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1/I/1C Algebra and Geometry

Show, using the summation convention or otherwise, that a × (b × c) = (a.c)b −
(a.b)c, for a,b, c ∈ R3.

The function Π : R3 → R3 is defined by Π(x) = n× (x×n) where n is a unit vector
in R3. Show that Π is linear and find the elements of a matrix P such that Π(x) = Px
for all x ∈ R3.

Find all solutions to the equation Π(x) = x. Evaluate Π(n). Describe the function
Π geometrically. Justify your answer.

1/I/2C Algebra and Geometry

Define what is meant by the statement that the vectors x1, . . . ,xn ∈ Rm are
linearly independent. Determine whether the following vectors x1,x2,x3 ∈ R3 are linearly
independent and justify your answer.

x1 =

 1
3
2

 , x2 =

 2
4
0

 , x3 =

−1
0
4

 .

For the vectors x, y, z taken from a real vector space V consider the statements

A) x,y, z are linearly dependent,
B) ∃ α, β, γ ∈ R : αx + βy + γz = 0,
C) ∃ α, β, γ ∈ R, not all = 0 : αx + βy + γz = 0,
D) ∃ α, β ∈ R, not both = 0 : z = αx + βy,
E) ∃ α, β ∈ R : z = αx + βy,
F) 6 ∃ basis of V that contains all 3 vectors x,y, z.

State if the following implications are true or false (no justification is required):

i) A ⇒ B, vi) B ⇒ A,
ii) A ⇒ C, vii) C ⇒ A,
iii) A ⇒ D, viii) D ⇒ A,
iv) A ⇒ E, ix) E ⇒ A,
v) A ⇒ F, x) F ⇒ A.
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1/II/5C Algebra and Geometry

The matrix

Aα =

 1 −1 2α + 1
1 α− 1 1

1 + α −1 α2 + 4α + 1


defines a linear map Φα : R3 → R3 by Φα(x) = Aαx. Find a basis for the kernel of Φα for
all values of α ∈ R.

Let B = {b1,b2,b3} and C = {c1, c2, c3} be bases of R3. Show that there exists a
matrix S, to be determined in terms of B and C, such that, for every linear mapping Φ, if
Φ has matrix A with respect to B and matrix A′ with respect to C, then A′ = S−1AS.

For the bases

B =


 1

1
1

 ,

 0
1
1

 ,

 1
1
0

  , C =


 1

2
2

 ,

 1
2
1

 ,

 2
3
2

  ,

find the basis transformation matrix S and calculate S−1A0S.

1/II/6C Algebra and Geometry

Assume that xp is a particular solution to the equation Ax = b with x,b ∈ R3 and
a real 3× 3 matrix A. Explain why the general solution to Ax = b is given by x = xp +h
where h is any vector such that Ah = 0.

Now assume that A is a real symmetric 3×3 matrix with three different eigenvalues
λ1, λ2 and λ3. Show that eigenvectors of A with respect to different eigenvalues are
orthogonal. Let xk be a normalised eigenvector of A with respect to the eigenvalue λk,
k = 1, 2, 3. Show that the linear system

(A− λkI)x = b ,

where I denotes the 3× 3 unit matrix, is solvable if and only if xk.b = 0. Show that the
general solution is given by

x =
∑
i 6=k

b.xi

λi−λk
xi + βxk, β ∈ R.

[Hint: consider the components of x and b with respect to a basis of eigenvectors of A.]

Consider the matrix A and the vector b

A =

− 1
2

√
2 + 1

6

√
3 1

2

√
2 + 1

6

√
3 − 1

3

√
3

1
2

√
2 + 1

6

√
3 − 1

2

√
2 + 1

6

√
3 − 1

3

√
3

− 1
3

√
3 − 1

3

√
3 2

3

√
3

 , b =

 √
2 +

√
3

−
√

2 +
√

3
−2
√

3

 .

Verify that 1√
3
(1, 1, 1)T and 1√

2
(1,−1, 0)T are eigenvectors of A. Show that Ax = b is

solvable and find its general solution.
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1/II/7C Algebra and Geometry

For α, γ ∈ R, α 6= 0, β ∈ C and ββ > αγ the equation αzz−βz−βz+γ = 0 describes
a circle Cαβγ in the complex plane. Find its centre and radius. What does the equation
describe if ββ < αγ? Sketch the circles Cαβγ for β = γ = 1 and α = −2,−1,− 1

2 , 1
2 , 1.

Show that the complex function f(z) = βz/β for β 6= 0 satisfies f(Cαβγ) = Cαβγ .

[Hint: f(C) = C means that f(z) ∈ C ∀z ∈ C and ∀w ∈ C ∃z ∈ C such that
f(z) = w.]

For two circles C1 and C2 a function m(C1, C2) is defined by

m(C1, C2) = max
z∈C1,w∈C2

∣∣z − w
∣∣ .

Prove that m(C1, C2) 6 m(C1, C3) + m(C2, C3). Show that

m(Cα1β1γ1 , Cα2β2γ2) = |α1β2−α2β1|
|α1α2| +

√
β1β1−α1γ1
|α1| +

√
β2β2−α2γ2
|α2| .

1/II/8C Algebra and Geometry

Let lx denote the straight line through x with directional vector u 6= 0

lx =
{
y ∈ R3 : y = x + λu, λ ∈ R

}
.

Show that l0 is a subspace of R3 and show that lx1 = lx2 ⇔ x1 = x2 +λu for some λ ∈ R.

For fixed u 6= 0 let L be the set of all the parallel straight lines lx (x ∈ R3) with
directional vector u. On L an addition and a scalar multiplication are defined by

lx + ly = lx+y, αlx = lαx, x,y ∈ R3, α ∈ R .

Explain why these operations are well-defined. Show that the addition is associative and
that there exists a zero vector which should be identified.

You may now assume that L is a vector space. If {u,b1,b2} is a basis for R3 show
that {lb1 , lb2} is a basis for L.

For u = (1, 3,−1)T a linear map Φ : L → L is defined by

Φ
(
l(1,−1,0)T

)
= l(2,4,−1)T , Φ

(
l(1,1,0)T

)
= l(−4,−2,1)T .

Find the matrix A of Φ with respect to the basis {l(1,0,0)T , l(0,1,0)T }.
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3/I/1F Algebra and Geometry

For a 2 × 2 matrix A =
(

a b
c d

)
, prove that A2 = 0 if and only if a = −d and

bc = −a2. Prove that A3 = 0 if and only if A2 = 0.

[Hint: it is easy to check that A2 − (a + d)A + (ad− bc)I = 0.]

3/I/2D Algebra and Geometry

Show that the set of Möbius transformations of the extended complex plane
C ∪ {∞} form a group. Show further that an arbitrary Möbius transformation can
be expressed as the composition of maps of the form

f(z) = z + a, g(z) = kz and h(z) = 1/z .

3/II/5F Algebra and Geometry

Let A, B, C be 2×2 matrices, real or complex. Define the trace tr C to be the sum
of diagonal entries C11+C22. Define the commutator [A,B] to be the difference AB−BA.
Give the definition of the eigenvalues of a 2× 2 matrix and prove that it can have at most
two distinct eigenvalues. Prove that

a) tr [A,B] = 0,

b) trC equals the sum of the eigenvalues of C,

c) if all eigenvalues of C are equal to 0 then C2 = 0,

d) either [A,B] is a diagonalisable matrix or the square [A,B]2 = 0,

e) [A,B]2 = α I where α ∈ C and I is the unit matrix.

3/II/6E Algebra and Geometry

Define the notion of an action of a group G on a set X. Define orbit and stabilizer,
and then, assuming that G is finite, state and prove the Orbit-Stabilizer Theorem.

Show that the group of rotations of a cube has order 24.

3/II/7E Algebra and Geometry

State Lagrange’s theorem. Use it to describe all groups of order p, where p is a
fixed prime number.

Find all the subgroups of a fixed cyclic group 〈x〉 of order n.
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3/II/8D Algebra and Geometry

(i) Let A4 denote the alternating group of even permutations of four symbols. Let X
be the 3-cycle (123) and P,Q be the pairs of transpositions (12)(34) and (13)(24).
Find X3, P 2, Q2, X−1PX, X−1QX, and show that A4 is generated by X, P and Q.

(ii) Let G and H be groups and let

G×H = {(g, h) : g ∈ G, h ∈ H}.

Show how to make G×H into a group in such a way that G×H contains subgroups
isomorphic to G and H.

If Dn is the dihedral group of order n and C2 is the cyclic group of order 2, show
that D12 is isomorphic to D6 × C2. Is the group D12 isomorphic to A4?
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1/I/3D Analysis I

What does it mean to say that un → l as n →∞ ?

Show that, if un → l and vn → k, then unvn → lk as n →∞.

If further un 6= 0 for all n and l 6= 0, show that 1/un → 1/l as n →∞.

Give an example to show that the non-vanishing of un for all n need not imply the
non-vanishing of l.

1/I/4D Analysis I

Starting from the theorem that any continuous function on a closed and bounded
interval attains a maximum value, prove Rolle’s Theorem. Deduce the Mean Value
Theorem.

Let f : R → R be a differentiable function. If f ′(t) > 0 for all t show that f is a
strictly increasing function.

Conversely, if f is strictly increasing, is f ′(t) > 0 for all t ?

1/II/9D Analysis I

(i) If a0, a1, . . . are complex numbers show that if, for some w ∈ C, w 6= 0, the set
{|anwn| : n ≥ 0} is bounded and |z| < |w|, then

∑∞
n=0 anzn converges absolutely.

Use this result to define the radius of convergence of the power series
∑∞

n=0 anzn.

(ii) If |an|1/n → R as n → ∞ (0 < R < ∞) show that
∑∞

n=0 anzn has radius of
convergence equal to 1/R.

(iii) Give examples of power series with radii of convergence 1 such that (a) the series
converges at all points of the circle of convergence, (b) diverges at all points of the
circle of convergence, and (c) neither of these occurs.

1/II/10D Analysis I

Suppose that f is a continuous real-valued function on [a, b] with f(a) < f(b). If
f(a) < v < f(b) show that there exists c with a < c < b and f(c) = v.

Deduce that if f is a continuous function from the closed bounded interval [a, b]
to itself, there exists at least one fixed point, i.e., a number d belonging to [a, b] with
f(d) = d. Does this fixed point property remain true if f is a continuous function defined
(i) on the open interval (a, b) and (ii) on R? Justify your answers.
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1/II/11D Analysis I

(i) Show that if g : R → R is twice continuously differentiable then, given ε > 0, we
can find some constant L and δ(ε) > 0 such that

|g(t)− g(α)− g′(α) (t− α)| ≤ L|t− α|2

for all |t− α| < δ(ε).

(ii) Let f : R → R be twice continuously differentiable on [a, b] (with one-sided
derivatives at the end points), let f ′ and f ′′ be strictly positive functions and
let f(a) < 0 < f(b).

If F (t) = t − (f(t)/f ′(t)) and a sequence {xn} is defined by b = x0, xn =
F (xn−1) (n > 0), show that x0, x1, x2, . . . is a decreasing sequence of points in [a, b]
and hence has limit α. What is f(α)? Using part (i) or otherwise estimate the rate of
convergence of xn to α, i.e., the behaviour of the absolute value of (xn−α) for large values
of n.

1/II/12D Analysis I

Explain what it means for a function f : [a, b] → R to be Riemann integrable on
[a, b], and give an example of a bounded function that is not Riemann integrable.

Show each of the following statements is true for continuous functions f , but false
for general Riemann integrable functions f .

(i) If f : [a, b] → R is such that f(t) ≥ 0 for all t in [a, b] and
∫ b

a
f(t) dt = 0, then

f(t) = 0 for all t in [a, b].

(ii)
∫ t

a
f(x) dx is differentiable and d

dt

∫ t

a
f(x) dx = f(t).
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2/I/1B Differential Equations

Find the solution to

dy(x)
dx

+ tanh(x) y(x) = H(x) ,

in the range −∞ < x < ∞ subject to y(0) = 1, where H(x) is the Heavyside function
defined by

H(x) =
{

0 x < 0
1 x > 0 .

Sketch the solution.

2/I/2B Differential Equations

The function y(x) satisfies the inhomogeneous second-order linear differential
equation

y′′ − y′ − 2y = 18xe−x .

Find the solution that satisfies the conditions that y(0) = 1 and y(x) is bounded as x →∞.
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2/II/5B Differential Equations

The real sequence yk, k = 1, 2, . . . satisfies the difference equation

yk+2 − yk+1 + yk = 0 .

Show that the general solution can be written

yk = a cos
πk

3
+ b sin

πk

3
,

where a and b are arbitrary real constants.

Now let yk satisfy

yk+2 − yk+1 + yk =
1

k + 2
. (∗)

Show that a particular solution of (∗) can be written in the form

yk =
k∑

n=1

an

k − n + 1
,

where
an+2 − an+1 + an = 0 , n ≥ 1 ,

and a1 = 1, a2 = 1 .

Hence, find the general solution to (∗).
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2/II/6B Differential Equations

The function y(x) satisfies the linear equation

y′′(x) + p(x)y′(x) + q(x)y(x) = 0 .

The Wronskian, W (x), of two independent solutions denoted y1(x) and y2(x) is defined
to be

W (x) =
∣∣∣∣ y1 y2

y1
′ y2

′

∣∣∣∣ .

Let y1(x) be given. In this case, show that the expression for W (x) can be
interpreted as a first-order inhomogeneous differential equation for y2(x). Hence, by
explicit derivation, show that y2(x) may be expressed as

y2(x) = y1(x)
∫ x

x0

W (t)
y1(t)2

dt , (∗)

where the rôle of x0 should be briefly elucidated.

Show that W (x) satisfies

dW (x)
dx

+ p(x)W (x) = 0 .

Verify that y1(x) = 1− x is a solution of

xy′′(x)− (1− x2)y′(x)− (1 + x)y(x) = 0 . (†)

Hence, using (∗) with x0 = 0 and expanding the integrand in powers of t to order t3, find
the first three non-zero terms in the power series expansion for a solution, y2(x), of (†)
that is independent of y1(x) and satisfies y2(0) = 0, y2

′′(0) = 1.

Part IA



12

2/II/7B Differential Equations

Consider the linear system

ż + Az = h , (∗)

where

z(t) =
(

x(t)
y(t)

)
, A =

(
1 + a −2

1 −1 + a

)
, h(t) =

(
2 cos t

cos t− sin t

)
,

where z(t) is real and a is a real constant, a ≥ 0.

Find a (complex) eigenvector, e, of A and its corresponding (complex) eigenvalue,
l. Show that the second eigenvector and corresponding eigenvalue are respectively ē and
l̄, where the bar over the symbols signifies complex conjugation. Hence explain how the
general solution to (∗) can be written as

z(t) = α(t) e + ᾱ(t) ē ,

where α(t) is complex.

Write down a differential equation for α(t) and hence, for a > 0, deduce the solution
to (∗) which satisfies the initial condition z(0) = 0

¯
.

Is the linear system resonant?

By taking the limit a → 0 of the solution already found deduce the solution
satisfying z(0) = 0

¯
when a = 0.

2/II/8B Differential Equations

Carnivorous hunters of population h prey on vegetarians of population p. In the
absence of hunters the prey will increase in number until their population is limited by
the availability of food. In the absence of prey the hunters will eventually die out. The
equations governing the evolution of the populations are

ṗ = p
(
1− p

a

)
− ph

a
,

ḣ =
h

8

(p

b
− 1

)
,

(∗)

where a and b are positive constants, and h(t) and p(t) are non-negative functions of time,
t. By giving an interpretation of each term explain briefly how these equations model the
system described.

Consider these equations for a = 1. In the two cases 0 < b < 1/2 and b > 1
determine the location and the stability properties of the critical points of (∗). In both of
these cases sketch the typical solution trajectories and briefly describe the ultimate fate
of hunters and prey.
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4/I/3A Dynamics

Derive the equation
d2u

dθ2
+ u =

f(u)
mh2u2

for the motion of a particle of mass m under an attractive central force f , where u = 1/r
and r is the distance of the particle from the centre of force, and where mh is the angular
momentum of the particle about the centre of force.

[Hint: you may assume the expressions for the radial and transverse accelerations
in the form r̈ − rθ̇2, 2ṙθ̇ + rθ̈.]

4/I/4A Dynamics

Two particles of masses m1 and m2 at positions x1(t) and x2(t) are subject to
forces F1 = −F2 = f(x1−x2). Show that the centre of mass moves at a constant velocity.
Obtain the equation of motion for the relative position of the particles. How does the
reduced mass

µ =
m1m2

m1 + m2

of the system enter?

4/II/9A Dynamics

The position x and velocity ẋ of a particle of mass m are measured in a frame which
rotates at constant angular velocity ω with respect to an inertial frame. Write down the
equation of motion of the particle under a force F = −4mω2x.

Find the motion of the particle in (x, y, z) coordinates with initial condition

x = (1, 0, 0) and ẋ = (0, 0, 0) at t = 0,

where ω = (0, 0, ω). Show that the particle has a maximum speed at t = (2n + 1)π/4ω,
and find this speed.

[Hint: you may find it useful to consider the combination ζ = x + iy.]
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4/II/10A Dynamics

A spherical raindrop of radius a(t) > 0 and density ρ falls down at a velocity
v(t) > 0 through a fine stationary mist. As the raindrop falls its volume grows at the rate
cπa2v with constant c. The raindrop is subject to the gravitational force and a resistive
force −kρπa2v2 with k a positive constant. Show a and v satisfy

ȧ = 1
4cv,

v̇ = g − 3
4 (c + k)

v2

a
.

Find an expression for d
dt (v

2/a), and deduce that as time increases v2/a tends to
the constant value g/( 7

8c + 3
4k), and thence the raindrop tends to a constant acceleration

which is less than 1
7g.

4/II/11A Dynamics

A spacecraft of mass m moves under the gravitational influence of the Sun of
mass M and with universal gravitation constant G. After a disastrous manoeuvre, the
unfortunate spacecraft finds itself exactly in a parabolic orbit about the Sun: the orbit
with zero total energy. Using the conservation of energy and angular momentum, or
otherwise, show that in the subsequent motion the distance of the spacecraft from the Sun
r(t) satisfies

(r − r0)(r + 2r0)2 = 9
2GM(t− t0)2,

with constants r0 and t0.

4/II/12A Dynamics

Find the moment of inertia of a uniform solid cylinder of radius a, length l and
total mass M about its axis.

The cylinder is released from rest at the top of an inclined plane of length L and
inclination θ to the horizontal. The first time the plane is perfectly smooth and the
cylinder slips down the plane without rotating. The experiment is then repeated after the
plane has been roughened, so that the cylinder now rolls without slipping at the point of

contact. Show that the time taken to roll down the roughened plane is
√

3
2 times the time

taken to slip down the smooth plane.
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4/I/1E Numbers and Sets

(a) Show that, given a set X, there is no bijection between X and its power set.

(b) Does there exist a set whose members are precisely those sets that are not members
of themselves? Justify your answer.

4/I/2E Numbers and Sets

Prove, by induction or otherwise, that

(
n

0

)
+

(
n + 1

1

)
+ · · ·+

(
n + m

m

)
=

(
n + m + 1

m

)
.

Find the number of sequences consisting of zeroes and ones that contain exactly n
zeroes and at most m ones.

4/II/5E Numbers and Sets

(a) Prove Wilson’s theorem, that (p− 1)! ≡ −1 (mod p), where p is prime.

(b) Suppose that p is an odd prime. Express 12.32.52. . . . .(p− 2)2 (mod p) as a power
of −1.

[Hint: k ≡ −(p− k) (mod p).]

4/II/6E Numbers and Sets

State and prove the principle of inclusion-exclusion. Use it to calculate φ(4199),
where φ is Euler’s φ-function.

In a certain large college, a survey revealed that 90% of the fellows detest at least
one of the pop stars Hairy, Dirty and Screamer. 45% detest Hairy, 28% detest Dirty
and 46% detest Screamer. If 27% detest only Screamer and 6% detest all three, what
proportion detest Hairy and Dirty but not Screamer?
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4/II/7E Numbers and Sets

(a) Prove that, if p is prime and a is not a multiple of p, then ap−1 ≡ 1 (mod p).

(b) The order of a (mod p) is the least positive integer d such that ad ≡ 1 (mod p).
Suppose now that ax ≡ 1 (mod p); what can you say about x in terms of d? Show
that p ≡ 1 (mod d).

(c) Suppose that p is an odd prime. What is the order of x (mod p) if x2 ≡ −1 (mod p)?
Find a condition on p (mod 4) that is equivalent to the existence of an integer x
with x2 ≡ −1 (mod p).

4/II/8E Numbers and Sets

What is the Principle of Mathematical Induction? Derive it from the statement
that every non-empty set of positive integers has a least element.

Prove, by induction on n, that 9n ≡ 2n (mod 7) for all n ≥ 1.

What is wrong with the following argument?

“Theorem:
∑n

i=1 i = n(n + 1)/2 + 126.

Proof: Assume that m ≥ 1 and
∑m

i=1 i = m(m + 1)/2 + 126. Add m + 1 to both
sides to get

m+1∑
i=1

i = m(m + 1)/2 + m + 1 + 126 = (m + 1)(m + 2)/2 + 126.

So, by induction, the theorem is proved.”
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2/I/3F Probability

The following problem is known as Bertrand’s paradox. A chord has been chosen
at random in a circle of radius r. Find the probability that it is longer than the side of
the equilateral triangle inscribed in the circle. Consider three different cases:

a) the middle point of the chord is distributed uniformly inside the circle,

b) the two endpoints of the chord are independent and uniformly distributed over
the circumference,

c) the distance between the middle point of the chord and the centre of the circle
is uniformly distributed over the interval [0, r].

[Hint: drawing diagrams may help considerably.]

2/I/4F Probability

The Ruritanian authorities decided to pardon and release one out of three remaining
inmates, A, B and C, kept in strict isolation in the notorious Alkazaf prison. The inmates
know this, but can’t guess who among them is the lucky one; the waiting is agonising. A
sympathetic, but corrupted, prison guard approaches A and offers to name, in exchange
for a fee, another inmate (not A) who is doomed to stay. He says: “This reduces your
chances to remain here from 2/3 to 1/2: will it make you feel better?” A hesitates but
then accepts the offer; the guard names B.

Assume that indeed B will not be released. Determine the conditional probability

P
(
A remains

∣∣ B named
)

= P (A&B remain)
P (B named)

and thus check the guard’s claim, in three cases:

a) when the guard is completely unbiased (i.e., names any of B and C with
probability 1/2 if the pair B,C is to remain jailed),

b) if he hates B and would certainly name him if B is to remain jailed,

c) if he hates C and would certainly name him if C is to remain jailed.
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2/II/9F Probability

I play tennis with my parents; the chances for me to win a game against Mum (M)
are p and against Dad (D) q, where 0 < q < p < 1. We agreed to have three games,
and their order can be DMD (where I play against Dad, then Mum then again Dad) or
MDM . The results of games are independent.

Calculate under each of the two orders the probabilities of the following events:

a) that I win at least one game,

b) that I win at least two games,

c) that I win at least two games in succession (i.e., games 1 and 2 or 2 and 3, or 1,
2 and 3),

d) that I win exactly two games in succession (i.e., games 1 and 2 or 2 and 3, but
not 1, 2 and 3),

e) that I win exactly two games (i.e., 1 and 2 or 2 and 3 or 1 and 3, but not 1, 2
and 3).

In each case a)– e) determine which order of games maximizes the probability of
the event. In case e) assume in addition that p + q > 3pq.

2/II/10F Probability

A random point is distributed uniformly in a unit circle D so that the probability
that it falls within a subset A ⊆ D is proportional to the area of A. Let R denote the
distance between the point and the centre of the circle. Find the distribution function
FR(x) = P (R < x), the expected value ER and the variance Var R = ER2 − (ER)2.

Let Θ be the angle formed by the radius through the random point and the
horizontal line. Prove that R and Θ are independent random variables.

Consider a coordinate system where the origin is placed at the centre of D. Let
X and Y denote the horizontal and vertical coordinates of the random point. Find
the covariance Cov(X, Y ) = E(XY ) − EXEY and determine whether X and Y are
independent.

Calculate the sum of expected values E X
R + iE Y

R . Show that it can be written as
the expected value Eeiξ and determine the random variable ξ.
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2/II/11F Probability

Dipkomsky, a desperado in the wild West, is surrounded by an enemy gang and
fighting tooth and nail for his survival. He has m guns, m > 1, pointing in different
directions and tries to use them in succession to give an impression that there are several
defenders. When he turns to a subsequent gun and discovers that the gun is loaded
he fires it with probability 1/2 and moves to the next one. Otherwise, i.e. when the
gun is unloaded, he loads it with probability 3/4 or simply moves to the next gun with
complementary probability 1/4. If he decides to load the gun he then fires it or not with
probability 1/2 and after that moves to the next gun anyway.

Initially, each gun had been loaded independently with probability p. Show that if
after each move this distribution is preserved, then p = 3/7. Calculate the expected value
EN and variance Var N of the number N of loaded guns under this distribution.

[Hint: it may be helpful to represent N as a sum
∑

1≤j≤m Xj of random variables
taking values 0 and 1.]

2/II/12F Probability

A taxi travels between four villages, W , X, Y , Z, situated at the corners of a
rectangle. The four roads connecting the villages follow the sides of the rectangle; the
distance from W to X and Y to Z is 5 miles and from W to Z and Y to X 10 miles.
After delivering a customer the taxi waits until the next call then goes to pick up the new
customer and takes him to his destination. The calls may come from any of the villages
with probability 1/4 and each customer goes to any other village with probability 1/3.
Naturally, when travelling between a pair of adjacent corners of the rectangle, the taxi
takes the straight route, otherwise (when it travels from W to Y or X to Z or vice versa)
it does not matter. Distances within a given village are negligible. Let D be the distance
travelled to pick up and deliver a single customer. Find the probabilitites that D takes
each of its possible values. Find the expected value ED and the variance Var D.
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3/I/3C Vector Calculus

For a real function f(x, y) with x = x(t) and y = y(t) state the chain rule for the
derivative d

dtf(x(t), y(t)).

By changing variables to u and v, where u = α(x)y and v = y/x with a suitable
function α(x) to be determined, find the general solution of the equation

x∂f
∂x − 2y ∂f

∂y = 6f .

3/I/4A Vector Calculus

Suppose that

u = y2 sin(xz) + xy2z cos(xz), v = 2xy sin(xz), w = x2y2 cos(xz).

Show that u dx + v dy + w dz is an exact differential.

Show that ∫ (π/2,1,1)

(0,0,0)

u dx + v dy + w dz =
π

2
.

3/II/9C Vector Calculus

Explain, with justification, how the nature of a critical (stationary) point of a
function f(x) can be determined by consideration of the eigenvalues of the Hessian matrix
H of f(x) if H is non-singular. What happens if H is singular?

Let f(x, y) = (y − x2)(y − 2x2) + αx2. Find the critical points of f and determine
their nature in the different cases that arise according to the values of the parameter
α ∈ R.
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3/II/10A Vector Calculus

State the rule for changing variables in a double integral.

Let D be the region defined by{
1/x ≤ y ≤ 4x when 1

2 ≤ x ≤ 1,
x ≤ y ≤ 4/x when 1 ≤ x ≤ 2.

Using the transformation u = y/x and v = xy, show that∫
D

4xy3

x2 + y2
dxdy =

15
2

ln
17
2

.

3/II/11B Vector Calculus

State the divergence theorem for a vector field u(r) in a closed region V bounded
by a smooth surface S.

Let Ω(r) be a scalar field. By choosing u = cΩ for arbitrary constant vector c,
show that ∫

V

∇Ω dv =
∫

S

Ω dS . (∗)

Let V be the bounded region enclosed by the surface S which consists of the cone
(x, y, z) = (r cos θ, r sin θ, r/

√
3) with 0 ≤ r ≤

√
3 and the plane z = 1, where r, θ, z are

cylindrical polar coordinates. Verify that (∗) holds for the scalar field Ω = (a− z) where
a is a constant.

3/II/12B Vector Calculus

In R3 show that, within a closed surface S, there is at most one solution of Poisson’s
equation, ∇2φ = ρ, satisfying the boundary condition on S

α
∂φ

∂n
+ φ = γ ,

where α and γ are functions of position on S, and α is everywhere non-negative.

Show that
φ(x, y) = e±lx sin ly

are solutions of Laplace’s equation ∇2φ = 0 on R2.

Find a solution φ(x, y) of Laplace’s equation in the region 0 < x < π, 0 < y < π
that satisfies the boundary conditions

φ = 0 on 0 < x < π y = 0
φ = 0 on 0 < x < π y = π

φ + ∂φ/∂n = 0 on x = 0 0 < y < π
φ = sin(ky) on x = π 0 < y < π

where k is a positive integer. Is your solution the only possible solution?

Part IA
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