PAPER 3

Before you begin read these instructions carefully.

Each question in Section II carries twice the credit of each question in Section I. You may attempt all four questions in Section I and at most five questions from Section II. In Section II no more than three questions on each course may be attempted.

Complete answers are preferred to fragments.
Write on one side of the paper only and begin each answer on a separate sheet.
Write legibly; otherwise you place yourself at a grave disadvantage.

At the end of the examination:

Tie up your answers in separate bundles, marked $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D}, \boldsymbol{E}, \boldsymbol{F}$ according to the code letter affixed to each question. Attach a blue cover sheet to each bundle; write the code in the box marked 'SECTION' on the cover sheet. Do not tie up questions from Section I and Section II in separate bundles.

You must also complete a green master cover sheet listing all the questions attempted by you.

Every cover sheet must bear your examination number and desk number.

SECTION I

1F Algebra and Geometry

For a 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, prove that $A^{2}=0$ if and only if $a=-d$ and $b c=-a^{2}$. Prove that $A^{3}=0$ if and only if $A^{2}=0$.
[Hint: it is easy to check that $A^{2}-(a+d) A+(a d-b c) I=0$.]

2D Algebra and Geometry

Show that the set of Möbius transformations of the extended complex plane $\mathbb{C} \cup\{\infty\}$ form a group. Show further that an arbitrary Möbius transformation can be expressed as the composition of maps of the form

$$
f(z)=z+a, \quad g(z)=k z \text { and } h(z)=1 / z .
$$

3C Vector Calculus

For a real function $f(x, y)$ with $x=x(t)$ and $y=y(t)$ state the chain rule for the derivative $\frac{d}{d t} f(x(t), y(t))$.

By changing variables to u and v, where $u=\alpha(x) y$ and $v=y / x$ with a suitable function $\alpha(x)$ to be determined, find the general solution of the equation

$$
x \frac{\partial f}{\partial x}-2 y \frac{\partial f}{\partial y}=6 f .
$$

4A Vector Calculus

Suppose that

$$
u=y^{2} \sin (x z)+x y^{2} z \cos (x z), \quad v=2 x y \sin (x z), \quad w=x^{2} y^{2} \cos (x z) .
$$

Show that $u d x+v d y+w d z$ is an exact differential.
Show that

$$
\int_{(0,0,0)}^{(\pi / 2,1,1)} u d x+v d y+w d z=\frac{\pi}{2}
$$

SECTION II

5F Algebra and Geometry

Let A, B, C be 2×2 matrices, real or complex. Define the trace $\operatorname{tr} C$ to be the sum of diagonal entries $C_{11}+C_{22}$. Define the commutator $[A, B]$ to be the difference $A B-B A$. Give the definition of the eigenvalues of a 2×2 matrix and prove that it can have at most two distinct eigenvalues. Prove that
a) $\operatorname{tr}[A, B]=0$,
b) $\operatorname{tr} C$ equals the sum of the eigenvalues of C,
c) if all eigenvalues of C are equal to 0 then $C^{2}=0$,
d) either $[A, B]$ is a diagonalisable matrix or the square $[A, B]^{2}=0$,
e) $[A, B]^{2}=\alpha I$ where $\alpha \in \mathbb{C}$ and I is the unit matrix.

6E Algebra and Geometry

Define the notion of an action of a group G on a set X. Define orbit and stabilizer, and then, assuming that G is finite, state and prove the Orbit-Stabilizer Theorem.

Show that the group of rotations of a cube has order 24.

7E Algebra and Geometry

State Lagrange's theorem. Use it to describe all groups of order p, where p is a fixed prime number.

Find all the subgroups of a fixed cyclic group $\langle x\rangle$ of order n.

8D Algebra and Geometry

(i) Let A_{4} denote the alternating group of even permutations of four symbols. Let X be the 3 -cycle (123) and P, Q be the pairs of transpositions (12)(34) and (13)(24). Find $X^{3}, P^{2}, Q^{2}, X^{-1} P X, X^{-1} Q X$, and show that A_{4} is generated by X, P and Q.
(ii) Let G and H be groups and let

$$
G \times H=\{(g, h): g \in G, h \in H\}
$$

Show how to make $G \times H$ into a group in such a way that $G \times H$ contains subgroups isomorphic to G and H.

If D_{n} is the dihedral group of order n and C_{2} is the cyclic group of order 2 , show that D_{12} is isomorphic to $D_{6} \times C_{2}$. Is the group D_{12} isomorphic to A_{4} ?

9C Vector Calculus

Explain, with justification, how the nature of a critical (stationary) point of a function $f(\mathbf{x})$ can be determined by consideration of the eigenvalues of the Hessian matrix H of $f(\mathbf{x})$ if H is non-singular. What happens if H is singular?

Let $f(x, y)=\left(y-x^{2}\right)\left(y-2 x^{2}\right)+\alpha x^{2}$. Find the critical points of f and determine their nature in the different cases that arise according to the values of the parameter $\alpha \in \mathbb{R}$.

10A Vector Calculus

State the rule for changing variables in a double integral.
Let D be the region defined by

$$
\begin{cases}1 / x \leq y \leq 4 x & \text { when } \frac{1}{2} \leq x \leq 1 \\ x \leq y \leq 4 / x & \text { when } 1 \leq x \leq 2\end{cases}
$$

Using the transformation $u=y / x$ and $v=x y$, show that

$$
\int_{D} \frac{4 x y^{3}}{x^{2}+y^{2}} d x d y=\frac{15}{2} \ln \frac{17}{2}
$$

11B Vector Calculus

State the divergence theorem for a vector field $\mathbf{u}(\mathbf{r})$ in a closed region V bounded by a smooth surface S.

Let $\Omega(\mathbf{r})$ be a scalar field. By choosing $\mathbf{u}=\mathbf{c} \Omega$ for arbitrary constant vector \mathbf{c}, show that

$$
\begin{equation*}
\int_{V} \nabla \Omega d v=\int_{S} \Omega d \mathbf{S} \tag{*}
\end{equation*}
$$

Let V be the bounded region enclosed by the surface S which consists of the cone $(x, y, z)=(r \cos \theta, r \sin \theta, r / \sqrt{3})$ with $0 \leq r \leq \sqrt{3}$ and the plane $z=1$, where r, θ, z are cylindrical polar coordinates. Verify that $(*)$ holds for the scalar field $\Omega=(a-z)$ where a is a constant.

12B Vector Calculus

In \mathbb{R}^{3} show that, within a closed surface S, there is at most one solution of Poisson's equation, $\nabla^{2} \phi=\rho$, satisfying the boundary condition on S

$$
\alpha \frac{\partial \phi}{\partial n}+\phi=\gamma,
$$

where α and γ are functions of position on S, and α is everywhere non-negative.
Show that

$$
\phi(x, y)=e^{ \pm l x} \sin l y
$$

are solutions of Laplace's equation $\nabla^{2} \phi=0$ on \mathbb{R}^{2}.
Find a solution $\phi(x, y)$ of Laplace's equation in the region $0<x<\pi, 0<y<\pi$ that satisfies the boundary conditions

$$
\begin{array}{cccc}
\phi=0 & \text { on } & 0<x<\pi & y=0 \\
\phi=0 & \text { on } & 0<x<\pi & y=\pi \\
\phi+\partial \phi / \partial n=0 & \text { on } & x=0 & 0<y<\pi \\
\phi=\sin (k y) & \text { on } & x=\pi & 0<y<\pi
\end{array}
$$

where k is a positive integer. Is your solution the only possible solution?

END OF PAPER

