calculus

Find the effect of a rotation by π/2 about the z-axis on the tensorS11 S12 S13

S21 S22 S23

S31 S32 S33

 .

Hence show that the most general isotropic tensor of rank 2 is λδij , where λ is an arbitrary
scalar.

Prove that there is no non-zero isotropic vector, and write down without proof the
most general isotropic tensor of rank 3.

Deduce that if Tijkl is an isotropic tensor then the following results hold, for some
scalars µ and ν:

(i) εijk Tijkl = 0 ;

(ii) δij Tijkl = µ δkl ;

(iii) εijm Tijkl = ν εklm .

Verify these three results in the case Tijkl = α δij δkl+β δik δjl+γ δil δjk , expressing
µ and ν in terms of α, β and γ .

3/II/11C Vector Calculus

Let V be a volume in R3 bounded by a closed surface S .

(a) Let f and g be twice differentiable scalar fields such that f = 1 on S and
∇2g = 0 in V . Show that ∫

V

∇f ·∇g dV = 0 .

(b) Let V be the sphere |x| 6 a . Evaluate the integral∫
V

∇u ·∇v dV

in the cases where u and v are given in spherical polar coordinates by:

(i) u = r , v = r cos θ ;

(ii) u = r/a , v = r2 cos2 θ ;

(iii) u = r/a , v = 1/r .

Comment on your results in the light of part (a).
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3/II/12C Vector Calculus

Let A be the closed planar region given by

y 6 x 6 2y,
1
y

6 x 6
2
y
.

(i) Evaluate by means of a suitable change of variables the integral∫
A

x

y
dx dy .

(ii) Let C be the boundary of A. Evaluate the line integral∮
C

x2

2y
dy − dx

by integrating along each section of the boundary.

(iii) Comment on your results.
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