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1A

Solutions of the equation

(

1 − 1

x

)

d2y

dx2
+

(

2

x
− 1

x2

)

dy

dx
− l(l + 1)

x2
y = −λ y , (∗)

with l = 1, 2, . . . behave for small but positive (x − 1) like

c1 + c2 ln(x − 1) ,

where c1 and c2 are constants. An eigenvalue problem is defined by the condition that
real valued solutions on the interval 1 6 x 6 R are subject to the boundary conditions
that y(R) = 0 and y(x) and dy/dx are bounded as x tends to 1 from above.

(i) Show that the equation (*) may be cast into self-adjoint form.[6]

(ii) Give the self-adjoint operator and verify, subject to the boundary conditions, that it
is indeed self-adjoint.[4]

(iii) Show that the eigenvalues λ must be real and greater than zero.[5]

(iv) Show explicitly, using the boundary conditions, that eigenfunctions yi and yj with
different eigenvalues λi 6= λj are orthogonal with respect to a suitably weighted inner
product.[5]
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2A

Show that Laplace’s equation in plane polar coordinates r, θ,

∇
2 Φ =

1

r

∂

∂r

(

r
∂Φ

∂r

)

+
1

r2

∂2Φ

∂ θ2
= 0

admits solutions of the form

Φ = a0 + b0 ln(r) +
n=∞
∑

n=1

(

an rn +
bn

rn

)(

An cos(nθ) + Bn sin(nθ)

)

.

[4]

Find a solution Φ(r, θ) which is bounded inside the disc r 6 R and such that

Φ(R, θ) =



































0 ,
π

2
6 θ 6 π ,

C , − π

2
< θ <

π

2
,

0 , −π 6 θ 6 − π

2
,

where C is a constant.[6]

Show that your solution is unique subject to the stated boundary conditions by
supposing to the contrary the existence of another solution Φ̃ satisfying the same boundary
conditions, and applying the divergence theorem to

∫

D

(

Φ̃ − Φ
)

∇
2
(

Φ̃ − Φ
)

dx dy ,

where the domain D is the disc r 6 R .[4]

Construct a solution bounded outside the disc, i.e. for r > R , with the same
boundary data on the circle r = R and which tends to a constant at infinity.[2]

Show that the constant is not freely specifiable but must take a certain value which
should be specified.[2]

Show further, using the divergence theorem, that there is no other bounded solution
taking that value.[2]
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3A

If

GF (x, y) =
1

4π|x − y| e iω|x−y| ,

and if Ψ(x) satisfies the equation

∂2Ψ

∂x 2
1

+
∂2Ψ

∂x 2
2

+
∂2Ψ

∂x 2
3

= −ω2 Ψ (∗)

in a volume V , by applying Green’s identity show that
∫

∂V

(

∇GF (x, y)Ψ(y) − GF (x, y) ∇Ψ(y)
)

· dS (y) = −Ψ(x) , x ∈ V,

= 0 , x /∈ V .

}

(∗∗)

where ∂V is a closed surface with outward unit normal n which encloses the volume
V . For surfaces we write the surface area element dS = ndS, and in (**) the gradient

operator ∇ = i
∂

∂y1
+ j

∂

∂y2
+ k

∂

∂y3
.

[4]

Now assume that Ψ satisfies (*) in the half-space {x3 > 0}. By applying Green’s
identity, and taking into account the integral over a large hemisphere in the half-space
{x3 > 0}, show that if

lim|y|→∞ |y Ψ(y)| 6 ∞ ,

lim|y|→∞
(

y · ∇ − iω|y|
)

Ψ(y) = 0 ,

}

(†)

then
∫

y3=0

(

Ψ(y)∇GF (x, y) − GF (x, y)∇Ψ(y)
)

· dS(y) = −Ψ(x) , for x such that x3 > 0 ,

= 0 , for x such that x3 < 0 .
[6]

Hence show that for x3 > 0 ,

Ψ(x) = − 1

2π

∫ ∞

−∞

∫ ∞

−∞

∂Ψ

∂x3
(y1, y2, 0)

e iωR

R
dy1 dy2 ,

where R =
√

(x1 − y1)2 + (x2 − y2)2 + x 2
3 . [You may find it useful to consider also the

function GF ((x1, x2,−x3),y).][6]

Hence show that if Ψ(x) satisfies the boundary conditions (†) together with

∂Ψ

∂x3
(x1, x2, 0) = 0 ,

then Ψ(x) = 0 for all x3 > 0 .[4]
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4A

If a, b, c are real positive constants such that a2 > b2 + c2 > 0 , find the poles, z1, z2 of
the analytic function

f(z) =
1

az + 1
2 b (z2 + 1) + 1

2i
c (z2 − 1)

.
[4]

Show that
|z1 z2| = 1 ,

and hence that one pole lies inside and one outside the unit circle.[3]

Are the poles simple?[3]

Hence show, using the contour |z| = 1 and Cauchy’s Theorem, how one may
evaluate the integral

I =

∫ π

−π

d θ

a + b cos θ + c sin θ
.[5]

Give the value of I.[5]
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5A

(i) Find an ordinary differential equation satisfied by the Fourier transform

θ̃(k, t) =

∫ ∞

−∞
e−ikx θ(x, t) dx

of a solution θ(x, t) of the heat equation

∂θ

∂t
=

∂2θ

∂ x2
,

on the interval −∞ < x < ∞ for t > 0 .[2]

(ii) Give an expression for the solution θ(x, t) in terms of the Fourier transform of the
initial distribution of temperature θ̃(k, 0).[2]

(iii) Use the convolution theorem to express θ(x, t) as a convolution

θ(x, t) =

∫ ∞

−∞
θ(y, 0)G(x − y, t) dy ,

giving an explicit form for G(x − y, t).[5]

(iv) Suppose that the initial distribution is of Gaussian form:

θ(x, 0) = A0 e−a0(x−x0)2 , (∗)

where x0, A0 and a0 > 0 are constants. Show that θ(x, t) is of Gaussian form and give an
explicit formula for it.[6]

Find an expression for θ(x, t) in terms of the error function erf(x) defined by

erf(x) =
2√
π

∫ x

0
e−u2

du

in the case that

θ(x, 0) =

{ = 0 , x < a ,
= B , a < x < b ,
= 0 , x > b .

(†)[5]

Hence show that at late times, in the interval a < x < b ,

θ(x, t) ≈ B(b − a)√
4πt

.

Show in both cases (*) and (†) that at late times the heat has spread out over a distance
which is O(

√
t).[2]

[You may assume that
∫ ∞

−∞
e−(x+iy)2 dx =

√
π

for x and y real.]
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6B Define the terms tensor and isotropic tensor. Show that ǫijk, the completely anti-
symmetric tensor with ǫ123 = 1, is isotropic. Let A be a rank two tensor with matrix
entries Aij . Using the formula

detAǫijk = ǫlmnAilAjmAkn ,

deduce that

detA =
1

6
ǫijkǫlmnAilAjmAkn ,

and hence show that the determinant is a scalar. Show also that the inverse matrix A−1

has entries given by the formula

A−1
ba =

1

2det A
ǫajkǫbmnAjmAkn .

[6]

Prove that the partial derivative ∂det A
∂Aab

is given by

∂det A

∂Aab

= detA (A−1)Tab ,

where T denotes matrix transpose.[8]

Consider the case that Aij(t,x) arises as the Jacobian matrix of a smooth time-
dependent transformation xi → yi = Φi(t,x), i.e.

Aij(t,x) =
∂yj

∂xi
=

∂Φj

∂xi
(t,x) ,

and assume that Φi(t,x) = xi + tui(x) + O(t2) for small t. By considering d
dt

detA(t,x)
show that det A(t,x) = 1 + O(t2) for small t if div u = ∇ · u = 0.[6]

[The summation convention is assumed throughout this question.]
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7B A mechanical system with N degrees of freedom (q1, . . . qN ) described by a
Lagrangian of the form

L =
1

2

∑

ij

Tij q̇iq̇j − V (q1, . . . qN)

where Tij is a constant symmetric positive definite matrix, is subject to small oscillations
about an equilibrium point. Define the normal modes and normal frequencies. State and
derive the orthogonality relation for the normal modes.[3]

Consider three point masses of equal mass m, situated at points x1 = (X1, Y1),x2 =
(X2, Y2) and x3 = (X3, Y3) in the plane, and connected by springs of equal unstretched
length l =

√
3 and spring constant k. Write down the potential and kinetic energies and

show that they are unchanged by an overall translation and by an overall rigid rotation
of the system. Show that configurations in which the three masses lie at the vertices of
equilateral triangles whose sides have length l =

√
3 are equilibrium points for the system.[1]

Write down the potential energy V for the system when the masses are located at

(X1, Y1) = (q1, 1 + q2), (X2, Y2) = (
√

3
2 + q3,−1

2 + q4) and (X3, Y3) = (−
√

3
2 + q5,−1

2 + q6).
Show that for small (q1, . . . q6) the potential energy V can be expanded to quadratic order
as[3]

V =
1

2
k(q5 − q3)

2 +
k

2

[1

2
(q1 − q5) +

√
3

2
(q2 − q6)

]2

+
k

2

[

−1

2
(q1 − q3) +

√
3

2
(q2 − q4)

]2
+ . . .

Set up the problem for small oscillations around the configuration in which the
masses are at the vertices of an equilateral triangle centred at the origin, with the first

mass situated at (0, 1) and the remaining two at (±
√

3
2 ,−1

2). Show that the Lagrangian
for this system takes the form[6]

L =
m

2

∑

j

q̇2
j − 1

2

∑

ij

Vijqiqj, where

Vij =
k

4



















2 0 −1
√

3 −1 −
√

3

0 6
√

3 −3 −
√

3 −3

−1
√

3 5 −
√

3 −4 0√
3 −3 −

√
3 3 0 0

−1 −
√

3 −4 0 5
√

3

−
√

3 −3 0 0
√

3 3



















.

Use the translations and rigid rotations that you wrote down above to show that
there are three normal modes of zero frequency, giving them explicitly.[4]

Prove that there is a normal mode in which all of the masses move radially and find
its frequency.[3]
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8B Define the order of a finite group G and state Lagrange’s theorem on the order of
a subgroup K of G.[2]

Prove that every order four group is either the cyclic group C4 or is the Vierergruppe
V , i.e. the order four abelian group {I, a, b, c} in which a2 = b2 = c2 = I and ab = c.[5]

Define a homomorphism Φ : G 7→ H between finite groups G and H.[1]

Prove that K, the kernel of a homomorphism Φ : G 7→ H, is a normal subgroup of
G. Assuming that the image of Φ contains all of H, prove that the quotient group G/K
is isomorphic to H.[4]

Consider the multiplicative group Q which has elements ±1,±i,±j,±k, where 1 is
the identity, (−1)2 = 1 and i, j, k satisfy

i2 = j2 = k2 = −1

and
ij = k, jk = i and ki = j.

Show that these relations imply that (−1) commutes with i, j, k and deduce that N = {±1}
is a normal subgroup of Q.[4]

Obtain a homomorphism Φ : Q 7→ V (where V is as defined above) whose kernel is
N , and give a quotient group of Q which is isomorphic to V .[4]

9B

If G is an arbitrary finite group, define the conjugacy classes of G and show that
each element lies in a unique conjugacy class.[4]

Show that if G is Abelian then each element lies in a conjugacy class consisting only
of itself, i.e. each element forms its own conjugacy class.[2]

If G is an arbitrary, not necessarily Abelian, finite group, its centre Z is defined
to be the set of elements which each form their own conjugacy class. Prove that Z is an
Abelian subgroup of G.[4]

Describe the group D4 of symmetry operations of the square, including a geometrical
description of the action of each element and a 2 × 2 matrix form for each such action.
Give an example, with justification, of a pair of elements which are not conjugate to each
other.[6]

Find the centre of D4.[4]
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10B Define the terms representation, invariant subspace, irreducible representation

and faithful representation. Define the character of a representation, and state the
orthogonality relation for characters.[5]

Consider the group Σ3 of all possible permutations of three objects with the group
operation defined by composition of the permutations. Display the group multiplication
table and identify the conjugacy classes.[3]

Define a faithful three-dimensional representation of Σ3 in which each element is
represented by one of the following matrices:

I =





1 0 0
0 1 0
0 0 1



 , A =





0 0 1
1 0 0
0 1 0



 , B =





0 1 0
0 0 1
1 0 0



 ,

C =





0 0 1
0 1 0
1 0 0



 , D =





0 1 0
1 0 0
0 0 1



 , E =





1 0 0
0 0 1
0 1 0



 .

[2]

Show that the one-dimensional subspace V0 of vectors of the form (c, c, c), for
arbitrary real c, is an invariant subspace of the representation. Show that the subspace
V ⊥

0 consisting of real vectors (v1, v2, v3) with v1 + v2 + v3 = 0 is the space of real vectors
orthogonal to V0, and prove that V ⊥

0 is also an invariant subspace of the representation.
Find the eigenvectors of A and show that A has no (real) eigenvectors in V ⊥

0 . Hence show
that V ⊥

0 determines a two-dimensional irreducible representation of Σ3. Hence decompose
the above three-dimensional faithful representation into irreducible representations.[8]

Prove that Σ3 has two one-dimensional irreducible representations, and one two-
dimensional irreducible representation.

[You may use without proof that if nα is the dimension of the αth irreducible

representation of a finite group G, then the order of G is given by |G| =
∑

α n2
α. ][2]
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