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SECTION I

1B Differential Equations

Find the solution y(x) of the equation

y′′ − 6y′ + 9y = cos(2x) e3x

that satisfies y(0) = 0 and y′(0) = 1.

2B Differential Equations

Investigate the stability of:

(i) the equilibrium points of the equation

dy

dt
= (y2 − 4) tan−1(y) ;

(ii) the constant solutions (un+1 = un) of the discrete equation

un+1 =
1
2
u2

n(1 + un) .

3F Probability

Let X and Y be independent random variables, each uniformly distributed on
[0, 1]. Let U = min(X, Y ) and V = max(X, Y ). Show that EU = 1

3 , and hence find the
covariance of U and V .

4F Probability

Let X be a normally distributed random variable with mean 0 and variance 1.
Define, and determine, the moment generating function of X. Compute EXr for
r = 0, 1, 2, 3, 4.

Let Y be a normally distributed random variable with mean µ and variance σ2.
Determine the moment generating function of Y .
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SECTION II

5B Differential Equations

(i) The function y(z) satisfies the equation

y′′ + p(z)y′ + q(z)y = 0 .

Give the definitions of the terms ordinary point, singular point, and regular singular point
for this equation.

(ii) For the equation
4zy′′ + 2y′ + y = 0 ,

classify the point z = 0 according to the definitions you gave in (i), and find the series
solutions about z = 0. Identify these solutions in closed form.

6B Differential Equations

Find the most general solution of the equation

6
∂2u

∂x2
− 5

∂2u

∂x∂y
+

∂2u

∂y2
= 1

by making the change of variables

ξ = x + 2y, η = x + 3y .

Find the solution that satisfies u = 0 and ∂u/∂y = x when y = 0.

Paper 2 [TURN OVER



4

7B Differential Equations

(i) Find, in the form of an integral, the solution of the equation

α
dy

dt
+ y = f(t)

that satisfies y → 0 as t → −∞. Here f(t) is a general function and α is a positive
constant.

Hence find the solution in each of the cases:

(a) f(t) = δ(t) ;

(b) f(t) = H(t), where H(t) is the Heaviside step function.

(ii) Find and sketch the solution of the equation

dy

dt
+ y = H(t)−H(t− 1) ,

given that y(0) = 0 and y(t) is continuous.

8B Differential Equations

(i) Find the general solution of the difference equation

uk+1 + 5uk + 6uk−1 = 12k + 1 .

(ii) Find the solution of the equation

yk+1 + 5yk + 6yk−1 = 2k

that satisfies y0 = y1 = 1. Hence show that, for any positive integer n, the quantity
2n − 26(−3)n is divisible by 10.
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9F Probability

Let N be a non-negative integer-valued random variable with

P{N = r} = pr, r = 0, 1, 2, . . .

Define EN , and show that

EN =
∞∑

n=1

P{N > n} .

Let X1, X2, . . . be a sequence of independent and identically distributed continuous
random variables. Let the random variable N mark the point at which the sequence stops
decreasing: that is, N > 2 is such that

X1 > X2 > . . . > XN−1 < XN ,

where, if there is no such finite value of N , we set N = ∞. Compute P{N = r}, and show
that P{N = ∞} = 0. Determine EN .

10F Probability

Let X and Y be independent non-negative random variables, with densities f and
g respectively. Find the joint density of U = X and V = X + aY , where a is a positive
constant.

Let X and Y be independent and exponentially distributed random variables, each
with density

f(x) = λe−λx, x > 0 .

Find the density of X + 1
2Y . Is it the same as the density of the random variable

max(X, Y )?
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11F Probability

Let A1, A2, . . ., An (n > 2) be events in a sample space. For each of the following
statements, either prove the statement or provide a counterexample.

(i)

P

(
n⋂

k=2

Ak

∣∣∣∣∣A1

)
=

n∏
k=2

P

(
Ak

∣∣∣∣∣
k−1⋂
r=1

Ar

)
, provided P

(
n−1⋂
k=1

Ak

)
> 0 .

(ii)

If
n∑

k=1

P (Ak) > n− 1 then P

(
n⋂

k=1

Ak

)
> 0 .

(iii)

If
∑
i<j

P
(
Ai

⋂
Aj

)
>
(n

2

)
− 1 then P

(
n⋂

k=1

Ak

)
> 0 .

(iv) If B is an event and if, for each k, {B,Ak} is a pair of independent events, then
{B,∪n

k=1Ak} is also a pair of independent events.

12F Probability

Let A, B and C be three random points on a sphere with centre O. The positions
of A, B and C are independent, and each is uniformly distributed over the surface of the
sphere. Calculate the probability density function of the angle ∠AOB formed by the lines
OA and OB.

Calculate the probability that all three of the angles ∠AOB, ∠AOC and ∠BOC
are acute. [Hint: Condition on the value of the angle ∠AOB.]

END OF PAPER
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