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SECTION I

1D Algebra and Geometry

Prove that every permutation of {1, . . . , n}may be expressed as a product of disjoint
cycles.

Let σ = (1234) and let τ = (345)(678). Write στ as a product of disjoint cycles.
What is the order of στ?

2D Algebra and Geometry

What does it mean to say that groups G and H are isomorphic?

Prove that no two of C8, C4 × C2 and C2 × C2 × C2 are isomorphic. [Here Cn

denotes the cyclic group of order n.]

Give, with justification, a group of order 8 that is not isomorphic to any of those
three groups.

3A Vector Calculus

(i) Give definitions for the unit tangent vector T̂ and the curvature κ of a
parametrised curve x(t) in R3. Calculate T̂ and κ for the circular helix

x(t) = (a cos t , a sin t , bt) ,

where a and b are constants.

(ii) Find the normal vector and the equation of the tangent plane to the surface S
in R3 given by

z = x2y3 − y + 1

at the point x = 1, y = 1, z = 1.

4A Vector Calculus

By using suffix notation, prove the following identities for the vector fields A and
B in R3:

∇ · (A×B) = B · (∇×A)−A · (∇×B) ;

∇× (A×B) = (B · ∇)A−B(∇ ·A)− (A · ∇)B + A(∇ ·B) .

Paper 3



3

SECTION II

5D Algebra and Geometry

Let x be an element of a finite group G. What is meant by the order of x? Prove
that the order of x must divide the order of G. [No version of Lagrange’s theorem or the
Orbit-Stabilizer theorem may be used without proof.]

If G is a group of order n, and d is a divisor of n with d < n, is it always true that
G must contain an element of order d? Justify your answer.

Prove that if m and n are coprime then the group Cm × Cn is cyclic.

If m and n are not coprime, can it happen that Cm × Cn is cyclic?

[Here Cn denotes the cyclic group of order n.]

6D Algebra and Geometry

What does it mean to say that a subgroup H of a group G is normal? Give, with
justification, an example of a subgroup of a group that is normal, and also an example of
a subgroup of a group that is not normal.

If H is a normal subgroup of G, explain carefully how to make the set of (left)
cosets of H into a group.

Let H be a normal subgroup of a finite group G. Which of the following are always
true, and which can be false? Give proofs or counterexamples as appropriate.

(i) If G is cyclic then H and G/H are cyclic.

(ii) If H and G/H are cyclic then G is cyclic.

(iii) If G is abelian then H and G/H are abelian.

(iv) If H and G/H are abelian then G is abelian.
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7D Algebra and Geometry

Let A be a real symmetric n × n matrix. Prove that every eigenvalue of A is
real, and that eigenvectors corresponding to distinct eigenvalues are orthogonal. Indicate
clearly where in your argument you have used the fact that A is real.

What does it mean to say that a real n× n matrix P is orthogonal ? Show that if
P is orthogonal and A is as above then P−1AP is symmetric. If P is any real invertible
matrix, must P−1AP be symmetric? Justify your answer.

Give, with justification, real 2×2 matrices B,C,D,E with the following properties:

(i) B has no real eigenvalues;

(ii) C is not diagonalisable over C;

(iii) D is diagonalisable over C, but not over R;

(iv) E is diagonalisable over R, but does not have an orthonormal basis of
eigenvectors.

8D Algebra and Geometry

In the group of Möbius maps, what is the order of the Möbius map z 7→ 1
z
? What

is the order of the Möbius map z 7→ 1
1− z

?

Prove that every Möbius map is conjugate either to a map of the form z 7→ µz
(some µ ∈ C) or to the map z 7→ z + 1. Is z 7→ z + 1 conjugate to a map of the form
z 7→ µz?

Let f be a Möbius map of order n, for some positive integer n. Under the action
on C∪ {∞} of the group generated by f , what are the various sizes of the orbits? Justify
your answer.
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9A Vector Calculus

(i) Define what is meant by a conservative vector field. Given a vector field
A = (A1(x, y), A2(x, y)) and a function ψ(x, y) defined in R2, show that, if ψA is a
conservative vector field, then

ψ

(
∂A1

∂y
− ∂A2

∂x

)
= A2

∂ψ

∂x
−A1

∂ψ

∂y
.

(ii) Given two functions P (x, y) and Q(x, y) defined in R2, prove Green’s theorem,∮
C

(P dx+Qdy) =
∫∫

R

(
∂Q

∂x
− ∂P

∂y

)
dx dy ,

where C is a simple closed curve bounding a region R in R2.

Through an appropriate choice for P and Q, find an expression for the area of the
region R, and apply this to evaluate the area of the ellipse bounded by the curve

x = a cos θ , y = b sin θ , 0 ≤ θ ≤ 2π .
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10A Vector Calculus

For a given charge distribution ρ(x, y, z) and divergence-free current distribution
J(x, y, z) (i.e. ∇ · J=0) in R3, the electric and magnetic fields E(x, y, z) and B(x, y, z)
satisfy the equations

∇×E = 0 , ∇ ·B = 0 , ∇ ·E = ρ , ∇×B = J .

The radiation flux vector P is defined by P = E×B.

For a closed surface S around a region V , show using Gauss’ theorem that the flux
of the vector P through S can be expressed as∫∫

S

P · dS = −
∫∫∫

V

E · J dV . (∗)

For electric and magnetic fields given by

E(x, y, z) = (z, 0, x) , B(x, y, z) = (0, −xy, xz) ,

find the radiation flux through the quadrant of the unit spherical shell given by

x2 + y2 + z2 = 1 , with 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 , −1 ≤ z ≤ 1 .

[If you use (∗), note that an open surface has been specified.]
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11A Vector Calculus

The function φ(x, y, z) satisfies ∇2φ = 0 in V and φ = 0 on S, where V is a region
of R3 which is bounded by the surface S. Prove that φ = 0 everywhere in V .

Deduce that there is at most one function ψ(x, y, z) satisfying ∇2ψ = ρ in V and ψ = f
on S, where ρ(x, y, z) and f(x, y, z) are given functions.

Given that the function ψ = ψ(r) depends only on the radial coordinate r = |x|,
use Cartesian coordinates to show that

∇ψ =
1
r

dψ

dr
x , ∇2ψ =

1
r

d2(rψ)
dr2

.

Find the general solution in this radial case for ∇2ψ = c where c is a constant.

Find solutions ψ(r) for a solid sphere of radius r = 2 with a central cavity of radius
r = 1 in the following three regions:

(i) 0 6 r 6 1 where ∇2ψ = 0 and ψ(1) = 1 and ψ bounded as r → 0;

(ii) 1 6 r 6 2 where ∇2ψ = 1 and ψ(1) = ψ(2) = 1;

(iii) r > 2 where ∇2ψ = 0 and ψ(2) = 1 and ψ → 0 as r →∞.

12A Vector Calculus

Show that any second rank Cartesian tensor Pij in R3 can be written as a sum of a
symmetric tensor and an antisymmetric tensor. Further, show that Pij can be decomposed
into the following terms

Pij = Pδij + Sij + εijkAk , (†)

where Sij is symmetric and traceless. Give expressions for P , Sij and Ak explicitly in
terms of Pij .

For an isotropic material, the stress Pij can be related to the strain Tij through
the stress–strain relation, Pij = cijkl Tkl , where the elasticity tensor is given by

cijkl = αδijδkl + βδikδjl + γδilδjk

and α, β and γ are scalars. As in (†), the strain Tij can be decomposed into its trace T , a
symmetric traceless tensor Wij and a vector Vk. Use the stress–strain relation to express
each of T , Wij and Vk in terms of P , Sij and Ak.

Hence, or otherwise, show that if Tij is symmetric then so is Pij . Show also that
the stress-strain relation can be written in the form

Pij = λ δijTkk + µTij ,

where µ and λ are scalars.

END OF PAPER
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